organic compounds
4′-(3,4-Dimethoxyphenyl)-2,2′:6′,2′′-terpyridine
aInstitute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and bDepartment of Industrial Systems Engineering, Cluster of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: daio@sss.fukushima-u.ac.jp
In the title compound, C23H19N3O2, the terpyridine unit has a dimethoxyphenyl substituent at the 4-position of the central pyridyl ring. The three pyridyl rings are in a transoid conformation with respect to the interannular C—C bonds. In addition, the pendant dimethoxyphenyl substituent is almost coplanar with the terpyridyl unit; the dihedral angle between the central pyridyl ring and the benzene ring is 7.14 (11)°, which is much smaller than that found in the structural isomer with a 2,5-dimethoxyphenyl substituent. The C—C and C—N bond lengths within the aromatic rings are normal. One of the terminal pyridyl rings is disordered over two sets of sites with an occupancy ratio of 0.744 (7):0.256 (7). The orientation of the two methoxy groups at the 3- and 4-positions is such that the methyl groups point away from each other in opposite directions. In the C–H⋯N hydrogen bonds form chains along b while C—H⋯O contacts form inversion dimers, creating double chains. These combine with C—H⋯π contacts and π⋯π interactions, with a centroid-centroid distance of 3.858 (4) Å, to stack molecules along the b-axis direction.
Keywords: crystal structure; terpyridine; dimethoxyphenyl substituent; hydrogen bonds; π–π contacts.
CCDC reference: 1484781
Structure description
Polypyridines display unique photophysical and redox properties (Winter et al., 2011). Terpyridine analogs are also known to act as tridentate ligands using all three of the N-donor atoms.
Although the title compound, C23H19N3O2, has been obtained previously by a standard Kröhnke-type synthesis (Whittle et al., 1995), we have prepared it by a direct condensation reaction between 2-acetylpyridine and 3,4-dimethoxybenzaldehyde, according to a procedure reported earlier for a similar compound (Storrier et al., 1998).
In the molecule (Fig. 1), the terpyridine unit has a dimethoxyphenyl substituent at the 4-position of the central pyridyl ring. The three pyridyl rings adopt the expected transoid conformation with respect to the interannular C—C bonds. The pendant dimethoxyphenyl substituent lies close to the plane of the terpyridyl unit with a dihedral angle of 7.14 (11)° between the N2/C6–C10 and C16–C21 ring planes. This is comparable to that found for the related compound with a phenyl substituent (10.9°; Constable et al., 1990) but distinct from that of the corresponding 2,5-dimethoxyphenyl structural isomer (50.2°; Storrier et al., 1998). This difference can be ascribed in part to the intramolecular steric interactions between the ortho-substituents (either –OCH3 or –H) on the phenyl ring and the 3- or 5-protons on the central pyridine ring. One of the terminal pyridyl rings is disordered over two sets of sites with an occupancy ratio of 0.744 (7):0.256 (7). The orientation of the two methoxy groups at the 3- and 4-positions is such that the methyl groups point away from each other in opposite directions.
In the π–π contact between Cg3 and Cg4, 3.858 (4) Å, (Cg3 and Cg4 are the centroids of the N2/C6–C10 and N3/C11–C15 rings respectively; x, −1 + y, z) stack molecules along the b-axis direction, Fig. 2. C18—H12⋯π and C23—H19⋯π hydrogen bonds (Table 1) also contribute to this stacking. In addition C3A—H3A⋯N3 hydrogen bonds form C(10) chains along a while C23—H18 ⋯O3 contacts form inversion dimers and, together with a C23—H17⋯π contact, generate a double chain of molecules along a. The overall effect, Fig. 3, sees sheets of molecules stacked along the b-axis direction.
aSynthesis and crystallization
The title compound was prepared by a direct condensation reaction between 2-acetylpyridine and 3,4-dimethoxybenzaldehyde in ammonium acetate–acetamide to afford a pale-yellow solid in 23% yield, which is a modification of a literature method (Storrier et al., 1998). The crude product was purified by and then recrystallized from a chloroform–diethyl ether (1/40) mixture at ambient temperature to give good quality crystals suitable for X-ray diffraction.
