organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3-Bis(1-methyl-5-thioxo-1,2,4-triazolin-4-yl)urea

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by A. J. Lough, University of Toronto, Canada (Received 2 June 2016; accepted 17 June 2016; online 24 June 2016)

The title compound, C7H10N8OS2, was obtained by acyl­ation of 4-amino-1-methyl-1,2,4-triazoline-5-thione with triphosgene. The asymmetric unit contains two half mol­ecules. The full mol­ecules are generated by twofold rotation axes. In the crystal, the mol­ecules associate through bifurcated (N—H)2⋯O hydrogen bonds into chains extending in the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit contains two half-mol­ecules. The fragments are completed by twofold rotation axes through the C4=O1 and C8=O2 carbonyl bonds. The mol­ecular structures of the two independent mol­ecules of the title compound are shown in Fig. 1[link]. The amidic NH atoms adopt an anti relationship to the carbonyl group. Each mol­ecule donates two N—H hydrogen bonds to the O atom of the O=C carbonyl group of one neighbouring mol­ecule, forming infinite chains (Fig. 2[link]). The inter­molecular linkage is described as R21(6) in graph-set notation (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]), denoting a hydrogen-bonded ring motif consisting of six atoms with two donors and one acceptor. The chains extend in opposite directions along the b axis. The hydrogen-bond parameters are summarized in Table 1[link], and the crystal packing is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1iii 0.84 (2) 2.02 (2) 2.753 (2) 145 (2)
N7—H7⋯O2iv 0.83 (2) 2.02 (2) 2.755 (2) 147 (2)
Symmetry codes: (iii) x, y+1, z; (iv) x, y-1, z.
[Figure 1]
Figure 1
The two independent mol­ecules of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry codes: (i) −[{1\over 2}] − x, y, [{1\over 2}] − z; (ii) [{1\over 2}] − x, y, [{1\over 2}] − z.]
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the c axis, showing the N—H⋯O hydrogen bonds as dashed lines (see Table 1[link]).

Chains formed by bifurcated N—H⋯O hydrogen bonds are a typical pattern in the crystal structures of symmetrically N,N′-disubstituted ureas (Custelcean, 2008[Custelcean, R. (2008). Chem. Commun. pp. 295-307.]). The more closely related 1,5-bis­(benzyl­idene)carbohydrazides (Kolb et al., 1994[Kolb, V. M., Robinson, P. D. & Meyers, C. Y. (1994). Acta Cryst. C50, 417-419.]; Li et al., 2009[Li, K., Jiao, J., Wang, Y., Wei, G.-D. & Wang, D. (2009). Acta Cryst. E65, o1846.]; Rubčić et al., 2014[Rubčić, M., Galić, N., Halasz, I., Jednačak, T., Judaš, N., Plavec, J., Šket, P. & Novak, P. (2014). Cryst. Growth Des. 14, 2900-2912.]) exhibit a similar architecture.

Synthesis and crystallization

A solution of 4-amino-1-methyl-1,2,4-triazoline-5-thione (Laus et al., 2014[Laus, G., Kahlenberg, V., Wurst, K. & Schottenberger, H. (2014). Z. Naturforsch. Teil B, 69, 950-964.]) (70 mg, 0.54 mmol) and triphosgene (74 mg, 0.25 mmol) in CH2Cl2 (2 ml) was stirred at room temperature overnight. The solvent was removed under reduced pressure, and the residue was dissolved in hot MeOH (1 ml). On cooling to 253 K the product was obtained as colourless crystals (47 mg, 61%), m.p. 497–498 K.

1H NMR (300 MHz, DMSO-d6): δ 3.68 (s, 3H), 8.76 (s, 1H), 11.0 (br s, 2H) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 36.7 (2 C), 141.7 (2 C), 155.3, 166.2 (2 C) p.p.m. IR: ν 3264, 3223, 3114, 3040, 2940, 1689, 1532, 1461, 1380, 1341, 1238, 1202, 1159, 962, 878, 836, 766, 735, 623 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H10N8OS2
Mr 286.35
Crystal system, space group Monoclinic, P2/n
Temperature (K) 173
a, b, c (Å) 16.5100 (8), 4.4590 (2), 17.5229 (8)
β (°) 98.108 (5)
V3) 1277.11 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.32 × 0.16 × 0.16
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Ruby Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.906, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 7200, 2347, 1999
Rint 0.027
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 1.04
No. of reflections 2347
No. of parameters 175
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.29
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006).

1,3-Bis(1-methyl-5-thioxo-1,2,4-triazolin-4-yl)urea top
Crystal data top
C7H10N8OS2F(000) = 592
Mr = 286.35Dx = 1.489 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 3315 reflections
a = 16.5100 (8) Åθ = 3.2–28.7°
b = 4.4590 (2) ŵ = 0.42 mm1
c = 17.5229 (8) ÅT = 173 K
β = 98.108 (5)°Fragment, colourless
V = 1277.11 (10) Å30.32 × 0.16 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini ultra
diffractometer
2347 independent reflections
Graphite monochromator1999 reflections with I > 2σ(I)
Detector resolution: 10.3575 pixels mm-1Rint = 0.027
ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1919
Tmin = 0.906, Tmax = 1k = 54
7200 measured reflectionsl = 2117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.834P]
where P = (Fo2 + 2Fc2)/3
2347 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.29 e Å3
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44 (release 25-10-2010 CrysAlis171 .NET) (compiled Oct 25 2010,18:11:34) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.26495 (3)0.61481 (13)0.04670 (3)0.03468 (16)
S10.03987 (4)0.10034 (14)0.23836 (3)0.03999 (17)
N40.13996 (8)0.1301 (3)0.34860 (8)0.0202 (3)
N80.15021 (8)0.5348 (3)0.14215 (8)0.0201 (3)
N20.07827 (10)0.1375 (4)0.44368 (9)0.0351 (4)
N50.11782 (9)0.3325 (4)0.03299 (8)0.0246 (4)
N70.19327 (10)0.6770 (4)0.20465 (9)0.0240 (4)
N30.20273 (9)0.2794 (3)0.30443 (9)0.0232 (4)
O10.250.1591 (4)0.250.0347 (5)
C30.06949 (11)0.0319 (4)0.32286 (10)0.0213 (4)
O20.250.2394 (4)0.250.0346 (5)
N60.05551 (9)0.2662 (4)0.07491 (9)0.0336 (4)
N10.03351 (9)0.1290 (4)0.38286 (8)0.0245 (4)
C70.17800 (10)0.4933 (4)0.07239 (10)0.0201 (4)
C60.07744 (11)0.3923 (5)0.14090 (11)0.0292 (5)
H60.04680.38610.18290.035*
C40.250.1126 (6)0.250.0220 (6)
C20.14226 (11)0.0200 (5)0.42055 (11)0.0319 (5)
H20.18550.05490.44990.038*
C10.04523 (12)0.2800 (5)0.38851 (11)0.0342 (5)
H1A0.04630.40820.34320.051*
H1B0.05350.40320.43530.051*
H1C0.08890.13020.39080.051*
C80.250.5107 (6)0.250.0209 (5)
C50.11379 (12)0.2272 (5)0.04599 (11)0.0349 (5)
H5A0.15860.08620.04950.052*
H5B0.06130.12630.06160.052*
H5C0.11870.39830.08010.052*
H70.1984 (11)0.861 (3)0.2012 (11)0.022 (5)*
H30.1963 (11)0.464 (4)0.2968 (11)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0233 (3)0.0416 (3)0.0397 (3)0.0065 (2)0.0063 (2)0.0075 (2)
S10.0508 (3)0.0496 (4)0.0214 (3)0.0104 (3)0.0119 (2)0.0080 (2)
N40.0187 (7)0.0204 (8)0.0198 (7)0.0013 (6)0.0028 (6)0.0040 (6)
N80.0218 (8)0.0207 (8)0.0164 (7)0.0031 (6)0.0023 (6)0.0015 (6)
N20.0277 (9)0.0534 (12)0.0251 (9)0.0094 (8)0.0065 (7)0.0170 (8)
N50.0197 (8)0.0357 (9)0.0184 (8)0.0037 (7)0.0024 (6)0.0054 (7)
N70.0334 (9)0.0130 (8)0.0219 (8)0.0007 (7)0.0084 (7)0.0019 (6)
N30.0246 (8)0.0122 (8)0.0292 (8)0.0014 (6)0.0091 (7)0.0015 (7)
O10.0340 (11)0.0115 (10)0.0524 (13)00.0156 (10)0
C30.0236 (9)0.0203 (9)0.0188 (9)0.0019 (7)0.0015 (7)0.0011 (7)
O20.0548 (13)0.0124 (10)0.0309 (10)00.0138 (9)0
N60.0262 (9)0.0472 (11)0.0288 (9)0.0132 (8)0.0085 (7)0.0122 (8)
N10.0215 (8)0.0328 (9)0.0184 (8)0.0049 (7)0.0003 (6)0.0053 (7)
C70.0197 (9)0.0205 (9)0.0188 (9)0.0025 (7)0.0022 (7)0.0035 (7)
C60.0266 (10)0.0367 (12)0.0252 (10)0.0074 (9)0.0066 (8)0.0050 (9)
C40.0211 (13)0.0163 (14)0.0271 (14)00.0020 (11)0
C20.0235 (10)0.0465 (13)0.0260 (10)0.0040 (9)0.0048 (8)0.0115 (9)
C10.0275 (10)0.0451 (13)0.0285 (10)0.0151 (9)0.0013 (9)0.0010 (9)
C80.0294 (14)0.0149 (13)0.0175 (12)00.0002 (11)0
C50.0289 (10)0.0543 (14)0.0209 (10)0.0006 (10)0.0018 (8)0.0121 (9)
Geometric parameters (Å, º) top
S2—C71.6551 (18)N3—H30.842 (15)
S1—C31.6520 (18)O1—C41.211 (3)
N4—C21.359 (2)C3—N11.340 (2)
N4—N31.3749 (19)O2—C81.210 (3)
N4—C31.377 (2)N6—C61.291 (2)
N8—C61.357 (2)N1—C11.455 (2)
N8—N71.3737 (19)C6—H60.95
N8—C71.377 (2)C4—N3i1.365 (2)
N2—C21.286 (2)C2—H20.95
N2—N11.380 (2)C1—H1A0.98
N5—C71.336 (2)C1—H1B0.98
N5—N61.378 (2)C1—H1C0.98
N5—C51.454 (2)C8—N7ii1.360 (2)
N7—C81.360 (2)C5—H5A0.98
N7—H70.829 (15)C5—H5B0.98
N3—C41.365 (2)C5—H5C0.98
C2—N4—N3125.45 (16)N8—C7—S2127.42 (13)
C2—N4—C3108.93 (14)N6—C6—N8110.76 (17)
N3—N4—C3125.05 (15)N6—C6—H6124.6
C6—N8—N7125.91 (15)N8—C6—H6124.6
C6—N8—C7109.13 (14)O1—C4—N3123.04 (11)
N7—N8—C7124.75 (15)O1—C4—N3i123.04 (11)
C2—N2—N1104.32 (15)N3—C4—N3i113.9 (2)
C7—N5—N6113.36 (14)N2—C2—N4111.14 (17)
C7—N5—C5126.59 (16)N2—C2—H2124.4
N6—N5—C5120.05 (14)N4—C2—H2124.4
C8—N7—N8116.79 (16)N1—C1—H1A109.5
C8—N7—H7120.9 (13)N1—C1—H1B109.5
N8—N7—H7116.5 (13)H1A—C1—H1B109.5
C4—N3—N4116.15 (15)N1—C1—H1C109.5
C4—N3—H3119.6 (13)H1A—C1—H1C109.5
N4—N3—H3117.4 (13)H1B—C1—H1C109.5
N1—C3—N4102.41 (15)O2—C8—N7123.05 (11)
N1—C3—S1130.35 (14)O2—C8—N7ii123.05 (11)
N4—C3—S1127.25 (13)N7—C8—N7ii113.9 (2)
C6—N6—N5104.35 (15)N5—C5—H5A109.5
C3—N1—N2113.19 (14)N5—C5—H5B109.5
C3—N1—C1126.44 (16)H5A—C5—H5B109.5
N2—N1—C1120.36 (14)N5—C5—H5C109.5
N5—C7—N8102.38 (14)H5A—C5—H5C109.5
N5—C7—S2130.21 (14)H5B—C5—H5C109.5
C6—N8—N7—C892.0 (2)C5—N5—C7—N8178.91 (18)
C7—N8—N7—C882.2 (2)N6—N5—C7—S2178.16 (15)
C2—N4—N3—C498.5 (2)C5—N5—C7—S21.4 (3)
C3—N4—N3—C471.8 (2)C6—N8—C7—N51.55 (19)
C2—N4—C3—N10.91 (19)N7—N8—C7—N5176.56 (15)
N3—N4—C3—N1172.58 (15)C6—N8—C7—S2178.12 (14)
C2—N4—C3—S1178.80 (15)N7—N8—C7—S23.1 (3)
N3—N4—C3—S17.1 (3)N5—N6—C6—N80.2 (2)
C7—N5—N6—C60.9 (2)N7—N8—C6—N6176.08 (17)
C5—N5—N6—C6179.50 (18)C7—N8—C6—N61.1 (2)
N4—C3—N1—N20.6 (2)N4—N3—C4—O115.64 (17)
S1—C3—N1—N2179.12 (15)N4—N3—C4—N3i164.36 (17)
N4—C3—N1—C1178.04 (17)N1—N2—C2—N40.6 (2)
S1—C3—N1—C12.3 (3)N3—N4—C2—N2172.63 (17)
C2—N2—N1—C30.0 (2)C3—N4—C2—N21.0 (2)
C2—N2—N1—C1178.71 (18)N8—N7—C8—O219.06 (18)
N6—N5—C7—N81.5 (2)N8—N7—C8—N7ii160.94 (18)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1iii0.84 (2)2.02 (2)2.753 (2)145 (2)
N7—H7···O2iv0.83 (2)2.02 (2)2.755 (2)147 (2)
Symmetry codes: (iii) x, y+1, z; (iv) x, y1, z.
 

References

First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCustelcean, R. (2008). Chem. Commun. pp. 295–307.  Web of Science CrossRef Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKolb, V. M., Robinson, P. D. & Meyers, C. Y. (1994). Acta Cryst. C50, 417–419.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLaus, G., Kahlenberg, V., Wurst, K. & Schottenberger, H. (2014). Z. Naturforsch. Teil B, 69, 950–964.  CAS Google Scholar
First citationLi, K., Jiao, J., Wang, Y., Wei, G.-D. & Wang, D. (2009). Acta Cryst. E65, o1846.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationRubčić, M., Galić, N., Halasz, I., Jednačak, T., Judaš, N., Plavec, J., Šket, P. & Novak, P. (2014). Cryst. Growth Des. 14, 2900–2912.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds