metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-chlorido-bis­­({4-[bis­(tri­methylsilyl)amino]-6-chloro-2,2,8,8-tetra­methyl-5,7-bis­(tri­methylsilyl)-3,5,7-tri­aza-4,6-diphospha-2,8-disilanon-3-en-4-ido-κ2P,P′}palladium(II)) di­ethyl ether disolvate

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: uwe.rosenthal@catalysis.de

Edited by H. Ishida, Okayama University, Japan (Received 4 June 2016; accepted 17 June 2016; online 24 June 2016)

The title compound, [Pd2(C18H54Cl2N4P2Si6)2Cl2]·2C4H10O, features a dinuclear chloride-bridged palladium complex bearing two equivalents of the novel monoanionic mixed valent (λ3-P)—N—(λ5-P) ligand. A metal catalyzed coupling of two amino­imino­phosphines and a shift of one chlorine from the metal to the phospho­rus results in the (λ3-P)—N—(λ5-P) ligand. The mol­ecule contains a planar bimetallic Pd2Cl2 core with a crystallographic centre of inversion at the mid-point of the Pd⋯Pd line. The Pd atoms are in a distorted square-planar arrangement, where the P/Pd/P and Cl/Pd/Cl planes are twisted with respect to each other by a dihedral angle of 7.57 (4)°. The P—Pd—P bite angle is 71.380 (18)°. Intra­molecular C—H⋯Cl inter­actions are observed. In the crystal, the diethyl ether solvent mol­ecule is disordered over two sites, with an occupancy ratio of 0.788 (5):0.212 (5).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Low-valent phospho­rous compounds, such as amino­imino­phosphines R2N—P=NR, are versatile ligands. Due to their unsaturated P=N double bond they can undergo [2 + 2] cyclo­addition to yield the cyclo­diphosphadi­aza­nes (Niecke et al., 1976[Niecke, E., Flick, W. & Pohl, S. (1976). Angew. Chem. 88, 305-306.]). In the presence of di­chlorido­(1,5-cyclo­octa­diene)palladium(II), two N—P=N mol­ecules undergo a [2 + 1] cyclo­addition which results in a kind of aza­diphosphiridine or, respectively, a monoanionic six-electron-donor ligand (Scherer & Brück, 1987[Scherer, O. J. & Brück, T. (1987). Angew. Chem. 99, 59-61.]). In the course of coordination to di­chlorido­(1,5-cyclo­octa­diene)palladium(II), one chlorine is transferred from the metal centre to the PIII atom. As a consequence, two palladium cores dimerize by building a dinuclear chloride-bridged palladium complex with two equivalents of the monoanionic mixed-valent (λ3-P)—N—(λ5-P) ligand. The mol­e­cule contains a planar bimetallic Pd2Cl2 core with a crystallographic centre of inversion at the mid-point of Pd⋯Pd line (Fig. 1[link]). The Pd—Cl bond lengths are 2.4296 (5) and 2.4815 (4) Å, which are similar to other dinuclear chloride-bridged palladium(II) complexes (average Pd—Cl = 2.432 Å for Pd—Cl—Pd > 85°; Orpen et al., 1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]). Due to the large Pd⋯Pd distance of 3.521 Å there is no metal–metal inter­action. The Pd atoms are in a distorted square-planar arrangement where the P1/Pd1/P2 and Cl1/Pd1/Cl1i planes [symmetry code: (i) −x + 1, −y + 1, −z + 1] are twisted with respect to each other by an angle of 7.57 (4)°. The mixed valent (λ3-P)—N—(λ5-P) ligand is remarkable, with the ability to form a four-membered metallacycle that is nearly planar, with a P2—N2—P1—Pd1 torsion angle of 6.45 (7)°. The different Pd—P distances are 2.1947 (5) (λ3-P—Pd) and 2.2294 (5) Å (λ5-P—Pd). Compared to a λ3-P–metal bond, the λ5-P–metal bond length is elongated. A longer λ5-P–metal bond compared to the λ3-P–metal bond length was also observed in a Pd complex bearing a mixed-valent (λ3-P)—N—(λ5-P) ligand (du Mont et al., 2009[Mont, W.-W. du, Lungu, D., Daniliuc, C., Jones, P. G., Nyulaszi, L., Benko, Z. & Bartsch, R. (2009). Eur. J. Inorg. Chem. pp. 2901-2905.])

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. H atoms and disordered solvent have been omitted for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

The P1—Pd1—P2 bite angle is 71.380 (18)°. For the (λ5-P)=N double bond (N3—P2), a value of 1.5346 (17) Å was observed. All other P—N bond distances range from 1.6519 (16) (P1—N1) to 1.7772 (16) Å (P2—N2). Compared to the calculated P—N single-bond distance (1.82 Å; Pyykkö, 2015[Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326-2337.]) they are obviously shorter and display some multiple bonding character. The calculated P=N double bond length is 1.62 Å (Pyykkö, 2015[Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326-2337.]). This might be explained by being a consequence of hyperconjugation in the alternating P—N ligand backbone. Similar but mononuclear iron and platinum complexes with mixed-valent (λ3-P)—N—(λ5-P) ligands have been reported (du Mont et al., 2009[Mont, W.-W. du, Lungu, D., Daniliuc, C., Jones, P. G., Nyulaszi, L., Benko, Z. & Bartsch, R. (2009). Eur. J. Inorg. Chem. pp. 2901-2905.]; Jones et al., 2015[Jones, P. G., Daniliuc, C., du Mont, W.-W. & Goers, C. (2015). Private communication (refcode BUCGIR). CCDC, Cambridge, England.]). Intra­molecular C—H⋯Cl inter­actions are observed (Table 1[link]). The crystal of the title compound contains a diethyl ether solvent mol­ecule which is disordered over two sites with an occupancy ratio of 0.788 (5):0.212 (5).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3C⋯Cl1i 0.98 2.72 3.564 (3) 144
C14—H14C⋯Cl2 0.98 2.67 3.585 (2) 156
Symmetry code: (i) -x+1, -y+1, -z+1.

Synthesis and crystallization

A pale-yellow solution of 1.27 mmol of the amino­imino­phosphine (TMS)2N—P= N(TMS) in 5 ml toluene was added dropwise to a bright-yellow suspension of 0.58 mmol di­chlorido­(1,5-cyclo­octa­diene)palladium(II) in 15 ml toluene. After stirring for 10 min at room temperature, the yellow solution became clear. It was stirred for another 12 h before the solvent was reduced in a vacuum. The resulting yellow solution was filtered. After adding diethyl ether, it was cooled to 233 K to obtain yellow crystals of the title compound that were suitable for X-ray analysis (yield 77%; m.p. decomposition above 347 K). Analysis calculated for C36H108Cl4N8P4Pd2Si12: C 29.44, H 7.41, N 7.63, P 8.43%; found: C 29.24, H 7.66, N 7.07, P 8.51%. 1H NMR (400 MHz, C6D6): δ 0.44 (s, 24H, 2 × TMS), 0.57 (s, 24H, 2 × TMS), 0.69 (s, 12H, TMS), 0.74 (s, 12H, TMS). 13C (100.6 MHz, C6D6): δ 3.8 (TMS), 5.7 (TMS), 6.3 (TMS), 7.5 (TMS). 31P (121 MHz, C6D6): δ −88.52 (s), −28.06 (br, s). 29Si (79.5 MHz, C6D6): δ 8.32 (2 × N-TMS), 11.34 (4 × N-TMS). MS CI (m/z) 1466 [M + 2]+, 1275 [C30H90N7P3Pd2Si10]+, 1158 [C27H81N6P3Pd2Si9 + 3H]+. IR ATR (cm−1) 2896.9 (w), 2957.2 (w).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The di­ethyl ether mol­ecule is disordered over two sites with refined occupancies 0.788 (5):0.212 (5). DFIX and DANG instructions were used to improve the geometry of the disordered solvent mol­ecule. Additionally, the anisotropic displacement parameters of O1A and O1B were restrained to be equal (SIMU). Atoms C19A, C19B C20A, C20B, C21A, C21B, C22A and C22B were refined isotropically. A SIMU instruction was also applied for these atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Pd2(C18H54Cl2N4P2Si6)2Cl2]·2C4H10O
Mr 1617.10
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 12.7331 (3), 12.9694 (3), 14.6354 (3)
α, β, γ (°) 104.1592 (6), 101.3576 (6), 112.6871 (6)
V3) 2044.32 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.86
Crystal size (mm) 0.42 × 0.40 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.77, 0.86
No. of measured, independent and observed [I > 2σ(I)] reflections 40794, 9871, 8984
Rint 0.021
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.04
No. of reflections 9871
No. of parameters 367
No. of restraints 29
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −0.92
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-µ-chlorido-bis({4-[bis(trimethylsilyl)amino]-6-chloro-2,2,8,8-tetramethyl- 5,7-bis(trimethylsilyl)-3,5,7-triaza-4,6-diphospha-2,8-disilanon-3-en-4-ido-κ2P,P'}palladium(II)) diethyl ether disolvate top
Crystal data top
[Pd2(C18H54Cl2N4P2Si6)2Cl2]·2C4H10OZ = 1
Mr = 1617.10F(000) = 852
Triclinic, P1Dx = 1.314 Mg m3
a = 12.7331 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.9694 (3) ÅCell parameters from 9897 reflections
c = 14.6354 (3) Åθ = 2.5–29.0°
α = 104.1592 (6)°µ = 0.86 mm1
β = 101.3576 (6)°T = 150 K
γ = 112.6871 (6)°Prism, yellow
V = 2044.32 (8) Å30.42 × 0.40 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
9871 independent reflections
Radiation source: fine-focus sealed tube8984 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.021
φ and ω scansθmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1616
Tmin = 0.77, Tmax = 0.86k = 1717
40794 measured reflectionsl = 1919
Refinement top
Refinement on F229 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0355P)2 + 2.0017P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
9871 reflectionsΔρmax = 0.95 e Å3
367 parametersΔρmin = 0.92 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6444 (3)0.1775 (4)0.2536 (4)0.0864 (14)
H1A0.64420.19710.32260.130*
H1B0.72350.18470.25230.130*
H1C0.58250.09540.21420.130*
C20.6250 (3)0.2550 (3)0.0734 (2)0.0517 (7)
H2A0.55830.17810.02760.078*
H2B0.70170.25350.07510.078*
H2C0.62170.31900.05060.078*
C30.7322 (2)0.4325 (3)0.2872 (2)0.0539 (7)
H3A0.76250.48290.24890.081*
H3B0.79830.42390.32620.081*
H3C0.69880.46970.33230.081*
C40.1995 (2)0.0972 (2)0.1565 (2)0.0443 (6)
H4A0.19650.16760.19720.066*
H4B0.14850.02650.16870.066*
H4C0.17050.08580.08590.066*
C50.3946 (2)0.1077 (2)0.3154 (2)0.0433 (6)
H5A0.46500.09280.32640.065*
H5B0.32620.04170.31910.065*
H5C0.41280.18260.36660.065*
C60.3559 (3)0.0021 (3)0.0910 (2)0.0583 (8)
H6A0.33860.00990.02720.087*
H6B0.29410.07950.08550.087*
H6C0.43510.00060.10800.087*
C70.0637 (2)0.2099 (2)0.0030 (2)0.0447 (6)
H7A0.04990.12670.02500.067*
H7B0.01590.22260.05640.067*
H7C0.03970.22700.05640.067*
C80.2971 (3)0.2308 (3)0.04103 (17)0.0472 (7)
H8A0.38130.28620.02800.071*
H8B0.25360.19900.11270.071*
H8C0.29360.16480.01830.071*
C90.2465 (2)0.4447 (2)0.00733 (17)0.0392 (5)
H9A0.21200.48900.03020.059*
H9B0.20560.41910.07890.059*
H9C0.33250.49630.00850.059*
C100.0606 (2)0.1388 (2)0.2237 (2)0.0481 (6)
H10A0.10820.16540.18310.072*
H10B0.11090.08920.25440.072*
H10C0.03200.09190.18150.072*
C110.0147 (3)0.3501 (3)0.4110 (2)0.0465 (6)
H11A0.08270.42110.46310.070*
H11B0.02960.29580.44160.070*
H11C0.03920.37410.37410.070*
C120.1624 (3)0.2200 (3)0.3995 (2)0.0469 (6)
H12A0.18690.16990.35570.070*
H12B0.11380.17340.43270.070*
H12C0.23420.28920.44970.070*
C130.4009 (2)0.8176 (2)0.39408 (18)0.0376 (5)
H13A0.33020.82610.36400.056*
H13B0.47300.89470.41750.056*
H13C0.39070.79140.45050.056*
C140.55987 (19)0.70951 (19)0.36919 (19)0.0343 (5)
H14A0.55120.69120.42920.051*
H14B0.62640.78960.38830.051*
H14C0.57680.65060.32690.051*
C150.4489 (2)0.7538 (2)0.1936 (2)0.0420 (6)
H15A0.47730.70350.15480.063*
H15B0.51090.83730.22000.063*
H15C0.37500.74660.15070.063*
C160.1596 (2)0.6979 (2)0.1776 (2)0.0449 (6)
H16A0.23050.77230.22210.067*
H16B0.08750.71000.17110.067*
H16C0.16870.67440.11190.067*
C170.1115 (2)0.6141 (2)0.3497 (2)0.0405 (5)
H17A0.15030.58630.39610.061*
H17B0.02430.57490.33650.061*
H17C0.14260.70090.37920.061*
C180.0096 (2)0.4459 (2)0.1325 (2)0.0436 (6)
H18A0.02950.42460.07150.065*
H18B0.05680.46650.11890.065*
H18C0.01450.37790.15540.065*
Cl10.39377 (4)0.54640 (5)0.51614 (3)0.02502 (10)
Cl20.54536 (5)0.48760 (5)0.15850 (4)0.03183 (11)
N10.46063 (15)0.26090 (15)0.19051 (12)0.0242 (3)
N20.30091 (14)0.36004 (14)0.15804 (12)0.0208 (3)
N30.14924 (14)0.36071 (15)0.26758 (13)0.0252 (3)
N40.28301 (14)0.56547 (14)0.25223 (12)0.0210 (3)
P10.43459 (4)0.37814 (4)0.21907 (3)0.01973 (10)
P20.27309 (4)0.43630 (4)0.26184 (3)0.01800 (9)
Pd10.43737 (2)0.45924 (2)0.37046 (2)0.01843 (5)
Si10.61214 (6)0.28225 (6)0.20011 (5)0.03514 (14)
Si20.35607 (6)0.11934 (5)0.19020 (5)0.03079 (13)
Si30.22635 (6)0.31142 (5)0.02732 (4)0.02928 (13)
Si40.07178 (5)0.27242 (5)0.32387 (5)0.02940 (13)
Si50.41760 (5)0.70410 (5)0.29902 (4)0.02496 (11)
Si60.14410 (5)0.57669 (5)0.23102 (5)0.02895 (13)
O1A0.9440 (2)0.1275 (2)0.5576 (2)0.0579 (8)0.788 (5)
C19A1.1344 (4)0.2281 (5)0.6796 (4)0.0839 (14)*0.788 (5)
H19A1.18360.23230.74230.126*0.788 (5)
H19B1.17070.21370.62770.126*0.788 (5)
H19C1.13030.30370.68890.126*0.788 (5)
C20A1.0105 (4)0.1284 (5)0.6491 (3)0.0791 (13)*0.788 (5)
H20A1.01310.05130.63940.095*0.788 (5)
H20B0.97260.14180.70080.095*0.788 (5)
C21A0.8231 (3)0.0430 (4)0.5182 (3)0.0676 (11)*0.788 (5)
H21A0.78330.05270.56910.081*0.788 (5)
H21B0.81730.03830.50070.081*0.788 (5)
C22A0.7602 (5)0.0556 (5)0.4282 (3)0.0604 (11)*0.788 (5)
H22A0.67560.00480.40220.091*0.788 (5)
H22B0.76470.13550.44560.091*0.788 (5)
H22C0.79860.04460.37720.091*0.788 (5)
O1B0.8894 (7)0.1045 (8)0.6139 (6)0.050 (2)0.212 (5)
C19B1.0964 (9)0.2188 (16)0.7046 (13)0.080 (2)*0.212 (5)
H19D1.17740.22980.70610.121*0.212 (5)
H19E1.09050.29190.70450.121*0.212 (5)
H19F1.08090.20160.76350.121*0.212 (5)
C20B1.0053 (8)0.1165 (16)0.6123 (12)0.0791 (18)*0.212 (5)
H20C1.02000.13270.55210.095*0.212 (5)
H20D1.01040.04200.61150.095*0.212 (5)
C21B0.7957 (10)0.0114 (9)0.5278 (9)0.0730 (17)*0.212 (5)
H21C0.72480.03180.54620.088*0.212 (5)
H21D0.82330.04630.49770.088*0.212 (5)
C22B0.7628 (16)0.0660 (17)0.4551 (9)0.060 (2)*0.212 (5)
H22D0.69820.00300.39510.090*0.212 (5)
H22E0.73520.12260.48540.090*0.212 (5)
H22F0.83340.10810.43710.090*0.212 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (2)0.121 (3)0.156 (4)0.070 (2)0.059 (2)0.106 (3)
C20.0638 (18)0.0589 (17)0.0496 (16)0.0372 (15)0.0389 (14)0.0152 (13)
C30.0295 (12)0.083 (2)0.0448 (15)0.0278 (14)0.0115 (11)0.0131 (15)
C40.0347 (12)0.0253 (11)0.0618 (17)0.0086 (10)0.0045 (11)0.0146 (11)
C50.0484 (15)0.0459 (14)0.0460 (15)0.0238 (12)0.0179 (12)0.0272 (12)
C60.089 (2)0.0374 (14)0.0527 (17)0.0402 (16)0.0212 (16)0.0061 (12)
C70.0362 (13)0.0378 (13)0.0383 (13)0.0137 (11)0.0122 (10)0.0029 (10)
C80.0655 (18)0.0591 (16)0.0202 (11)0.0409 (15)0.0076 (11)0.0038 (11)
C90.0516 (14)0.0488 (14)0.0251 (11)0.0294 (12)0.0094 (10)0.0176 (10)
C100.0288 (12)0.0385 (13)0.0619 (18)0.0034 (10)0.0159 (12)0.0125 (12)
C110.0463 (15)0.0494 (15)0.0564 (17)0.0237 (12)0.0319 (13)0.0240 (13)
C120.0488 (15)0.0506 (15)0.0573 (17)0.0263 (13)0.0209 (13)0.0361 (14)
C130.0409 (13)0.0274 (11)0.0372 (13)0.0159 (10)0.0079 (10)0.0028 (9)
C140.0248 (10)0.0249 (10)0.0442 (13)0.0077 (8)0.0057 (9)0.0082 (9)
C150.0477 (14)0.0385 (13)0.0419 (14)0.0144 (11)0.0189 (11)0.0231 (11)
C160.0480 (15)0.0469 (14)0.0500 (15)0.0319 (12)0.0073 (12)0.0238 (12)
C170.0391 (13)0.0427 (13)0.0527 (15)0.0274 (11)0.0226 (11)0.0175 (11)
C180.0288 (11)0.0446 (14)0.0500 (15)0.0193 (11)0.0045 (10)0.0144 (12)
Cl10.0260 (2)0.0423 (3)0.01267 (19)0.0246 (2)0.00442 (16)0.00584 (18)
Cl20.0334 (3)0.0344 (3)0.0361 (3)0.0172 (2)0.0200 (2)0.0163 (2)
N10.0291 (8)0.0277 (8)0.0219 (8)0.0191 (7)0.0090 (7)0.0081 (7)
N20.0214 (7)0.0216 (7)0.0175 (7)0.0115 (6)0.0028 (6)0.0040 (6)
N30.0187 (8)0.0297 (9)0.0283 (9)0.0109 (7)0.0066 (7)0.0130 (7)
N40.0220 (8)0.0217 (7)0.0210 (8)0.0122 (6)0.0050 (6)0.0082 (6)
P10.0209 (2)0.0231 (2)0.0164 (2)0.01211 (19)0.00553 (17)0.00576 (18)
P20.0167 (2)0.0206 (2)0.0167 (2)0.00981 (18)0.00340 (17)0.00615 (17)
Pd10.01793 (7)0.02364 (8)0.01437 (7)0.01211 (6)0.00337 (5)0.00495 (5)
Si10.0382 (3)0.0500 (4)0.0408 (4)0.0334 (3)0.0227 (3)0.0243 (3)
Si20.0376 (3)0.0239 (3)0.0316 (3)0.0180 (3)0.0078 (3)0.0071 (2)
Si30.0357 (3)0.0322 (3)0.0163 (3)0.0189 (3)0.0001 (2)0.0037 (2)
Si40.0228 (3)0.0302 (3)0.0377 (3)0.0109 (2)0.0124 (2)0.0161 (3)
Si50.0267 (3)0.0214 (3)0.0260 (3)0.0107 (2)0.0076 (2)0.0083 (2)
Si60.0261 (3)0.0314 (3)0.0330 (3)0.0189 (2)0.0044 (2)0.0118 (2)
O1A0.0549 (16)0.0586 (16)0.0620 (18)0.0237 (13)0.0201 (13)0.0273 (13)
O1B0.058 (5)0.046 (4)0.053 (5)0.027 (4)0.027 (4)0.017 (4)
Geometric parameters (Å, º) top
C1—Si11.858 (3)C15—H15C0.9800
C1—H1A0.9800C16—Si61.882 (3)
C1—H1B0.9800C16—H16A0.9800
C1—H1C0.9800C16—H16B0.9800
C2—Si11.853 (3)C16—H16C0.9800
C2—H2A0.9800C17—Si61.858 (3)
C2—H2B0.9800C17—H17A0.9800
C2—H2C0.9800C17—H17B0.9800
C3—Si11.865 (3)C17—H17C0.9800
C3—H3A0.9800C18—Si61.865 (3)
C3—H3B0.9800C18—H18A0.9800
C3—H3C0.9800C18—H18B0.9800
C4—Si21.844 (3)C18—H18C0.9800
C4—H4A0.9800Cl1—Pd12.4296 (5)
C4—H4B0.9800Cl1—Pd1i2.4815 (4)
C4—H4C0.9800Cl2—P12.0867 (7)
C5—Si21.860 (3)N1—P11.6519 (16)
C5—H5A0.9800N1—Si21.8032 (19)
C5—H5B0.9800N1—Si11.8112 (18)
C5—H5C0.9800N2—P11.6556 (16)
C6—Si21.862 (3)N2—P21.7772 (16)
C6—H6A0.9800N2—Si31.7865 (17)
C6—H6B0.9800N3—P21.5346 (17)
C6—H6C0.9800N3—Si41.6950 (18)
C7—Si31.862 (3)N4—P21.6736 (16)
C7—H7A0.9800N4—Si51.7881 (17)
C7—H7B0.9800N4—Si61.8029 (16)
C7—H7C0.9800P1—Pd12.1947 (5)
C8—Si31.864 (3)P2—Pd12.2294 (5)
C8—H8A0.9800Pd1—Cl1i2.4815 (4)
C8—H8B0.9800O1A—C21A1.394 (3)
C8—H8C0.9800O1A—C20A1.430 (3)
C9—Si31.857 (2)C19A—C20A1.492 (4)
C9—H9A0.9800C19A—H19A0.9800
C9—H9B0.9800C19A—H19B0.9800
C9—H9C0.9800C19A—H19C0.9800
C10—Si41.877 (3)C20A—H20A0.9900
C10—H10A0.9800C20A—H20B0.9900
C10—H10B0.9800C21A—C22A1.482 (3)
C10—H10C0.9800C21A—H21A0.9900
C11—Si41.863 (3)C21A—H21B0.9900
C11—H11A0.9800C22A—H22A0.9800
C11—H11B0.9800C22A—H22B0.9800
C11—H11C0.9800C22A—H22C0.9800
C12—Si41.868 (3)O1B—C21B1.422 (4)
C12—H12A0.9800O1B—C20B1.429 (4)
C12—H12B0.9800C19B—C20B1.500 (4)
C12—H12C0.9800C19B—H19D0.9800
C13—Si51.872 (2)C19B—H19E0.9800
C13—H13A0.9800C19B—H19F0.9800
C13—H13B0.9800C20B—H20C0.9900
C13—H13C0.9800C20B—H20D0.9900
C14—Si51.864 (2)C21B—C22B1.494 (4)
C14—H14A0.9800C21B—H21C0.9900
C14—H14B0.9800C21B—H21D0.9900
C14—H14C0.9800C22B—H22D0.9800
C15—Si51.867 (2)C22B—H22E0.9800
C15—H15A0.9800C22B—H22F0.9800
C15—H15B0.9800
Si1—C1—H1A109.5P2—N3—Si4146.58 (11)
Si1—C1—H1B109.5P2—N4—Si5125.76 (9)
H1A—C1—H1B109.5P2—N4—Si6115.33 (9)
Si1—C1—H1C109.5Si5—N4—Si6115.66 (9)
H1A—C1—H1C109.5N1—P1—N2116.97 (8)
H1B—C1—H1C109.5N1—P1—Cl2101.47 (7)
Si1—C2—H2A109.5N2—P1—Cl2101.22 (6)
Si1—C2—H2B109.5N1—P1—Pd1120.46 (6)
H2A—C2—H2B109.5N2—P1—Pd197.69 (6)
Si1—C2—H2C109.5Cl2—P1—Pd1118.18 (3)
H2A—C2—H2C109.5N1—P1—P2140.56 (7)
H2B—C2—H2C109.5Cl2—P1—P2114.75 (3)
Si1—C3—H3A109.5Pd1—P1—P254.935 (15)
Si1—C3—H3B109.5N3—P2—N4110.53 (9)
H3A—C3—H3B109.5N3—P2—N2111.64 (9)
Si1—C3—H3C109.5N4—P2—N2108.49 (8)
H3A—C3—H3C109.5N3—P2—Pd1118.85 (7)
H3B—C3—H3C109.5N4—P2—Pd1112.87 (6)
Si2—C4—H4A109.5N2—P2—Pd192.90 (5)
Si2—C4—H4B109.5N3—P2—P1131.03 (7)
H4A—C4—H4B109.5N4—P2—P1116.17 (6)
Si2—C4—H4C109.5Pd1—P2—P153.685 (15)
H4A—C4—H4C109.5P1—Pd1—P271.380 (18)
H4B—C4—H4C109.5P1—Pd1—Cl1165.791 (17)
Si2—C5—H5A109.5P2—Pd1—Cl194.413 (16)
Si2—C5—H5B109.5P1—Pd1—Cl1i105.637 (16)