Refinement
Crystal data, data collection, and structure . The carbon atoms of one of the pyridyl rings were disordered over two sites and refined as (C2A, C3A, C4A, C5A) and (C2B, C3B, C4B, C5B) with occupancies that sum to unity. This disorder model converged with an occupancy ratio 0.744 (7):0.256 (7).
details are summarized in Table 2
|
Structural data
CCDC reference: 1484781
10.1107/S2414314616009500/sj4034sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616009500/sj4034Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616009500/sj4034Isup3.mol
Supporting information file. DOI: 10.1107/S2414314616009500/sj4034Isup4.cml
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C23H19N3O2 | F(000) = 776.00 |
Mr = 369.42 | Dx = 1.343 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2yab | Cell parameters from 3564 reflections |
a = 18.280 (14) Å | θ = 3.0–27.5° |
b = 5.493 (4) Å | µ = 0.09 mm−1 |
c = 18.298 (14) Å | T = 93 K |
β = 96.020 (6)° | Block, colorless |
V = 1827 (3) Å3 | 0.20 × 0.15 × 0.08 mm |
Z = 4 |
Rigaku Saturn724 diffractometer | 2937 reflections with F2 > 2.0σ(F2) |
Detector resolution: 28.944 pixels mm-1 | Rint = 0.075 |
ω scans | θmax = 27.4° |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | h = −23→23 |
Tmin = 0.881, Tmax = 0.993 | k = −7→6 |
17670 measured reflections | l = −23→23 |
4118 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.100 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.224 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0698P)2 + 2.0174P] where P = (Fo2 + 2Fc2)/3 |
4118 reflections | (Δ/σ)max < 0.001 |
270 parameters | Δρmax = 0.44 e Å−3 |
18 restraints | Δρmin = −0.43 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.40936 (11) | 0.0742 (5) | 1.03502 (12) | 0.0328 (6) | |
O2 | 0.42133 (12) | 0.4172 (5) | 0.94160 (13) | 0.0373 (6) | |
N1 | 0.01717 (16) | −0.3469 (7) | 0.74911 (17) | 0.0458 (9) | |
N2 | 0.09106 (15) | 0.1770 (6) | 0.66251 (15) | 0.0391 (8) | |
N3 | 0.21225 (16) | 0.6651 (6) | 0.61704 (18) | 0.0458 (9) | |
C1 | −0.0454 (2) | −0.4808 (8) | 0.7454 (2) | 0.0482 (10) | |
C2B | −0.0955 (12) | −0.468 (4) | 0.6835 (11) | 0.045 (6)* | 0.256 (7) |
C2A | −0.1103 (4) | −0.4111 (14) | 0.7073 (4) | 0.0463 (16) | 0.744 (7) |
C3B | −0.0833 (9) | −0.324 (3) | 0.6262 (9) | 0.045 (5)* | 0.256 (7) |
C3A | −0.1108 (3) | −0.1923 (11) | 0.6710 (3) | 0.0416 (15) | 0.744 (7) |
C4B | −0.0222 (8) | −0.173 (3) | 0.6330 (8) | 0.033 (4)* | 0.256 (7) |
C4A | −0.0474 (3) | −0.0582 (9) | 0.6719 (3) | 0.0343 (13) | 0.744 (7) |
C5B | 0.0254 (16) | −0.171 (6) | 0.6961 (14) | 0.031 (7)* | 0.256 (7) |
C5A | 0.0166 (5) | −0.1472 (17) | 0.7106 (5) | 0.0294 (17) | 0.744 (7) |
C6 | 0.08608 (17) | 0.0020 (7) | 0.71429 (17) | 0.0312 (8) | |
C7 | 0.13976 (16) | −0.0289 (6) | 0.77322 (17) | 0.0282 (7) | |
C8 | 0.20105 (16) | 0.1251 (6) | 0.78114 (16) | 0.0282 (7) | |
C9 | 0.20605 (16) | 0.3003 (6) | 0.72868 (17) | 0.0290 (7) | |
C10 | 0.15111 (18) | 0.3231 (7) | 0.66967 (17) | 0.0327 (8) | |
C11 | 0.1539 (2) | 0.5164 (8) | 0.6129 (2) | 0.0419 (9) | |
C12 | 0.0988 (4) | 0.5414 (11) | 0.5584 (3) | 0.096 (2) | |
C13 | 0.1006 (4) | 0.7274 (14) | 0.5080 (4) | 0.127 (3) | |
C14 | 0.1603 (3) | 0.8778 (11) | 0.5112 (3) | 0.0791 (17) | |
C15 | 0.2144 (3) | 0.8425 (8) | 0.5668 (3) | 0.0509 (11) | |
C16 | 0.25678 (16) | 0.1036 (6) | 0.84759 (17) | 0.0271 (7) | |
C17 | 0.25191 (17) | −0.0796 (7) | 0.89922 (18) | 0.0314 (8) | |
C18 | 0.30174 (17) | −0.0968 (7) | 0.96230 (18) | 0.0307 (8) | |
C19 | 0.35774 (16) | 0.0731 (6) | 0.97494 (16) | 0.0274 (7) | |
C20 | 0.36432 (16) | 0.2606 (6) | 0.92346 (17) | 0.0269 (7) | |
C21 | 0.31479 (16) | 0.2735 (6) | 0.86080 (17) | 0.0270 (7) | |
C22 | 0.4094 (2) | −0.1284 (7) | 1.0841 (2) | 0.0459 (10) | |
C23 | 0.43971 (19) | 0.5865 (7) | 0.88633 (19) | 0.0376 (9) | |
H1 | −0.0441 | −0.6320 | 0.7708 | 0.0578* | |
H2A | −0.1532 | −0.5095 | 0.7060 | 0.0556* | 0.744 (7) |
H2B | −0.1392 | −0.5629 | 0.6811 | 0.0545* | 0.256 (7) |
H3A | −0.1551 | −0.1337 | 0.6452 | 0.0499* | 0.744 (7) |
H3B | −0.1159 | −0.3268 | 0.5822 | 0.0543* | 0.256 (7) |
H4A | −0.0473 | 0.0928 | 0.6467 | 0.0411* | 0.744 (7) |
H4B | −0.0133 | −0.0686 | 0.5934 | 0.0391* | 0.256 (7) |
H5 | 0.1348 | −0.1544 | 0.8081 | 0.0338* | |
H6 | 0.2471 | 0.4072 | 0.7323 | 0.0348* | |
H7 | 0.0587 | 0.4306 | 0.5547 | 0.1153* | |
H8 | 0.0605 | 0.7506 | 0.4712 | 0.1520* | |
H9 | 0.1638 | 1.0028 | 0.4759 | 0.0949* | |
H10 | 0.2558 | 0.9482 | 0.5703 | 0.0611* | |
H11 | 0.2136 | −0.1965 | 0.8914 | 0.0377* | |
H12 | 0.2973 | −0.2247 | 0.9965 | 0.0368* | |
H13 | 0.3199 | 0.3991 | 0.8260 | 0.0324* | |
H14 | 0.4415 | −0.0927 | 1.1291 | 0.0551* | |
H15 | 0.4275 | −0.2734 | 1.0605 | 0.0551* | |
H16 | 0.3593 | −0.1579 | 1.0964 | 0.0551* | |
H17 | 0.4553 | 0.4966 | 0.8444 | 0.0452* | |
H18 | 0.4798 | 0.6925 | 0.9070 | 0.0452* | |
H19 | 0.3965 | 0.6857 | 0.8700 | 0.0452* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0254 (12) | 0.0376 (14) | 0.0326 (12) | −0.0081 (10) | −0.0100 (9) | 0.0043 (11) |
O2 | 0.0285 (12) | 0.0427 (15) | 0.0385 (13) | −0.0161 (11) | −0.0062 (10) | 0.0035 (11) |
N1 | 0.0304 (16) | 0.064 (3) | 0.0415 (17) | −0.0086 (15) | −0.0048 (13) | 0.0096 (17) |
N2 | 0.0261 (15) | 0.052 (2) | 0.0378 (16) | −0.0039 (14) | −0.0017 (12) | 0.0015 (15) |
N3 | 0.0301 (16) | 0.048 (2) | 0.060 (2) | 0.0081 (14) | 0.0083 (15) | 0.0105 (17) |
C1 | 0.043 (3) | 0.058 (3) | 0.042 (2) | −0.007 (2) | −0.0024 (17) | 0.016 (2) |
C2A | 0.032 (3) | 0.073 (5) | 0.034 (3) | −0.018 (3) | 0.000 (3) | 0.007 (4) |
C3A | 0.023 (3) | 0.067 (4) | 0.033 (3) | −0.004 (3) | −0.0054 (19) | 0.003 (3) |
C4A | 0.026 (3) | 0.040 (3) | 0.035 (3) | −0.002 (2) | −0.0054 (19) | 0.004 (3) |
C5A | 0.020 (3) | 0.048 (5) | 0.020 (4) | −0.000 (3) | −0.000 (3) | −0.002 (3) |
C6 | 0.0226 (15) | 0.040 (2) | 0.0302 (16) | 0.0030 (14) | −0.0024 (13) | −0.0003 (15) |
C7 | 0.0229 (15) | 0.0327 (18) | 0.0277 (16) | 0.0018 (13) | −0.0026 (13) | −0.0017 (14) |
C8 | 0.0203 (15) | 0.0366 (19) | 0.0273 (16) | 0.0044 (13) | 0.0011 (12) | −0.0050 (14) |
C9 | 0.0179 (14) | 0.0382 (19) | 0.0306 (16) | −0.0011 (14) | 0.0005 (13) | −0.0037 (15) |
C10 | 0.0267 (17) | 0.041 (2) | 0.0302 (16) | −0.0003 (15) | 0.0017 (13) | −0.0059 (15) |
C11 | 0.0333 (19) | 0.052 (3) | 0.041 (2) | −0.0086 (17) | 0.0034 (16) | 0.0035 (18) |
C12 | 0.096 (4) | 0.114 (5) | 0.068 (3) | −0.069 (4) | −0.038 (3) | 0.048 (3) |
C13 | 0.112 (5) | 0.156 (6) | 0.098 (4) | −0.079 (5) | −0.057 (4) | 0.072 (4) |
C14 | 0.072 (4) | 0.097 (4) | 0.065 (3) | −0.027 (3) | −0.012 (3) | 0.040 (3) |
C15 | 0.039 (3) | 0.048 (3) | 0.067 (3) | 0.0001 (19) | 0.013 (2) | 0.019 (3) |
C16 | 0.0172 (14) | 0.0338 (18) | 0.0298 (16) | 0.0015 (13) | −0.0004 (12) | −0.0046 (14) |
C17 | 0.0216 (15) | 0.0337 (19) | 0.0374 (18) | −0.0064 (14) | −0.0039 (13) | −0.0006 (15) |
C18 | 0.0250 (16) | 0.0332 (18) | 0.0324 (17) | −0.0043 (14) | −0.0038 (13) | 0.0032 (15) |
C19 | 0.0199 (15) | 0.0332 (18) | 0.0280 (16) | −0.0006 (13) | −0.0032 (12) | −0.0040 (14) |
C20 | 0.0194 (14) | 0.0299 (18) | 0.0312 (16) | −0.0018 (13) | 0.0019 (12) | −0.0032 (14) |
C21 | 0.0216 (15) | 0.0301 (18) | 0.0291 (16) | −0.0008 (13) | 0.0014 (12) | 0.0009 (14) |
C22 | 0.043 (2) | 0.046 (3) | 0.044 (2) | −0.0116 (18) | −0.0174 (17) | 0.0109 (18) |
C23 | 0.0342 (18) | 0.041 (2) | 0.0372 (19) | −0.0146 (16) | 0.0027 (15) | 0.0059 (16) |
O1—C19 | 1.372 (4) | C14—C15 | 1.357 (7) |
O1—C22 | 1.430 (5) | C16—C17 | 1.390 (5) |
O2—C20 | 1.365 (4) | C16—C21 | 1.414 (5) |
O2—C23 | 1.439 (5) | C17—C18 | 1.397 (5) |
N1—C1 | 1.356 (6) | C18—C19 | 1.387 (5) |
N1—C5B | 1.39 (3) | C19—C20 | 1.409 (5) |
N1—C5A | 1.303 (10) | C20—C21 | 1.386 (5) |
N2—C6 | 1.360 (5) | C1—H1 | 0.950 |
N2—C10 | 1.355 (5) | C2B—H2B | 0.950 |
N3—C11 | 1.340 (5) | C2A—H2A | 0.950 |
N3—C15 | 1.344 (6) | C3B—H3B | 0.950 |
C1—C2B | 1.38 (2) | C3A—H3A | 0.950 |
C1—C2A | 1.366 (7) | C4B—H4B | 0.950 |
C2B—C3B | 1.35 (3) | C4A—H4A | 0.950 |
C2A—C3A | 1.373 (9) | C7—H5 | 0.950 |
C3B—C4B | 1.39 (2) | C9—H6 | 0.950 |
C3A—C4A | 1.371 (7) | C12—H7 | 0.950 |
C4B—C5B | 1.37 (3) | C13—H8 | 0.950 |
C4A—C5A | 1.392 (9) | C14—H9 | 0.950 |
C5B—C6 | 1.47 (3) | C15—H10 | 0.950 |
C5A—C6 | 1.51 (1) | C17—H11 | 0.950 |
C6—C7 | 1.390 (5) | C18—H12 | 0.950 |
C7—C8 | 1.399 (5) | C21—H13 | 0.950 |
C8—C9 | 1.369 (5) | C22—H14 | 0.980 |
C8—C16 | 1.507 (4) | C22—H15 | 0.980 |
C9—C10 | 1.401 (5) | C22—H16 | 0.980 |
C10—C11 | 1.490 (6) | C23—H17 | 0.980 |
C11—C12 | 1.348 (7) | C23—H18 | 0.980 |
C12—C13 | 1.379 (9) | C23—H19 | 0.980 |
C13—C14 | 1.365 (9) | ||
C19—O1—C22 | 117.0 (3) | C2B—C1—H1 | 115.146 |
C20—O2—C23 | 117.7 (3) | C2A—C1—H1 | 118.101 |
C1—N1—C5B | 119.7 (12) | C1—C2B—H2B | 119.442 |
C1—N1—C5A | 118.1 (5) | C3B—C2B—H2B | 119.434 |
C6—N2—C10 | 117.7 (3) | C1—C2A—H2A | 121.526 |
C11—N3—C15 | 119.0 (4) | C3A—C2A—H2A | 121.510 |
N1—C1—C2B | 119.8 (10) | C2B—C3B—H3B | 120.699 |
N1—C1—C2A | 123.8 (5) | C4B—C3B—H3B | 120.704 |
C1—C2B—C3B | 121.1 (17) | C2A—C3A—H3A | 119.945 |
C1—C2A—C3A | 117.0 (6) | C4A—C3A—H3A | 119.929 |
C2B—C3B—C4B | 118.6 (15) | C3B—C4B—H4B | 119.525 |
C2A—C3A—C4A | 120.1 (5) | C5B—C4B—H4B | 119.544 |
C3B—C4B—C5B | 120.9 (17) | C3A—C4A—H4A | 120.592 |
C3A—C4A—C5A | 118.8 (6) | C5A—C4A—H4A | 120.568 |
N1—C5B—C4B | 118 (3) | C6—C7—H5 | 120.034 |
N1—C5A—C4A | 121.9 (7) | C8—C7—H5 | 120.028 |
N2—C6—C7 | 122.2 (3) | C8—C9—H6 | 119.727 |
C6—C7—C8 | 119.9 (3) | C10—C9—H6 | 119.732 |
C7—C8—C9 | 117.6 (3) | C11—C12—H7 | 119.902 |
C7—C8—C16 | 120.2 (3) | C13—C12—H7 | 119.894 |
C9—C8—C16 | 122.1 (3) | C12—C13—H8 | 120.215 |
C8—C9—C10 | 120.5 (3) | C14—C13—H8 | 120.221 |
N2—C10—C9 | 122.0 (3) | C13—C14—H9 | 121.201 |
N2—C10—C11 | 116.2 (3) | C15—C14—H9 | 121.188 |
C9—C10—C11 | 121.8 (3) | N3—C15—H10 | 118.484 |
N3—C11—C10 | 118.7 (3) | C14—C15—H10 | 118.487 |
N3—C11—C12 | 120.5 (4) | C16—C17—H11 | 119.063 |
C10—C11—C12 | 120.8 (4) | C18—C17—H11 | 119.048 |
C11—C12—C13 | 120.2 (6) | C17—C18—H12 | 120.059 |
C12—C13—C14 | 119.6 (6) | C19—C18—H12 | 120.051 |
C13—C14—C15 | 117.6 (6) | C16—C21—H13 | 119.310 |
N3—C15—C14 | 123.0 (4) | C20—C21—H13 | 119.313 |
C8—C16—C17 | 121.3 (3) | O1—C22—H14 | 109.474 |
C8—C16—C21 | 121.2 (3) | O1—C22—H15 | 109.477 |
C17—C16—C21 | 117.5 (3) | O1—C22—H16 | 109.470 |
C16—C17—C18 | 121.9 (3) | H14—C22—H15 | 109.474 |
C17—C18—C19 | 119.9 (3) | H14—C22—H16 | 109.461 |
O1—C19—C18 | 124.8 (3) | H15—C22—H16 | 109.471 |
O1—C19—C20 | 115.6 (3) | O2—C23—H17 | 109.476 |
C18—C19—C20 | 119.6 (3) | O2—C23—H18 | 109.480 |
O2—C20—C19 | 114.5 (3) | O2—C23—H19 | 109.465 |
O2—C20—C21 | 125.8 (3) | H17—C23—H18 | 109.468 |
C19—C20—C21 | 119.7 (3) | H17—C23—H19 | 109.463 |
C16—C21—C20 | 121.4 (3) | H18—C23—H19 | 109.475 |
N1—C1—H1 | 118.105 | ||
C22—O1—C19—C18 | 6.5 (5) | C7—C8—C16—C17 | 5.0 (5) |
C22—O1—C19—C20 | −173.2 (3) | C7—C8—C16—C21 | −173.1 (3) |
C23—O2—C20—C19 | 169.3 (3) | C9—C8—C16—C17 | −178.2 (3) |
C23—O2—C20—C21 | −10.8 (5) | C9—C8—C16—C21 | 3.6 (5) |
C1—N1—C5B—C4B | −14 (3) | C16—C8—C9—C10 | −176.5 (3) |
C5B—N1—C1—C2B | 9.9 (15) | C8—C9—C10—N2 | 0.8 (5) |
C5B—N1—C1—C2A | −20.7 (15) | C8—C9—C10—C11 | 178.2 (3) |
C1—N1—C5A—C4A | 6.1 (10) | N2—C10—C11—N3 | −179.6 (3) |
C5A—N1—C1—C2B | 26.3 (7) | N2—C10—C11—C12 | 0.4 (5) |
C5A—N1—C1—C2A | −4.3 (7) | C9—C10—C11—N3 | 2.9 (5) |
C6—N2—C10—C9 | −1.1 (5) | C9—C10—C11—C12 | −177.1 (3) |
C6—N2—C10—C11 | −178.6 (3) | N3—C11—C12—C13 | −2.8 (8) |
C10—N2—C6—C7 | 0.3 (5) | C10—C11—C12—C13 | 177.3 (4) |
C11—N3—C15—C14 | −0.6 (6) | C11—C12—C13—C14 | 3.5 (10) |
C15—N3—C11—C10 | −178.8 (4) | C12—C13—C14—C15 | −2.8 (9) |
C15—N3—C11—C12 | 1.3 (6) | C13—C14—C15—N3 | 1.3 (8) |
N1—C1—C2B—C3B | −0 (2) | C8—C16—C17—C18 | −177.8 (3) |
N1—C1—C2A—C3A | 0.2 (8) | C8—C16—C21—C20 | 177.2 (3) |
C2B—C1—C2A—C3A | −89 (2) | C17—C16—C21—C20 | −1.0 (5) |
C2A—C1—C2B—C3B | 107 (3) | C21—C16—C17—C18 | 0.4 (5) |
C1—C2B—C3B—C4B | −5 (3) | C16—C17—C18—C19 | 0.4 (5) |
C1—C2A—C3A—C4A | 2.1 (8) | C17—C18—C19—O1 | 179.7 (3) |
C2B—C3B—C4B—C5B | 1 (3) | C17—C18—C19—C20 | −0.7 (5) |
C2A—C3A—C4A—C5A | −0.4 (8) | O1—C19—C20—O2 | −0.4 (4) |
C3B—C4B—C5B—N1 | 9 (4) | O1—C19—C20—C21 | 179.7 (3) |
C3A—C4A—C5A—N1 | −3.9 (10) | C18—C19—C20—O2 | 179.9 (3) |
N2—C6—C7—C8 | 0.8 (5) | C18—C19—C20—C21 | 0.0 (5) |
C6—C7—C8—C9 | −1.1 (5) | O2—C20—C21—C16 | −179.1 (3) |
C6—C7—C8—C16 | 175.8 (3) | C19—C20—C21—C16 | 0.8 (5) |
C7—C8—C9—C10 | 0.3 (5) |
Cg1 and Cg5 are the centroids of the N1,C1–C5A and C16–C21 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3A—H3A···N3i | 0.95 | 2.43 | 3.285 (7) | 149 |
C23—H18···O1ii | 0.98 | 2.53 | 3.511 (5) | 174 |
C18—H12···Cg5iii | 0.95 | 2.87 | 3.648 (5) | 139 |
C23—H17···Cg1iv | 098 | 2.90 | 3.432 (5) | 115 |
C23—H19···Cg5v | 0.98 | 2.89 | 3.724 (5) | 143 |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) −x+1, −y+1, −z+2; (iii) −x+1/2, y−1/2, −z+2; (iv) x+1/2, −y+1/2, z; (v) x, y+1, z. |
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. CrystalStructure Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Storrier, G. D., Colbran, S. B. & Craig, D. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1351–1364. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Whittle, B., Everest, N. S., Howard, C. & Ward, M. D. (1995). Inorg. Chem. 34, 2025–2032. CrossRef CAS Google Scholar
Winter, A., Hoeppener, S., Newkome, G. R. & Schubert, U. S. (2011). Adv. Mater. 23, 3484–3498. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.