organic compounds
A second polymorph of 3,4-bis(6-bromopyridin-3-yl)-1,2,5-thiadiazole
aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: lisanne.becker@catalysis.de
The title compound, C12H6Br2N4S, a second polymorph in the triclinic P-1, is presented. As in the earlier reported monoclinic polymorph in the C2/c [Becker et al. (2016). Chem. Eur. J. In the press], the thiadiazole ring is planar with an r.m.s. deviation of 0.004 Å. The five-membered ring is tilted with respect to the two pyridyl substituents by 23.16 (7) and 49.47 (9)°. In the crystal, molecules are linked by a weak non-bonding Br⋯N interaction [3.056 (3) Å]. Furthermore, a column of molecules is established along the b axis by π–π stacking interactions between the pyridine rings [centroid–centroid distances = 3.7014 (16) and 3.5934 (15) Å]. Additionally, a short intermolecular Br⋯Br contact [3.3791 (6) Å] and Br⋯π-aryl contacts [3.6815 (11)–3.7659 (12) Å] towards the thiadiazole and pyridine rings are found.
Keywords: crystal structure; heterocycle; thiadiazole; polymorph.
CCDC reference: 1485338
Structure description
The title compound was formed by the reaction of SOCl2 with [Ti(C5Me5)2(N=C(R)—C(R)=N)] (R = 6-Br-3-py), as the coupling product of two molecules of 2-bromo-5-cyanopyridine at [Ti(C5Me5)2] (Becker et al., 2016). Triclinic (P) and monoclinic (C2/c) polymorphs of the title compound were observed, the triclinic one being presented here (Fig. 1). The thiadiazole ring is planar (r.m.s. deviation 0.004 Å) as found in the earlier reported monoclinic polymorph. This fact and the N—S [N1—S1 1.625 (2), N2—S2 1.629 (2) Å], C—N [C1—N1 1.332 (3), C2—N2 1.324 (3) Å] and C—C [C1—C2 1.441 (3) Å] bond lengths indicate electron delocalization in the ring system. The five-membered S1/N1/C1/C2/N2 ring makes dihedral angles of 23.16 (7) and 49.47 (9)°, respectively, with the N3/C3–C7 and N4/C8–C12 pyridyl substituents. Examples for similar symmetrical substituted 1,2,5-thiadiazole derivatives were published by Mellini & Merlino (1976), Mühlebach et al. (1986), Tomura & Yamashita (2010) and Suturina et al. (2011). One difference in the molecular structure between the two polymorphs is the orientation of the pyridyl substituents (Fig. 2).
In the crystal of the triclinic polymorph, molecules are linked by a weak non-bonding Br⋯N interaction [Br1⋯N4 = 3.056 (3) Å]. Furthermore, a column of molecules is established along the b axis by π–π stacking interactions between the pyridine N3/C3–C7 rings (Fig. 3). This column shows an alternating pattern of short and long contacts, with centroid–centroid distances of 3.5934 (15) and 3.7014 (16) Å, respectively, and with ring slippages [distance between Cg(I) and perpendicular projection of Cg(J) on ring I] of 1.344 and 1.822 Å. Additionally, two Br1⋯π-aryl contacts towards the thiadiazole ring are found [Br1⋯Cg(S1/N1/C1/C2/N2) 3.6815 (11) and 3.7659 (12) Å]. The other bromine atom shows a short intermolecular Br⋯Br contact [Br2⋯Br2 3.3791 (6) Å] and a Br⋯π-aryl contact towards the N4/C8–C12 pyridine ring [Br2⋯Cg(N4/C8–C12) 3.6577 (11) Å]. In the monoclinic polymorph, the molecules are linked by intermolecular non-bonding Br⋯N interactions (3.190 Å), and Br⋯π-aryl contacts can be observed as well [Br⋯Cg(thiadiazole) 3.6748 (13) Å], but no intermolecular Br⋯Br contacts or π–π stacking interactions are present.
Synthesis and crystallization
[Ti(C5Me5)2(N=C(R)—C(R)=N)] (R = 6-Br-3-py) (0.034 g, 0.05 mmol) were dissolved in C6D6 and the red solution was transferred into a sealable J-Young NMR tube. A 0.2 M toluene solution of SOCl2 (0.25 ml, 0.05 mmol) was then added via syringe and the mixture was warmed to 60°C for 7 d. Upon cooling to ambient temperature, yellow crystals formed (Becker et al., 2016).
Refinement
Crystal data, data collection and structure . The H atoms were placed in idealized positions with d(C—H) = 0.95 Å and refined using a riding model with Uiso(H) fixed at 1.2Ueq(C).
details are summarized in Table 1Structural data
CCDC reference: 1485338
10.1107/S2414314616009603/is4008sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616009603/is4008Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616009603/is4008Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).C12H6Br2N4S | Z = 2 |
Mr = 398.09 | F(000) = 384 |
Triclinic, P1 | Dx = 2.063 Mg m−3 |
a = 7.1617 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.2787 (4) Å | Cell parameters from 5554 reflections |
c = 14.4257 (8) Å | θ = 2.9–28.7° |
α = 77.0382 (9)° | µ = 6.48 mm−1 |
β = 78.7453 (8)° | T = 150 K |
γ = 61.5479 (7)° | Prism, yellow |
V = 640.88 (6) Å3 | 0.49 × 0.36 × 0.19 mm |
Bruker APEXII CCD diffractometer | 2957 independent reflections |
Radiation source: fine-focus sealed tube | 2672 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.020 |
φ and ω scans | θmax = 27.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −8→9 |
Tmin = 0.24, Tmax = 0.38 | k = −9→9 |
8969 measured reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.037P)2 + 1.1147P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2957 reflections | Δρmax = 0.52 e Å−3 |
172 parameters | Δρmin = −0.84 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.76469 (5) | 0.11355 (4) | 1.18285 (2) | 0.02297 (9) | |
Br2 | 1.23819 (5) | 0.06797 (5) | 0.53206 (2) | 0.02999 (10) | |
C1 | 0.2757 (4) | 0.3696 (4) | 0.83700 (18) | 0.0127 (5) | |
C2 | 0.3420 (4) | 0.3729 (4) | 0.73593 (18) | 0.0138 (5) | |
C3 | 0.4074 (4) | 0.3033 (4) | 0.91690 (17) | 0.0122 (5) | |
C4 | 0.3258 (4) | 0.2520 (4) | 1.00972 (18) | 0.0145 (5) | |
H4 | 0.1887 | 0.2566 | 1.0185 | 0.017* | |
C5 | 0.6206 (4) | 0.1910 (4) | 1.07289 (18) | 0.0148 (5) | |
C6 | 0.7177 (4) | 0.2399 (4) | 0.98464 (19) | 0.0172 (5) | |
H6 | 0.8552 | 0.2333 | 0.9785 | 0.021* | |
C7 | 0.6078 (4) | 0.2985 (4) | 0.90591 (18) | 0.0157 (5) | |
H7 | 0.6683 | 0.3356 | 0.8444 | 0.019* | |
C8 | 0.5597 (4) | 0.3033 (4) | 0.68630 (17) | 0.0141 (5) | |
C9 | 0.7254 (4) | 0.1039 (4) | 0.71185 (18) | 0.0175 (5) | |
H9 | 0.6961 | 0.0110 | 0.7634 | 0.021* | |
C10 | 0.9576 (4) | 0.1674 (4) | 0.59460 (18) | 0.0160 (5) | |
C11 | 0.8063 (4) | 0.3673 (4) | 0.56073 (19) | 0.0188 (5) | |
H11 | 0.8404 | 0.4529 | 0.5070 | 0.023* | |
C12 | 0.6036 (4) | 0.4365 (4) | 0.60855 (18) | 0.0166 (5) | |
H12 | 0.4946 | 0.5736 | 0.5889 | 0.020* | |
N1 | 0.0649 (4) | 0.4469 (3) | 0.85706 (16) | 0.0164 (4) | |
N2 | 0.1799 (4) | 0.4540 (4) | 0.68361 (16) | 0.0182 (4) | |
N3 | 0.4294 (4) | 0.1969 (3) | 1.08689 (15) | 0.0156 (4) | |
N4 | 0.9244 (4) | 0.0363 (3) | 0.66717 (16) | 0.0178 (4) | |
S1 | −0.03875 (11) | 0.52048 (11) | 0.75638 (5) | 0.01999 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02748 (16) | 0.02225 (14) | 0.01974 (15) | −0.01104 (12) | −0.00918 (11) | 0.00111 (10) |
Br2 | 0.02001 (16) | 0.03454 (17) | 0.03315 (18) | −0.01163 (13) | 0.00630 (12) | −0.01040 (13) |
C1 | 0.0121 (11) | 0.0133 (10) | 0.0126 (11) | −0.0065 (9) | 0.0006 (9) | −0.0014 (9) |
C2 | 0.0148 (12) | 0.0137 (11) | 0.0121 (11) | −0.0070 (9) | 0.0000 (9) | −0.0001 (9) |
C3 | 0.0133 (12) | 0.0116 (10) | 0.0110 (11) | −0.0058 (9) | 0.0010 (9) | −0.0020 (8) |
C4 | 0.0135 (12) | 0.0160 (11) | 0.0135 (12) | −0.0071 (9) | 0.0015 (10) | −0.0029 (9) |
C5 | 0.0186 (13) | 0.0126 (10) | 0.0129 (11) | −0.0065 (10) | −0.0028 (10) | −0.0016 (9) |
C6 | 0.0149 (12) | 0.0194 (12) | 0.0187 (13) | −0.0097 (10) | 0.0007 (10) | −0.0032 (10) |
C7 | 0.0159 (12) | 0.0195 (12) | 0.0128 (12) | −0.0105 (10) | 0.0023 (10) | −0.0022 (9) |
C8 | 0.0144 (12) | 0.0172 (11) | 0.0096 (11) | −0.0069 (10) | 0.0001 (9) | −0.0019 (9) |
C9 | 0.0181 (13) | 0.0173 (12) | 0.0123 (12) | −0.0067 (10) | 0.0007 (10) | 0.0013 (9) |
C10 | 0.0124 (12) | 0.0228 (12) | 0.0137 (12) | −0.0083 (10) | 0.0020 (10) | −0.0064 (10) |
C11 | 0.0197 (13) | 0.0226 (12) | 0.0129 (12) | −0.0116 (11) | −0.0003 (10) | 0.0028 (10) |
C12 | 0.0142 (12) | 0.0170 (11) | 0.0135 (12) | −0.0051 (10) | −0.0013 (10) | 0.0024 (9) |
N1 | 0.0145 (11) | 0.0187 (10) | 0.0145 (10) | −0.0073 (9) | −0.0004 (9) | −0.0016 (8) |
N2 | 0.0157 (11) | 0.0233 (11) | 0.0127 (10) | −0.0080 (9) | 0.0002 (9) | −0.0004 (8) |
N3 | 0.0179 (11) | 0.0162 (10) | 0.0124 (10) | −0.0086 (9) | −0.0001 (8) | −0.0009 (8) |
N4 | 0.0145 (11) | 0.0194 (10) | 0.0152 (10) | −0.0046 (9) | −0.0008 (9) | −0.0024 (8) |
S1 | 0.0127 (3) | 0.0278 (3) | 0.0158 (3) | −0.0076 (3) | −0.0012 (2) | −0.0004 (2) |
Br1—C5 | 1.893 (3) | C6—H6 | 0.9500 |
Br2—C10 | 1.891 (3) | C7—H7 | 0.9500 |
C1—N1 | 1.332 (3) | C8—C9 | 1.393 (3) |
C1—C2 | 1.441 (3) | C8—C12 | 1.401 (3) |
C1—C3 | 1.480 (3) | C9—N4 | 1.344 (3) |
C2—N2 | 1.324 (3) | C9—H9 | 0.9500 |
C2—C8 | 1.475 (4) | C10—N4 | 1.317 (3) |
C3—C4 | 1.397 (3) | C10—C11 | 1.384 (4) |
C3—C7 | 1.397 (4) | C11—C12 | 1.380 (4) |
C4—N3 | 1.338 (3) | C11—H11 | 0.9500 |
C4—H4 | 0.9500 | C12—H12 | 0.9500 |
C5—N3 | 1.326 (3) | N1—S1 | 1.625 (2) |
C5—C6 | 1.385 (4) | N2—S1 | 1.629 (2) |
C6—C7 | 1.379 (4) | ||
N1—C1—C2 | 112.7 (2) | C9—C8—C12 | 117.8 (2) |
N1—C1—C3 | 118.3 (2) | C9—C8—C2 | 122.2 (2) |
C2—C1—C3 | 128.9 (2) | C12—C8—C2 | 120.0 (2) |
N2—C2—C1 | 113.1 (2) | N4—C9—C8 | 123.3 (2) |
N2—C2—C8 | 118.3 (2) | N4—C9—H9 | 118.4 |
C1—C2—C8 | 128.6 (2) | C8—C9—H9 | 118.4 |
C4—C3—C7 | 117.0 (2) | N4—C10—C11 | 125.8 (2) |
C4—C3—C1 | 119.3 (2) | N4—C10—Br2 | 115.89 (19) |
C7—C3—C1 | 123.6 (2) | C11—C10—Br2 | 118.3 (2) |
N3—C4—C3 | 123.8 (2) | C12—C11—C10 | 116.9 (2) |
N3—C4—H4 | 118.1 | C12—C11—H11 | 121.5 |
C3—C4—H4 | 118.1 | C10—C11—H11 | 121.5 |
N3—C5—C6 | 124.5 (2) | C11—C12—C8 | 119.5 (2) |
N3—C5—Br1 | 116.56 (19) | C11—C12—H12 | 120.2 |
C6—C5—Br1 | 118.9 (2) | C8—C12—H12 | 120.2 |
C7—C6—C5 | 117.7 (2) | C1—N1—S1 | 107.62 (18) |
C7—C6—H6 | 121.2 | C2—N2—S1 | 107.62 (18) |
C5—C6—H6 | 121.2 | C5—N3—C4 | 117.1 (2) |
C6—C7—C3 | 119.9 (2) | C10—N4—C9 | 116.6 (2) |
C6—C7—H7 | 120.1 | N1—S1—N2 | 98.99 (12) |
C3—C7—H7 | 120.1 | ||
N1—C1—C2—N2 | 0.7 (3) | C12—C8—C9—N4 | 1.6 (4) |
C3—C1—C2—N2 | −176.1 (2) | C2—C8—C9—N4 | 179.4 (2) |
N1—C1—C2—C8 | 179.3 (2) | N4—C10—C11—C12 | 1.3 (4) |
C3—C1—C2—C8 | 2.5 (4) | Br2—C10—C11—C12 | −179.2 (2) |
N1—C1—C3—C4 | 22.4 (3) | C10—C11—C12—C8 | −1.1 (4) |
C2—C1—C3—C4 | −160.9 (2) | C9—C8—C12—C11 | −0.2 (4) |
N1—C1—C3—C7 | −154.3 (2) | C2—C8—C12—C11 | −178.0 (2) |
C2—C1—C3—C7 | 22.4 (4) | C2—C1—N1—S1 | −0.9 (2) |
C7—C3—C4—N3 | −0.9 (4) | C3—C1—N1—S1 | 176.28 (17) |
C1—C3—C4—N3 | −177.8 (2) | C1—C2—N2—S1 | −0.1 (3) |
N3—C5—C6—C7 | −0.1 (4) | C8—C2—N2—S1 | −178.87 (18) |
Br1—C5—C6—C7 | −179.15 (19) | C6—C5—N3—C4 | 0.7 (4) |
C5—C6—C7—C3 | −1.1 (4) | Br1—C5—N3—C4 | 179.80 (17) |
C4—C3—C7—C6 | 1.5 (4) | C3—C4—N3—C5 | −0.2 (4) |
C1—C3—C7—C6 | 178.3 (2) | C11—C10—N4—C9 | 0.1 (4) |
N2—C2—C8—C9 | −129.4 (3) | Br2—C10—N4—C9 | −179.44 (19) |
C1—C2—C8—C9 | 52.0 (4) | C8—C9—N4—C10 | −1.6 (4) |
N2—C2—C8—C12 | 48.3 (3) | C1—N1—S1—N2 | 0.78 (19) |
C1—C2—C8—C12 | −130.3 (3) | C2—N2—S1—N1 | −0.4 (2) |
Acknowledgements
We thank our technical staff for assistance. This work was supported by the Deutsche Forschungsgemeinschaft (RO1269/9–1). The publication of this article was funded by the Open Access Fund of the Leibniz Association.
References
Becker, L., Reiss, F., Altenburger, K., Spannenberg, A., Arndt, P., Jiao, H. & Rosenthal, U. (2016). Chem. Eur. J. In the press. doi: 10.1002/chem.201601337. Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mellini, M. & Merlino, S. (1976). Acta Cryst. B32, 1074–1078. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Mühlebach, A., Lorenzi, G. P. & Gramlich, V. (1986). Helv. Chim. Acta, 69, 389–395. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suturina, E. A., Semenov, N. A., Lonchakov, A. V., Bagryanskaya, I. Y., Gatilov, Y. V., Irtegova, I. G., Vasilieva, N. V., Lork, E., Mews, R., Gritsan, N. P. & Zibarev, A. V. (2011). J. Phys. Chem. A, 115, 4851–4860. CSD CrossRef CAS PubMed Google Scholar
Tomura, M. & Yamashita, Y. (2010). Struct. Chem. 21, 107–111. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.