H5A—C5—H5B109.5P2—Pd1—Cl1i171.920 (18)
Si2—C5—H5C109.5Cl1—Pd1—Cl1i88.411 (15)
H5A—C5—H5C109.5N1—Si1—C2108.05 (12)
H5B—C5—H5C109.5N1—Si1—C1110.50 (12)
Si2—C6—H6A109.5C2—Si1—C1110.16 (18)
Si2—C6—H6B109.5N1—Si1—C3114.01 (10)
H6A—C6—H6B109.5C2—Si1—C3110.42 (14)
Si2—C6—H6C109.5C1—Si1—C3103.65 (19)
H6A—C6—H6C109.5N1—Si2—C4112.48 (10)
H6B—C6—H6C109.5N1—Si2—C5110.76 (10)
Si3—C7—H7A109.5C4—Si2—C5107.33 (13)
Si3—C7—H7B109.5N1—Si2—C6108.33 (12)
H7A—C7—H7B109.5C4—Si2—C6105.24 (15)
Si3—C7—H7C109.5C5—Si2—C6112.64 (13)
H7A—C7—H7C109.5N2—Si3—C9108.72 (10)
H7B—C7—H7C109.5N2—Si3—C7109.53 (11)
Si3—C8—H8A109.5C9—Si3—C7110.83 (12)
Si3—C8—H8B109.5N2—Si3—C8108.61 (10)
H8A—C8—H8B109.5C9—Si3—C8109.09 (13)
Si3—C8—H8C109.5C7—Si3—C8110.02 (13)
H8A—C8—H8C109.5N3—Si4—C11112.26 (11)
H8B—C8—H8C109.5N3—Si4—C12113.80 (11)
Si3—C9—H9A109.5C11—Si4—C12105.73 (14)
Si3—C9—H9B109.5N3—Si4—C10107.63 (11)
H9A—C9—H9B109.5C11—Si4—C10108.40 (13)
Si3—C9—H9C109.5C12—Si4—C10108.88 (14)
H9A—C9—H9C109.5N4—Si5—C14118.23 (9)
H9B—C9—H9C109.5N4—Si5—C15109.61 (10)
Si4—C10—H10A109.5C14—Si5—C15105.73 (12)
Si4—C10—H10B109.5N4—Si5—C13109.35 (10)
H10A—C10—H10B109.5C14—Si5—C13101.96 (11)
Si4—C10—H10C109.5C15—Si5—C13111.74 (12)
H10A—C10—H10C109.5N4—Si6—C17110.54 (10)
H10B—C10—H10C109.5N4—Si6—C18116.19 (10)
Si4—C11—H11A109.5C17—Si6—C18110.40 (13)
Si4—C11—H11B109.5N4—Si6—C16108.40 (10)
H11A—C11—H11B109.5C17—Si6—C16109.50 (12)
Si4—C11—H11C109.5C18—Si6—C16101.29 (12)
H11A—C11—H11C109.5C21A—O1A—C20A115.6 (3)
H11B—C11—H11C109.5C20A—C19A—H19A109.5
Si4—C12—H12A109.5C20A—C19A—H19B109.5
Si4—C12—H12B109.5H19A—C19A—H19B109.5
H12A—C12—H12B109.5C20A—C19A—H19C109.5
Si4—C12—H12C109.5H19A—C19A—H19C109.5
H12A—C12—H12C109.5H19B—C19A—H19C109.5
H12B—C12—H12C109.5O1A—C20A—C19A106.5 (4)
Si5—C13—H13A109.5O1A—C20A—H20A110.4
Si5—C13—H13B109.5C19A—C20A—H20A110.4
H13A—C13—H13B109.5O1A—C20A—H20B110.4
Si5—C13—H13C109.5C19A—C20A—H20B110.4
H13A—C13—H13C109.5H20A—C20A—H20B108.6
H13B—C13—H13C109.5O1A—C21A—C22A111.4 (4)
Si5—C14—H14A109.5O1A—C21A—H21A109.4
Si5—C14—H14B109.5C22A—C21A—H21A109.4
H14A—C14—H14B109.5O1A—C21A—H21B109.4
Si5—C14—H14C109.5C22A—C21A—H21B109.4
H14A—C14—H14C109.5H21A—C21A—H21B108.0
H14B—C14—H14C109.5C21A—C22A—H22A109.5
Si5—C15—H15A109.5C21A—C22A—H22B109.5
Si5—C15—H15B109.5H22A—C22A—H22B109.5
H15A—C15—H15B109.5C21A—C22A—H22C109.5
Si5—C15—H15C109.5H22A—C22A—H22C109.5
H15A—C15—H15C109.5H22B—C22A—H22C109.5
H15B—C15—H15C109.5C21B—O1B—C20B111.9 (4)
Si6—C16—H16A109.5C20B—C19B—H19D109.5
Si6—C16—H16B109.5C20B—C19B—H19E109.5
H16A—C16—H16B109.5H19D—C19B—H19E109.5
Si6—C16—H16C109.5C20B—C19B—H19F109.5
H16A—C16—H16C109.5H19D—C19B—H19F109.5
H16B—C16—H16C109.5H19E—C19B—H19F109.5
Si6—C17—H17A109.5O1B—C20B—C19B107.1 (4)
Si6—C17—H17B109.5O1B—C20B—H20C110.3
H17A—C17—H17B109.5C19B—C20B—H20C110.3
Si6—C17—H17C109.5O1B—C20B—H20D110.3
H17A—C17—H17C109.5C19B—C20B—H20D110.3
H17B—C17—H17C109.5H20C—C20B—H20D108.5
Si6—C18—H18A109.5O1B—C21B—C22B108.3 (4)
Si6—C18—H18B109.5O1B—C21B—H21C110.0
H18A—C18—H18B109.5C22B—C21B—H21C110.0
Si6—C18—H18C109.5O1B—C21B—H21D110.0
H18A—C18—H18C109.5C22B—C21B—H21D110.0
H18B—C18—H18C109.5H21C—C21B—H21D108.4
Pd1—Cl1—Pd1i91.589 (15)C21B—C22B—H22D109.5
P1—N1—Si2120.40 (10)C21B—C22B—H22E109.5
P1—N1—Si1119.78 (10)H22D—C22B—H22E109.5
Si2—N1—Si1116.70 (9)C21B—C22B—H22F109.5
P1—N2—P297.45 (8)H22D—C22B—H22F109.5
P1—N2—Si3130.40 (10)H22E—C22B—H22F109.5
P2—N2—Si3130.69 (9)
Si2—N1—P1—N251.67 (14)P1—N1—Si1—C1139.3 (2)
Si1—N1—P1—N2148.97 (10)Si2—N1—Si1—C120.8 (2)
Si2—N1—P1—Cl2160.70 (9)P1—N1—Si1—C323.00 (17)
Si1—N1—P1—Cl239.95 (11)Si2—N1—Si1—C3137.10 (13)
Si2—N1—P1—Pd166.59 (12)P1—N1—Si2—C430.84 (16)
Si1—N1—P1—Pd192.77 (11)Si1—N1—Si2—C4169.18 (13)
Si2—N1—P1—P23.89 (17)P1—N1—Si2—C589.26 (14)
Si1—N1—P1—P2163.24 (5)Si1—N1—Si2—C570.71 (14)
P2—N2—P1—N1136.44 (8)P1—N1—Si2—C6146.73 (14)
Si3—N2—P1—N156.48 (15)Si1—N1—Si2—C653.29 (15)
P2—N2—P1—Cl2114.39 (6)P1—N2—Si3—C999.16 (15)
Si3—N2—P1—Cl252.69 (13)P2—N2—Si3—C963.83 (16)
P2—N2—P1—Pd16.45 (7)P1—N2—Si3—C7139.60 (14)
Si3—N2—P1—Pd1173.53 (11)P2—N2—Si3—C757.41 (16)
Si3—N2—P1—P2167.07 (18)P1—N2—Si3—C819.42 (18)
Si4—N3—P2—N4136.4 (2)P2—N2—Si3—C8177.58 (14)
Si4—N3—P2—N2102.7 (2)P2—N3—Si4—C11105.7 (2)
Si4—N3—P2—Pd13.6 (3)P2—N3—Si4—C1214.4 (3)
Si4—N3—P2—P161.8 (3)P2—N3—Si4—C10135.1 (2)
Si5—N4—P2—N3149.26 (11)P2—N4—Si5—C142.46 (17)
Si6—N4—P2—N39.39 (13)Si6—N4—Si5—C14156.13 (11)
Si5—N4—P2—N288.03 (12)P2—N4—Si5—C15118.75 (14)
Si6—N4—P2—N2113.32 (10)Si6—N4—Si5—C1582.67 (13)
Si5—N4—P2—Pd113.45 (13)P2—N4—Si5—C13118.43 (13)
Si6—N4—P2—Pd1145.20 (7)Si6—N4—Si5—C1340.16 (13)
Si5—N4—P2—P145.96 (13)P2—N4—Si6—C1780.04 (13)
Si6—N4—P2—P1155.39 (7)Si5—N4—Si6—C1780.83 (13)
P1—N2—P2—N3128.98 (9)P2—N4—Si6—C1846.76 (15)
Si3—N2—P2—N364.00 (15)Si5—N4—Si6—C18152.37 (12)
P1—N2—P2—N4108.99 (9)P2—N4—Si6—C16159.94 (12)
Si3—N2—P2—N458.03 (14)Si5—N4—Si6—C1639.19 (14)
P1—N2—P2—Pd16.30 (7)C21A—O1A—C20A—C19A177.5 (4)
Si3—N2—P2—Pd1173.32 (11)C20A—O1A—C21A—C22A175.5 (4)
Si3—N2—P2—P1167.02 (18)C21B—O1B—C20B—C19B178.5 (15)
P1—N1—Si1—C2100.16 (14)C20B—O1B—C21B—C22B98.0 (17)
Si2—N1—Si1—C299.74 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···Cl1i0.982.723.564 (3)144
C14—H14C···Cl20.982.673.585 (2)156
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJones, P. G., Daniliuc, C., du Mont, W.-W. & Goers, C. (2015). Private communication (refcode BUCGIR). CCDC, Cambridge, England.  Google Scholar
First citationMont, W.-W. du, Lungu, D., Daniliuc, C., Jones, P. G., Nyulaszi, L., Benko, Z. & Bartsch, R. (2009). Eur. J. Inorg. Chem. pp. 2901–2905.  Google Scholar
First citationNiecke, E., Flick, W. & Pohl, S. (1976). Angew. Chem. 88, 305–306.  CrossRef CAS Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.  CSD CrossRef Web of Science Google Scholar
First citationPyykkö, P. (2015). J. Phys. Chem. A, 119, 2326–2337.  PubMed Google Scholar
First citationScherer, O. J. & Brück, T. (1987). Angew. Chem. 99, 59–61.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds