organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

A second polymorph of 3,4-bis­­(6-bromo­pyridin-3-yl)-1,2,5-thia­diazole

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: lisanne.becker@catalysis.de

Edited by H. Ishida, Okayama University, Japan (Received 2 June 2016; accepted 14 June 2016; online 21 June 2016)

The title compound, C12H6Br2N4S, a second polymorph in the triclinic space group P-1, is presented. As in the earlier reported monoclinic polymorph in the space group C2/c [Becker et al. (2016[Becker, L., Reiss, F., Altenburger, K., Spannenberg, A., Arndt, P., Jiao, H. & Rosenthal, U. (2016). Chem. Eur. J. In the press. doi: 10.1002/chem.201601337.]). Chem. Eur. J. In the press], the thia­diazole ring is planar with an r.m.s. deviation of 0.004 Å. The five-membered ring is tilted with respect to the two pyridyl substituents by 23.16 (7) and 49.47 (9)°. In the crystal, mol­ecules are linked by a weak non-bonding Br⋯N inter­action [3.056 (3) Å]. Furthermore, a column of mol­ecules is established along the b axis by ππ stacking inter­actions between the pyridine rings [centroid–centroid distances = 3.7014 (16) and 3.5934 (15) Å]. Additionally, a short inter­molecular Br⋯Br contact [3.3791 (6) Å] and Br⋯π-aryl contacts [3.6815 (11)–3.7659 (12) Å] towards the thia­diazole and pyridine rings are found.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was formed by the reaction of SOCl2 with [Ti(C5Me5)2(N=C(R)—C(R)=N)] (R = 6-Br-3-py), as the coupling product of two mol­ecules of 2-bromo-5-cyano­pyridine at [Ti(C5Me5)2] (Becker et al., 2016[Becker, L., Reiss, F., Altenburger, K., Spannenberg, A., Arndt, P., Jiao, H. & Rosenthal, U. (2016). Chem. Eur. J. In the press. doi: 10.1002/chem.201601337.]). Triclinic (P[\overline{1}]) and monoclinic (C2/c) polymorphs of the title compound were observed, the triclinic one being presented here (Fig. 1[link]). The thia­diazole ring is planar (r.m.s. deviation 0.004 Å) as found in the earlier reported monoclinic polymorph. This fact and the N—S [N1—S1 1.625 (2), N2—S2 1.629 (2) Å], C—N [C1—N1 1.332 (3), C2—N2 1.324 (3) Å] and C—C [C1—C2 1.441 (3) Å] bond lengths indicate electron delocalization in the ring system. The five-membered S1/N1/C1/C2/N2 ring makes dihedral angles of 23.16 (7) and 49.47 (9)°, respectively, with the N3/C3–C7 and N4/C8–C12 pyridyl substituents. Examples for similar symmetrical substituted 1,2,5-thia­diazole derivatives were published by Mellini & Merlino (1976[Mellini, M. & Merlino, S. (1976). Acta Cryst. B32, 1074-1078.]), Mühlebach et al. (1986[Mühlebach, A., Lorenzi, G. P. & Gramlich, V. (1986). Helv. Chim. Acta, 69, 389-395.]), Tomura & Yamashita (2010[Tomura, M. & Yamashita, Y. (2010). Struct. Chem. 21, 107-111.]) and Suturina et al. (2011[Suturina, E. A., Semenov, N. A., Lonchakov, A. V., Bagryanskaya, I. Y., Gatilov, Y. V., Irtegova, I. G., Vasilieva, N. V., Lork, E., Mews, R., Gritsan, N. P. & Zibarev, A. V. (2011). J. Phys. Chem. A, 115, 4851-4860.]). One difference in the mol­ecular structure between the two polymorphs is the orientation of the pyridyl substituents (Fig. 2[link]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of the monoclinic polymorph of 3,4-bis­(6-bromo­pyridin-3-yl)-1,2,5-thia­diazole with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 2, y, −z + [{3\over 2}].]

In the crystal of the triclinic polymorph, mol­ecules are linked by a weak non-bonding Br⋯N inter­action [Br1⋯N4 = 3.056 (3) Å]. Furthermore, a column of mol­ecules is established along the b axis by ππ stacking inter­actions between the pyridine N3/C3–C7 rings (Fig. 3[link]). This column shows an alternating pattern of short and long contacts, with centroid–centroid distances of 3.5934 (15) and 3.7014 (16) Å, respectively, and with ring slippages [distance between Cg(I) and perpendicular projection of Cg(J) on ring I] of 1.344 and 1.822 Å. Additionally, two Br1⋯π-aryl contacts towards the thia­diazole ring are found [Br1⋯Cg(S1/N1/C1/C2/N2) 3.6815 (11) and 3.7659 (12) Å]. The other bromine atom shows a short inter­molecular Br⋯Br contact [Br2⋯Br2 3.3791 (6) Å] and a Br⋯π-aryl contact towards the N4/C8–C12 pyridine ring [Br2⋯Cg(N4/C8–C12) 3.6577 (11) Å]. In the monoclinic polymorph, the mol­ecules are linked by inter­molecular non-bonding Br⋯N inter­actions (3.190 Å), and Br⋯π-aryl contacts can be observed as well [Br⋯Cg(thia­diazole) 3.6748 (13) Å], but no inter­molecular Br⋯Br contacts or ππ stacking inter­actions are present.

[Figure 3]
Figure 3
Part of the packing diagram of the triclinic polymorph of the title compound, showing the formation of a ππ-stacked column along the b axis. For clarity H atoms have been omitted.

Synthesis and crystallization

[Ti(C5Me5)2(N=C(R)—C(R)=N)] (R = 6-Br-3-py) (0.034 g, 0.05 mmol) were dissolved in C6D6 and the red solution was transferred into a sealable J-Young NMR tube. A 0.2 M toluene solution of SOCl2 (0.25 ml, 0.05 mmol) was then added via syringe and the mixture was warmed to 60°C for 7 d. Upon cooling to ambient temperature, yellow crystals formed (Becker et al., 2016[Becker, L., Reiss, F., Altenburger, K., Spannenberg, A., Arndt, P., Jiao, H. & Rosenthal, U. (2016). Chem. Eur. J. In the press. doi: 10.1002/chem.201601337.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms were placed in idealized positions with d(C—H) = 0.95 Å and refined using a riding model with Uiso(H) fixed at 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula C12H6Br2N4S
Mr 398.09
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.1617 (4), 7.2787 (4), 14.4257 (8)
α, β, γ (°) 77.0382 (9), 78.7453 (8), 61.5479 (7)
V3) 640.88 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.48
Crystal size (mm) 0.49 × 0.36 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.24, 0.38
No. of measured, independent and observed [I > 2σ(I)] reflections 8969, 2957, 2672
Rint 0.020
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.075, 1.06
No. of reflections 2957
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.84
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

3,4-Bis(6-bromopyridin-3-yl)-1,2,5-thiadiazole top
Crystal data top
C12H6Br2N4SZ = 2
Mr = 398.09F(000) = 384
Triclinic, P1Dx = 2.063 Mg m3
a = 7.1617 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2787 (4) ÅCell parameters from 5554 reflections
c = 14.4257 (8) Åθ = 2.9–28.7°
α = 77.0382 (9)°µ = 6.48 mm1
β = 78.7453 (8)°T = 150 K
γ = 61.5479 (7)°Prism, yellow
V = 640.88 (6) Å30.49 × 0.36 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
2957 independent reflections
Radiation source: fine-focus sealed tube2672 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.020
φ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 89
Tmin = 0.24, Tmax = 0.38k = 99
8969 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.037P)2 + 1.1147P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2957 reflectionsΔρmax = 0.52 e Å3
172 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.76469 (5)0.11355 (4)1.18285 (2)0.02297 (9)
Br21.23819 (5)0.06797 (5)0.53206 (2)0.02999 (10)
C10.2757 (4)0.3696 (4)0.83700 (18)0.0127 (5)
C20.3420 (4)0.3729 (4)0.73593 (18)0.0138 (5)
C30.4074 (4)0.3033 (4)0.91690 (17)0.0122 (5)
C40.3258 (4)0.2520 (4)1.00972 (18)0.0145 (5)
H40.18870.25661.01850.017*
C50.6206 (4)0.1910 (4)1.07289 (18)0.0148 (5)
C60.7177 (4)0.2399 (4)0.98464 (19)0.0172 (5)
H60.85520.23330.97850.021*
C70.6078 (4)0.2985 (4)0.90591 (18)0.0157 (5)
H70.66830.33560.84440.019*
C80.5597 (4)0.3033 (4)0.68630 (17)0.0141 (5)
C90.7254 (4)0.1039 (4)0.71185 (18)0.0175 (5)
H90.69610.01100.76340.021*
C100.9576 (4)0.1674 (4)0.59460 (18)0.0160 (5)
C110.8063 (4)0.3673 (4)0.56073 (19)0.0188 (5)
H110.84040.45290.50700.023*
C120.6036 (4)0.4365 (4)0.60855 (18)0.0166 (5)
H120.49460.57360.58890.020*
N10.0649 (4)0.4469 (3)0.85706 (16)0.0164 (4)
N20.1799 (4)0.4540 (4)0.68361 (16)0.0182 (4)
N30.4294 (4)0.1969 (3)1.08689 (15)0.0156 (4)
N40.9244 (4)0.0363 (3)0.66717 (16)0.0178 (4)
S10.03875 (11)0.52048 (11)0.75638 (5)0.01999 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02748 (16)0.02225 (14)0.01974 (15)0.01104 (12)0.00918 (11)0.00111 (10)
Br20.02001 (16)0.03454 (17)0.03315 (18)0.01163 (13)0.00630 (12)0.01040 (13)
C10.0121 (11)0.0133 (10)0.0126 (11)0.0065 (9)0.0006 (9)0.0014 (9)
C20.0148 (12)0.0137 (11)0.0121 (11)0.0070 (9)0.0000 (9)0.0001 (9)
C30.0133 (12)0.0116 (10)0.0110 (11)0.0058 (9)0.0010 (9)0.0020 (8)
C40.0135 (12)0.0160 (11)0.0135 (12)0.0071 (9)0.0015 (10)0.0029 (9)
C50.0186 (13)0.0126 (10)0.0129 (11)0.0065 (10)0.0028 (10)0.0016 (9)
C60.0149 (12)0.0194 (12)0.0187 (13)0.0097 (10)0.0007 (10)0.0032 (10)
C70.0159 (12)0.0195 (12)0.0128 (12)0.0105 (10)0.0023 (10)0.0022 (9)
C80.0144 (12)0.0172 (11)0.0096 (11)0.0069 (10)0.0001 (9)0.0019 (9)
C90.0181 (13)0.0173 (12)0.0123 (12)0.0067 (10)0.0007 (10)0.0013 (9)
C100.0124 (12)0.0228 (12)0.0137 (12)0.0083 (10)0.0020 (10)0.0064 (10)
C110.0197 (13)0.0226 (12)0.0129 (12)0.0116 (11)0.0003 (10)0.0028 (10)
C120.0142 (12)0.0170 (11)0.0135 (12)0.0051 (10)0.0013 (10)0.0024 (9)
N10.0145 (11)0.0187 (10)0.0145 (10)0.0073 (9)0.0004 (9)0.0016 (8)
N20.0157 (11)0.0233 (11)0.0127 (10)0.0080 (9)0.0002 (9)0.0004 (8)
N30.0179 (11)0.0162 (10)0.0124 (10)0.0086 (9)0.0001 (8)0.0009 (8)
