organic compounds
1-((E)-{2-[4-(2-{(1E)-[(carbamothioylamino)imino]methyl}phenoxy)butoxy]benzylidene}amino)thiourea dimethyl sulfoxide disolvate
aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524-Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
The title compound, C20H24N6O2S2·2C2H6OS, has crystallographically imposed centrosymmetry. The packing is assisted by N—H⋯O, C—H⋯O and N—H⋯S interactions with the lattice solvent molecules, forming a two-dimensional network parallel to (1-10). The lattice dimethyl sulfoxide molecules (except for the S atoms) were modelled over two sites with refined occupancies of 0.831 (3):0.169 (3).
Keywords: crystal structure; bis(dimethylsulfoxide) solvate; thiourea.
CCDC reference: 1484676
Structure description
Thiosemicarbazones and their metal complexes have been known and interest to chemists for over fifty years due to their wide spectrum of biological activity such as antitumor, antibiotic and antiviral properties (Adelstein, 1973; Pandeya & Dimmock, 1993; Quiroga, et al., 1998; Christlieb & Dilworth, 2006). The synthesis of bis functionalized compounds are considered as significant precursors for building blocks of vital molecules such as nanoscience and supramolecular chemistry (Holland et al., 2007), and binucleating ligand designs (Gavrilova & Bosnich, 2004). In this context we report in this study the synthesis and of the title compound.
The title molecule (Fig. 1) has crystallographically imposed centrosymmetry. In the crystal, the packing is assisted by N—H⋯O, C—H⋯O and N—H⋯S interactions with the lattice DMSO molecules (Table 1 and Fig. 2), forming a two-dimensional network parallel to (10)
Synthesis and crystallization
Salicyldehyde 122 mg (1 mmol) in hot ethanolic potassium hydroxide solution (prepared by dissolving 56 mg (1 mmol) of KOH in 10 ml of absolute ethanol) was stirred until a clear solution was obtained. The solution was evaporated under vacuum and the residue was dissolved in 5 ml DMF and then 119.4 µl (0.5 mmol) of 1,4-dibromobutane was added. The reaction mixture was refluxed for 5 minutes. The resulted potassium bromide was separated by filtration and the filtrate was then evaporated under vacuum. The remaining solid was washed with water and crystallized from ethanol to give high quality crystals (m.p. 513 K) suitable for X-ray analysis in a good yield (90%).
Refinement
Crystal data, data collection and structure . The lattice DMSO molecules (except S atoms) were modelled over two sites with refined occupancies of 0.831 (3):0.169 (3).
details are summarized in Table 2Structural data
CCDC reference: 1484676
10.1107/S2414314616009469/hg4009sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616009469/hg4009Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616009469/hg4009Isup3.cml
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C20H24N6O2S2·2C2H6OS | Z = 1 |
Mr = 600.83 | F(000) = 318 |
Triclinic, P1 | Dx = 1.308 Mg m−3 |
a = 7.2571 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 9.7909 (2) Å | Cell parameters from 6799 reflections |
c = 12.0060 (2) Å | θ = 4.1–72.1° |
α = 112.984 (1)° | µ = 3.19 mm−1 |
β = 98.163 (1)° | T = 150 K |
γ = 96.909 (1)° | Thick plate, colourless |
V = 762.80 (3) Å3 | 0.24 × 0.15 × 0.09 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2932 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2679 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.023 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.1°, θmin = 5.0° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −12→11 |
Tmin = 0.65, Tmax = 0.76 | l = −14→14 |
8374 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.162 | w = 1/[σ2(Fo2) + (0.0905P)2 + 0.766P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
2932 reflections | Δρmax = 0.88 e Å−3 |
183 parameters | Δρmin = −0.68 e Å−3 |
27 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0061 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.18022 (10) | 0.04286 (7) | −0.12107 (6) | 0.0368 (2) | |
O1 | 0.1735 (3) | 0.2497 (2) | 0.51184 (15) | 0.0357 (4) | |
N1 | 0.2228 (3) | 0.3358 (2) | 0.22135 (18) | 0.0304 (5) | |
N2 | 0.1727 (3) | 0.2071 (2) | 0.11133 (19) | 0.0332 (5) | |
H2A | 0.0875 | 0.1248 | 0.1011 | 0.040* | |
N3 | 0.3466 (3) | 0.3281 (3) | 0.0209 (2) | 0.0390 (5) | |
H3A | 0.3769 | 0.4102 | 0.0950 | 0.047* | |
H3B | 0.3708 | 0.3273 | −0.0516 | 0.047* | |
C1 | 0.2179 (3) | 0.4002 (3) | 0.5403 (2) | 0.0300 (5) | |
C2 | 0.2562 (4) | 0.5137 (3) | 0.6594 (2) | 0.0370 (6) | |
H2 | 0.2490 | 0.4888 | 0.7279 | 0.044* | |
C3 | 0.3048 (4) | 0.6632 (3) | 0.6779 (3) | 0.0411 (7) | |
H3 | 0.3303 | 0.7408 | 0.7593 | 0.049* | |
C4 | 0.3165 (4) | 0.7009 (3) | 0.5790 (3) | 0.0431 (7) | |
H4 | 0.3500 | 0.8038 | 0.5926 | 0.052* | |
C5 | 0.2792 (4) | 0.5879 (3) | 0.4600 (3) | 0.0378 (6) | |
H5 | 0.2889 | 0.6139 | 0.3923 | 0.045* | |
C6 | 0.2279 (3) | 0.4369 (3) | 0.4385 (2) | 0.0284 (5) | |
C7 | 0.1356 (4) | 0.2043 (3) | 0.6080 (2) | 0.0372 (6) | |
H7A | 0.0272 | 0.2458 | 0.6410 | 0.045* | |
H7B | 0.2480 | 0.2418 | 0.6766 | 0.045* | |
C8 | 0.0894 (4) | 0.0336 (3) | 0.5507 (2) | 0.0383 (6) | |
H8A | 0.0738 | −0.0015 | 0.6164 | 0.046* | |
H8B | 0.1978 | −0.0051 | 0.5157 | 0.046* | |
C9 | 0.1840 (3) | 0.3150 (3) | 0.3144 (2) | 0.0297 (5) | |
H9 | 0.1248 | 0.2170 | 0.3027 | 0.036* | |
C10 | 0.2385 (4) | 0.2042 (3) | 0.0115 (2) | 0.0301 (5) | |
S2 | 0.29091 (12) | 0.73336 (10) | 0.18388 (10) | 0.0576 (3) | |
O2 | 0.4525 (3) | 0.6510 (2) | 0.16444 (18) | 0.0268 (5) | 0.831 (3) |
C11 | 0.3689 (11) | 0.9102 (8) | 0.2855 (8) | 0.114 (2) | 0.831 (3) |
H11A | 0.2621 | 0.9631 | 0.2976 | 0.172* | 0.831 (3) |
H11B | 0.4297 | 0.9117 | 0.3644 | 0.172* | 0.831 (3) |
H11C | 0.4612 | 0.9606 | 0.2549 | 0.172* | 0.831 (3) |
C12 | 0.2625 (10) | 0.7934 (10) | 0.0557 (7) | 0.101 (2) | 0.831 (3) |
H12A | 0.1582 | 0.8491 | 0.0607 | 0.151* | 0.831 (3) |
H12B | 0.3802 | 0.8588 | 0.0617 | 0.151* | 0.831 (3) |
H12C | 0.2338 | 0.7041 | −0.0233 | 0.151* | 0.831 (3) |
O2A | 0.0956 (8) | 0.6372 (9) | 0.1245 (8) | 0.0268 (5) | 0.169 (3) |
C11A | 0.207 (5) | 0.760 (4) | 0.310 (2) | 0.114 (2) | 0.169 (3) |
H11D | 0.3039 | 0.8269 | 0.3829 | 0.172* | 0.169 (3) |
H11E | 0.0943 | 0.8055 | 0.3075 | 0.172* | 0.169 (3) |
H11F | 0.1722 | 0.6622 | 0.3142 | 0.172* | 0.169 (3) |
C12A | 0.334 (5) | 0.907 (3) | 0.158 (4) | 0.101 (2) | 0.169 (3) |
H12D | 0.4631 | 0.9624 | 0.1997 | 0.151* | 0.169 (3) |
H12E | 0.3171 | 0.8803 | 0.0693 | 0.151* | 0.169 (3) |
H12F | 0.2430 | 0.9705 | 0.1919 | 0.151* | 0.169 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0455 (4) | 0.0330 (4) | 0.0280 (4) | −0.0013 (3) | 0.0110 (3) | 0.0099 (3) |
O1 | 0.0514 (11) | 0.0308 (9) | 0.0257 (8) | 0.0010 (8) | 0.0113 (8) | 0.0135 (7) |
N1 | 0.0320 (11) | 0.0314 (10) | 0.0261 (10) | 0.0012 (8) | 0.0052 (8) | 0.0117 (8) |
N2 | 0.0401 (12) | 0.0296 (10) | 0.0274 (10) | −0.0034 (9) | 0.0081 (9) | 0.0118 (9) |
N3 | 0.0461 (13) | 0.0339 (11) | 0.0339 (11) | −0.0024 (10) | 0.0159 (10) | 0.0111 (9) |
C1 | 0.0280 (12) | 0.0319 (12) | 0.0297 (12) | 0.0047 (10) | 0.0065 (9) | 0.0126 (10) |
C2 | 0.0378 (14) | 0.0398 (14) | 0.0296 (13) | 0.0060 (11) | 0.0068 (10) | 0.0110 (11) |
C3 | 0.0386 (14) | 0.0357 (14) | 0.0353 (14) | 0.0084 (11) | 0.0011 (11) | 0.0025 (11) |
C4 | 0.0475 (16) | 0.0275 (13) | 0.0458 (16) | 0.0069 (12) | −0.0012 (13) | 0.0101 (12) |
C5 | 0.0405 (15) | 0.0322 (13) | 0.0400 (14) | 0.0051 (11) | 0.0002 (11) | 0.0176 (11) |
C6 | 0.0266 (12) | 0.0299 (12) | 0.0288 (12) | 0.0056 (9) | 0.0046 (9) | 0.0127 (10) |
C7 | 0.0448 (15) | 0.0438 (15) | 0.0241 (12) | 0.0005 (12) | 0.0049 (10) | 0.0184 (11) |
C8 | 0.0464 (16) | 0.0416 (14) | 0.0301 (13) | 0.0015 (12) | 0.0018 (12) | 0.0223 (12) |
C9 | 0.0306 (12) | 0.0293 (12) | 0.0292 (12) | 0.0025 (10) | 0.0052 (9) | 0.0134 (10) |
C10 | 0.0306 (12) | 0.0329 (12) | 0.0293 (12) | 0.0040 (10) | 0.0071 (9) | 0.0159 (10) |
S2 | 0.0506 (5) | 0.0574 (5) | 0.0882 (7) | 0.0202 (4) | 0.0388 (4) | 0.0433 (5) |
O2 | 0.0279 (10) | 0.0273 (10) | 0.0312 (10) | 0.0059 (8) | 0.0099 (8) | 0.0171 (8) |
C11 | 0.109 (5) | 0.077 (4) | 0.140 (6) | 0.023 (3) | 0.055 (4) | 0.014 (4) |
C12 | 0.085 (4) | 0.144 (5) | 0.127 (5) | 0.054 (4) | 0.036 (4) | 0.098 (4) |
O2A | 0.0279 (10) | 0.0273 (10) | 0.0312 (10) | 0.0059 (8) | 0.0099 (8) | 0.0171 (8) |
C11A | 0.109 (5) | 0.077 (4) | 0.140 (6) | 0.023 (3) | 0.055 (4) | 0.014 (4) |
C12A | 0.085 (4) | 0.144 (5) | 0.127 (5) | 0.054 (4) | 0.036 (4) | 0.098 (4) |
S1—C10 | 1.700 (3) | C7—H7B | 0.9900 |
O1—C1 | 1.360 (3) | C8—C8i | 1.523 (5) |
O1—C7 | 1.438 (3) | C8—H8A | 0.9900 |
N1—C9 | 1.274 (3) | C8—H8B | 0.9900 |
N1—N2 | 1.385 (3) | C9—H9 | 0.9500 |
N2—C10 | 1.343 (3) | S2—O2 | 1.496 (2) |
N2—H2A | 0.9101 | S2—O2A | 1.508 (4) |
N3—C10 | 1.319 (3) | S2—C11 | 1.651 (7) |
N3—H3A | 0.9100 | S2—C11A | 1.651 (8) |
N3—H3B | 0.9101 | S2—C12A | 1.841 (7) |
C1—C2 | 1.389 (4) | S2—C12 | 1.844 (6) |
C1—C6 | 1.411 (3) | C11—H11A | 0.9800 |
C2—C3 | 1.385 (4) | C11—H11B | 0.9800 |
C2—H2 | 0.9500 | C11—H11C | 0.9800 |
C3—C4 | 1.384 (4) | C12—H12A | 0.9800 |
C3—H3 | 0.9500 | C12—H12B | 0.9800 |
C4—C5 | 1.387 (4) | C12—H12C | 0.9800 |
C4—H4 | 0.9500 | C11A—H11D | 0.9800 |
C5—C6 | 1.390 (4) | C11A—H11E | 0.9800 |
C5—H5 | 0.9500 | C11A—H11F | 0.9800 |
C6—C9 | 1.460 (3) | C12A—H12D | 0.9800 |
C7—C8 | 1.510 (4) | C12A—H12E | 0.9800 |
C7—H7A | 0.9900 | C12A—H12F | 0.9800 |
C1—O1—C7 | 118.3 (2) | H8A—C8—H8B | 107.7 |
C9—N1—N2 | 114.0 (2) | N1—C9—C6 | 122.0 (2) |
C10—N2—N1 | 120.4 (2) | N1—C9—H9 | 119.0 |
C10—N2—H2A | 117.1 | C6—C9—H9 | 119.0 |
N1—N2—H2A | 122.4 | N3—C10—N2 | 118.0 (2) |
C10—N3—H3A | 119.0 | N3—C10—S1 | 122.66 (19) |
C10—N3—H3B | 115.2 | N2—C10—S1 | 119.34 (18) |
H3A—N3—H3B | 125.2 | O2—S2—C11 | 110.1 (3) |
O1—C1—C2 | 124.6 (2) | O2A—S2—C11A | 81.0 (14) |
O1—C1—C6 | 115.2 (2) | O2A—S2—C12A | 114.8 (11) |
C2—C1—C6 | 120.2 (2) | C11A—S2—C12A | 112.6 (17) |
C3—C2—C1 | 119.7 (3) | O2—S2—C12 | 103.4 (2) |
C3—C2—H2 | 120.2 | C11—S2—C12 | 91.0 (4) |
C1—C2—H2 | 120.2 | S2—C11—H11A | 109.5 |
C4—C3—C2 | 120.7 (3) | S2—C11—H11B | 109.5 |
C4—C3—H3 | 119.6 | H11A—C11—H11B | 109.5 |
C2—C3—H3 | 119.6 | S2—C11—H11C | 109.5 |
C3—C4—C5 | 119.8 (3) | H11A—C11—H11C | 109.5 |
C3—C4—H4 | 120.1 | H11B—C11—H11C | 109.5 |
C5—C4—H4 | 120.1 | S2—C12—H12A | 109.5 |
C4—C5—C6 | 120.7 (3) | S2—C12—H12B | 109.5 |
C4—C5—H5 | 119.6 | H12A—C12—H12B | 109.5 |
C6—C5—H5 | 119.6 | S2—C12—H12C | 109.5 |
C5—C6—C1 | 118.9 (2) | H12A—C12—H12C | 109.5 |
C5—C6—C9 | 122.4 (2) | H12B—C12—H12C | 109.5 |
C1—C6—C9 | 118.8 (2) | S2—C11A—H11D | 109.5 |
O1—C7—C8 | 106.9 (2) | S2—C11A—H11E | 109.5 |
O1—C7—H7A | 110.3 | H11D—C11A—H11E | 109.5 |
C8—C7—H7A | 110.3 | S2—C11A—H11F | 109.5 |
O1—C7—H7B | 110.3 | H11D—C11A—H11F | 109.5 |
C8—C7—H7B | 110.3 | H11E—C11A—H11F | 109.5 |
H7A—C7—H7B | 108.6 | S2—C12A—H12D | 109.5 |
C7—C8—C8i | 113.8 (3) | S2—C12A—H12E | 109.5 |
C7—C8—H8A | 108.8 | H12D—C12A—H12E | 109.5 |
C8i—C8—H8A | 108.8 | S2—C12A—H12F | 109.5 |
C7—C8—H8B | 108.8 | H12D—C12A—H12F | 109.5 |
C8i—C8—H8B | 108.8 | H12E—C12A—H12F | 109.5 |
C9—N1—N2—C10 | −166.5 (2) | C2—C1—C6—C5 | 1.0 (4) |
C7—O1—C1—C2 | 9.7 (4) | O1—C1—C6—C9 | 2.2 (3) |
C7—O1—C1—C6 | −171.7 (2) | C2—C1—C6—C9 | −179.1 (2) |
O1—C1—C2—C3 | 178.3 (2) | C1—O1—C7—C8 | 179.6 (2) |
C6—C1—C2—C3 | −0.2 (4) | O1—C7—C8—C8i | −63.5 (4) |
C1—C2—C3—C4 | −0.3 (4) | N2—N1—C9—C6 | 179.4 (2) |
C2—C3—C4—C5 | 0.0 (5) | C5—C6—C9—N1 | 13.0 (4) |
C3—C4—C5—C6 | 0.8 (4) | C1—C6—C9—N1 | −166.9 (2) |
C4—C5—C6—C1 | −1.3 (4) | N1—N2—C10—N3 | −1.9 (4) |
C4—C5—C6—C9 | 178.8 (2) | N1—N2—C10—S1 | 178.10 (18) |
O1—C1—C6—C5 | −177.7 (2) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···S1ii | 0.91 | 2.49 | 3.371 (2) | 163 |
N3—H3A···O2 | 0.91 | 2.14 | 2.887 (3) | 139 |
N3—H3B···O2iii | 0.91 | 2.04 | 2.885 (3) | 153 |
C7—H7B···O2iv | 0.99 | 2.49 | 3.471 (3) | 174 |
Symmetry codes: (ii) −x, −y, −z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Adelstein, W. (1973). J. Med. Chem. 16, 309–312. CrossRef CAS PubMed Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Christlieb, M. & Dilworth, J. R. (2006). Chem. Eur. J. 12, 6194–6206. CrossRef PubMed CAS Google Scholar
Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383. Web of Science CrossRef PubMed CAS Google Scholar
Holland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465–485. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pandeya, S. N. & Dimmock, J. R. (1993). Pharmazie, 48, 659–666. CAS PubMed Web of Science Google Scholar
Quiroga, A. G., Pérez, J. M., López-Solera, I., Masaguer, J. R., Luque, A., Román, P., Edwards, A., Alonso, C. & Navarro-Ranninger, C. (1998). J. Med. Chem. 41, 1399–1408. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.