N40.0145 (11)0.0194 (10)0.0152 (10)0.0046 (9)0.0008 (9)0.0024 (8)
S10.0127 (3)0.0278 (3)0.0158 (3)0.0076 (3)0.0012 (2)0.0004 (2)
Geometric parameters (Å, º) top
Br1—C51.893 (3)C6—H60.9500
Br2—C101.891 (3)C7—H70.9500
C1—N11.332 (3)C8—C91.393 (3)
C1—C21.441 (3)C8—C121.401 (3)
C1—C31.480 (3)C9—N41.344 (3)
C2—N21.324 (3)C9—H90.9500
C2—C81.475 (4)C10—N41.317 (3)
C3—C41.397 (3)C10—C111.384 (4)
C3—C71.397 (4)C11—C121.380 (4)
C4—N31.338 (3)C11—H110.9500
C4—H40.9500C12—H120.9500
C5—N31.326 (3)N1—S11.625 (2)
C5—C61.385 (4)N2—S11.629 (2)
C6—C71.379 (4)
N1—C1—C2112.7 (2)C9—C8—C12117.8 (2)
N1—C1—C3118.3 (2)C9—C8—C2122.2 (2)
C2—C1—C3128.9 (2)C12—C8—C2120.0 (2)
N2—C2—C1113.1 (2)N4—C9—C8123.3 (2)
N2—C2—C8118.3 (2)N4—C9—H9118.4
C1—C2—C8128.6 (2)C8—C9—H9118.4
C4—C3—C7117.0 (2)N4—C10—C11125.8 (2)
C4—C3—C1119.3 (2)N4—C10—Br2115.89 (19)
C7—C3—C1123.6 (2)C11—C10—Br2118.3 (2)
N3—C4—C3123.8 (2)C12—C11—C10116.9 (2)
N3—C4—H4118.1C12—C11—H11121.5
C3—C4—H4118.1C10—C11—H11121.5
N3—C5—C6124.5 (2)C11—C12—C8119.5 (2)
N3—C5—Br1116.56 (19)C11—C12—H12120.2
C6—C5—Br1118.9 (2)C8—C12—H12120.2
C7—C6—C5117.7 (2)C1—N1—S1107.62 (18)
C7—C6—H6121.2C2—N2—S1107.62 (18)
C5—C6—H6121.2C5—N3—C4117.1 (2)
C6—C7—C3119.9 (2)C10—N4—C9116.6 (2)
C6—C7—H7120.1N1—S1—N298.99 (12)
C3—C7—H7120.1
N1—C1—C2—N20.7 (3)C12—C8—C9—N41.6 (4)
C3—C1—C2—N2176.1 (2)C2—C8—C9—N4179.4 (2)
N1—C1—C2—C8179.3 (2)N4—C10—C11—C121.3 (4)
C3—C1—C2—C82.5 (4)Br2—C10—C11—C12179.2 (2)
N1—C1—C3—C422.4 (3)C10—C11—C12—C81.1 (4)
C2—C1—C3—C4160.9 (2)C9—C8—C12—C110.2 (4)
N1—C1—C3—C7154.3 (2)C2—C8—C12—C11178.0 (2)
C2—C1—C3—C722.4 (4)C2—C1—N1—S10.9 (2)
C7—C3—C4—N30.9 (4)C3—C1—N1—S1176.28 (17)
C1—C3—C4—N3177.8 (2)C1—C2—N2—S10.1 (3)
N3—C5—C6—C70.1 (4)C8—C2—N2—S1178.87 (18)
Br1—C5—C6—C7179.15 (19)C6—C5—N3—C40.7 (4)
C5—C6—C7—C31.1 (4)Br1—C5—N3—C4179.80 (17)
C4—C3—C7—C61.5 (4)C3—C4—N3—C50.2 (4)
C1—C3—C7—C6178.3 (2)C11—C10—N4—C90.1 (4)
N2—C2—C8—C9129.4 (3)Br2—C10—N4—C9179.44 (19)
C1—C2—C8—C952.0 (4)C8—C9—N4—C101.6 (4)
N2—C2—C8—C1248.3 (3)C1—N1—S1—N20.78 (19)
C1—C2—C8—C12130.3 (3)C2—N2—S1—N10.4 (2)
 

Acknowledgements

We thank our technical staff for assistance. This work was supported by the Deutsche Forschungsgemeinschaft (RO1269/9–1). The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

First citationBecker, L., Reiss, F., Altenburger, K., Spannenberg, A., Arndt, P., Jiao, H. & Rosenthal, U. (2016). Chem. Eur. J. In the press. doi: 10.1002/chem.201601337.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMellini, M. & Merlino, S. (1976). Acta Cryst. B32, 1074–1078.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMühlebach, A., Lorenzi, G. P. & Gramlich, V. (1986). Helv. Chim. Acta, 69, 389–395.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuturina, E. A., Semenov, N. A., Lonchakov, A. V., Bagryanskaya, I. Y., Gatilov, Y. V., Irtegova, I. G., Vasilieva, N. V., Lork, E., Mews, R., Gritsan, N. P. & Zibarev, A. V. (2011). J. Phys. Chem. A, 115, 4851–4860.  CSD CrossRef CAS PubMed Google Scholar
First citationTomura, M. & Yamashita, Y. (2010). Struct. Chem. 21, 107–111.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds