organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-((E)-{2-[4-(2-{(1E)-[(carbamo­thioyl­amino)­imino]­meth­yl}phen­­oxy)but­­oxy]benzyl­­idene}amino)­thio­urea di­methyl sulfoxide disolvate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524-Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 9 June 2016; accepted 11 June 2016; online 17 June 2016)

The title compound, C20H24N6O2S2·2C2H6OS, has crystallographically imposed centrosymmetry. The packing is assisted by N—H⋯O, C—H⋯O and N—H⋯S inter­actions with the lattice solvent mol­ecules, forming a two-dimensional network parallel to (1-10). The lattice dimethyl sulfoxide mol­ecules (except for the S atoms) were modelled over two sites with refined occupancies of 0.831 (3):0.169 (3).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­semicarbazones and their metal complexes have been known and inter­est to chemists for over fifty years due to their wide spectrum of biological activity such as anti­tumor, anti­biotic and anti­viral properties (Adelstein, 1973[Adelstein, W. (1973). J. Med. Chem. 16, 309-312.]; Pandeya & Dimmock, 1993[Pandeya, S. N. & Dimmock, J. R. (1993). Pharmazie, 48, 659-666.]; Quiroga, et al., 1998[Quiroga, A. G., Pérez, J. M., López-Solera, I., Masaguer, J. R., Luque, A., Román, P., Edwards, A., Alonso, C. & Navarro-Ranninger, C. (1998). J. Med. Chem. 41, 1399-1408.]; Christlieb & Dilworth, 2006[Christlieb, M. & Dilworth, J. R. (2006). Chem. Eur. J. 12, 6194-6206.]). The synthesis of bis function­alized compounds are considered as significant precursors for building blocks of vital mol­ecules such as nanoscience and supra­molecular chemistry (Holland et al., 2007[Holland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465-485.]), and binucleating ligand designs (Gavrilova & Bosnich, 2004[Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-383.]). In this context we report in this study the synthesis and crystal structure of the title compound.

The title mol­ecule (Fig. 1[link]) has crystallographically imposed centrosymmetry. In the crystal, the packing is assisted by N—H⋯O, C—H⋯O and N—H⋯S inter­actions with the lattice DMSO mol­ecules (Table 1[link] and Fig. 2[link]), forming a two-dimensional network parallel to (1[\overlone1]0)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.91 2.49 3.371 (2) 163
N3—H3A⋯O2 0.91 2.14 2.887 (3) 139
N3—H3B⋯O2ii 0.91 2.04 2.885 (3) 153
C7—H7B⋯O2iii 0.99 2.49 3.471 (3) 174
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule, showing the atom-labeling scheme and 50% probability displacement ellipsoids [symmetry code: (i) −x, −y, 1 − z].
[Figure 2]
Figure 2
Packing viewed down the a axis. Inter­molecular N—H⋯O, C—H⋯O and N—H⋯S hydrogen bonds are shown, respectively, as blue, black and purple dotted lines.

Synthesis and crystallization

Salicyldehyde 122 mg (1 mmol) in hot ethano­lic potassium hydroxide solution (prepared by dissolving 56 mg (1 mmol) of KOH in 10 ml of absolute ethanol) was stirred until a clear solution was obtained. The solution was evaporated under vacuum and the residue was dissolved in 5 ml DMF and then 119.4 µl (0.5 mmol) of 1,4-di­bromo­butane was added. The reaction mixture was refluxed for 5 minutes. The resulted potassium bromide was separated by filtration and the filtrate was then evaporated under vacuum. The remaining solid was washed with water and crystallized from ethanol to give high quality crystals (m.p. 513 K) suitable for X-ray analysis in a good yield (90%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The lattice DMSO mol­ecules (except S atoms) were modelled over two sites with refined occupancies of 0.831 (3):0.169 (3).

Table 2
Experimental details

Crystal data
Chemical formula C20H24N6O2S2·2C2H6OS
Mr 600.83
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.2571 (2), 9.7909 (2), 12.0060 (2)
α, β, γ (°) 112.984 (1), 98.163 (1), 96.909 (1)
V3) 762.80 (3)
Z 1
Radiation type Cu Kα
μ (mm−1) 3.19
Crystal size (mm) 0.24 × 0.15 × 0.09
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.65, 0.76
No. of measured, independent and observed [I > 2σ(I)] reflections 8374, 2932, 2679
Rint 0.023
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.162, 1.08
No. of reflections 2932
No. of parameters 183
No. of restraints 27
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.68
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-((E)-{2-[4-(2-{(1E)-[(Carbamothioylamino)imino]methyl}phenoxy)butoxy]benzylidene}amino)thiourea dimethyl sulfoxide disolvate top
Crystal data top
C20H24N6O2S2·2C2H6OSZ = 1
Mr = 600.83F(000) = 318
Triclinic, P1Dx = 1.308 Mg m3
a = 7.2571 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.7909 (2) ÅCell parameters from 6799 reflections
c = 12.0060 (2) Åθ = 4.1–72.1°
α = 112.984 (1)°µ = 3.19 mm1
β = 98.163 (1)°T = 150 K
γ = 96.909 (1)°Thick plate, colourless
V = 762.80 (3) Å30.24 × 0.15 × 0.09 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2932 independent reflections
Radiation source: INCOATEC IµS micro–focus source2679 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4167 pixels mm-1θmax = 72.1°, θmin = 5.0°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1211
Tmin = 0.65, Tmax = 0.76l = 1414
8374 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0905P)2 + 0.766P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
2932 reflectionsΔρmax = 0.88 e Å3
183 parametersΔρmin = 0.68 e Å3
27 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.18022 (10)0.04286 (7)0.12107 (6)0.0368 (2)
O10.1735 (3)0.2497 (2)0.51184 (15)0.0357 (4)
N10.2228 (3)0.3358 (2)0.22135 (18)0.0304 (5)
N20.1727 (3)0.2071 (2)0.11133 (19)0.0332 (5)
H2A0.08750.12480.10110.040*
N30.3466 (3)0.3281 (3)0.0209 (2)0.0390 (5)
H3A0.37690.41020.09500.047*
H3B0.37080.32730.05160.047*
C10.2179 (3)0.4002 (3)0.5403 (2)0.0300 (5)
C20.2562 (4)0.5137 (3)0.6594 (2)0.0370 (6)
H20.24900.48880.72790.044*
C30.3048 (4)0.6632 (3)0.6779 (3)0.0411 (7)
H30.33030.74080.75930.049*
C40.3165 (4)0.7009 (3)0.5790 (3)0.0431 (7)
H40.35000.80380.59260.052*
C50.2792 (4)0.5879 (3)0.4600 (3)0.0378 (6)
H50.28890.61390.39230.045*
C60.2279 (3)0.4369 (3)0.4385 (2)0.0284 (5)
C70.1356 (4)0.2043 (3)0.6080 (2)0.0372 (6)
H7A0.02720.24580.64100.045*
H7B0.24800.24180.67660.045*
C80.0894 (4)0.0336 (3)0.5507 (2)0.0383 (6)
H8A0.07380.00150.61640.046*
H8B0.19780.00510.51570.046*
C90.1840 (3)0.3150 (3)0.3144 (2)0.0297 (5)
H90.12480.21700.30270.036*
C100.2385 (4)0.2042 (3)0.0115 (2)0.0301 (5)
S20.29091 (12)0.73336 (10)0.18388 (10)0.0576 (3)
O20.4525 (3)0.6510 (2)0.16444 (18)0.0268 (5)0.831 (3)
C110.3689 (11)0.9102 (8)0.2855 (8)0.114 (2)0.831 (3)
H11A0.26210.96310.29760.172*0.831 (3)
H11B0.42970.91170.36440.172*0.831 (3)
H11C0.46120.96060.25490.172*0.831 (3)
C120.2625 (10)0.7934 (10)0.0557 (7)0.101 (2)0.831 (3)
H12A0.15820.84910.06070.151*0.831 (3)
H12B0.38020.85880.06170.151*0.831 (3)
H12C0.23380.70410.02330.151*0.831 (3)
O2A0.0956 (8)0.6372 (9)0.1245 (8)0.0268 (5)0.169 (3)
C11A0.207 (5)0.760 (4)0.310 (2)0.114 (2)0.169 (3)
H11D0.30390.82690.38290.172*0.169 (3)
H11E0.09430.80550.30750.172*0.169 (3)
H11F0.17220.66220.31420.172*0.169 (3)
C12A0.334 (5)0.907 (3)0.158 (4)0.101 (2)0.169 (3)
H12D0.46310.96240.19970.151*0.169 (3)
H12E0.31710.88030.06930.151*0.169 (3)
H12F0.24300.97050.19190.151*0.169 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0455 (4)0.0330 (4)0.0280 (4)0.0013 (3)0.0110 (3)0.0099 (3)
O10.0514 (11)0.0308 (9)0.0257 (8)0.0010 (8)0.0113 (8)0.0135 (7)
N10.0320 (11)0.0314 (10)0.0261 (10)0.0012 (8)0.0052 (8)0.0117 (8)
N20.0401 (12)0.0296 (10)0.0274 (10)0.0034 (9)0.0081 (9)0.0118 (9)
N30.0461 (13)0.0339 (11)0.0339 (11)0.0024 (10)0.0159 (10)0.0111 (9)
C10.0280 (12)0.0319 (12)0.0297 (12)0.0047 (10)0.0065 (9)0.0126 (10)
C20.0378 (14)0.0398 (14)0.0296 (13)0.0060 (11)0.0068 (10)0.0110 (11)
C30.0386 (14)0.0357 (14)0.0353 (14)0.0084 (11)0.0011 (11)0.0025 (11)
C40.0475 (16)0.0275 (13)0.0458 (16)0.0069 (12)0.0012 (13)0.0101 (12)
C50.0405 (15)0.0322 (13)0.0400 (14)0.0051 (11)0.0002 (11)0.0176 (11)
C60.0266 (12)0.0299 (12)0.0288 (12)0.0056 (9)0.0046 (9)0.0127 (10)
C70.0448 (15)0.0438 (15)0.0241 (12)0.0005 (12)0.0049 (10)0.0184 (11)
C80.0464 (16)0.0416 (14)0.0301 (13)0.0015 (12)0.0018 (12)0.0223 (12)
C90.0306 (12)0.0293 (12)0.0292 (12)0.0025 (10)0.0052 (9)0.0134 (10)
C100.0306 (12)0.0329 (12)0.0293 (12)0.0040 (10)0.0071 (9)0.0159 (10)
S20.0506 (5)0.0574 (5)0.0882 (7)0.0202 (4)0.0388 (4)0.0433 (5)
O20.0279 (10)0.0273 (10)0.0312 (10)0.0059 (8)0.0099 (8)0.0171 (8)
C110.109 (5)0.077 (4)0.140 (6)0.023 (3)0.055 (4)0.014 (4)
C120.085 (4)0.144 (5)0.127 (5)0.054 (4)0.036 (4)0.098 (4)
O2A0.0279 (10)0.0273 (10)0.0312 (10)0.0059 (8)0.0099 (8)0.0171 (8)
C11A0.109 (5)0.077 (4)0.140 (6)0.023 (3)0.055 (4)0.014 (4)
C12A0.085 (4)0.144 (5)0.127 (5)0.054 (4)0.036 (4)0.098 (4)
Geometric parameters (Å, º) top
S1—C101.700 (3)C7—H7B0.9900
O1—C11.360 (3)C8—C8i1.523 (5)
O1—C71.438 (3)C8—H8A0.9900
N1—C91.274 (3)C8—H8B0.9900
N1—N21.385 (3)C9—H90.9500
N2—C101.343 (3)S2—O21.496 (2)
N2—H2A0.9101S2—O2A1.508 (4)
N3—C101.319 (3)S2—C111.651 (7)
N3—H3A0.9100S2—C11A1.651 (8)
N3—H3B0.9101S2—C12A1.841 (7)
C1—C21.389 (4)S2—C121.844 (6)
C1—C61.411 (3)C11—H11A0.9800
C2—C31.385 (4)C11—H11B0.9800
C2—H20.9500C11—H11C0.9800
C3—C41.384 (4)C12—H12A0.9800
C3—H30.9500C12—H12B0.9800
C4—C51.387 (4)C12—H12C0.9800
C4—H40.9500C11A—H11D0.9800
C5—C61.390 (4)C11A—H11E0.9800
C5—H50.9500C11A—H11F0.9800
C6—C91.460 (3)C12A—H12D0.9800
C7—C81.510 (4)C12A—H12E0.9800
C7—H7A0.9900C12A—H12F0.9800
C1—O1—C7118.3 (2)H8A—C8—H8B107.7
C9—N1—N2114.0 (2)N1—C9—C6122.0 (2)
C10—N2—N1120.4 (2)N1—C9—H9119.0
C10—N2—H2A117.1C6—C9—H9119.0
N1—N2—H2A122.4N3—C10—N2118.0 (2)
C10—N3—H3A119.0N3—C10—S1122.66 (19)
C10—N3—H3B115.2N2—C10—S1119.34 (18)
H3A—N3—H3B125.2O2—S2—C11110.1 (3)
O1—C1—C2124.6 (2)O2A—S2—C11A81.0 (14)
O1—C1—C6115.2 (2)O2A—S2—C12A114.8 (11)
C2—C1—C6120.2 (2)C11A—S2—C12A112.6 (17)
C3—C2—C1119.7 (3)O2—S2—C12103.4 (2)
C3—C2—H2120.2C11—S2—C1291.0 (4)
C1—C2—H2120.2S2—C11—H11A109.5
C4—C3—C2120.7 (3)S2—C11—H11B109.5
C4—C3—H3119.6H11A—C11—H11B109.5
C2—C3—H3119.6S2—C11—H11C109.5
C3—C4—C5119.8 (3)H11A—C11—H11C109.5
C3—C4—H4120.1H11B—C11—H11C109.5
C5—C4—H4120.1S2—C12—H12A109.5
C4—C5—C6120.7 (3)S2—C12—H12B109.5
C4—C5—H5119.6H12A—C12—H12B109.5
C6—C5—H5119.6S2—C12—H12C109.5
C5—C6—C1118.9 (2)H12A—C12—H12C109.5
C5—C6—C9122.4 (2)H12B—C12—H12C109.5
C1—C6—C9118.8 (2)S2—C11A—H11D109.5
O1—C7—C8106.9 (2)S2—C11A—H11E109.5
O1—C7—H7A110.3H11D—C11A—H11E109.5
C8—C7—H7A110.3S2—C11A—H11F109.5
O1—C7—H7B110.3H11D—C11A—H11F109.5
C8—C7—H7B110.3H11E—C11A—H11F109.5
H7A—C7—H7B108.6S2—C12A—H12D109.5
C7—C8—C8i113.8 (3)S2—C12A—H12E109.5
C7—C8—H8A108.8H12D—C12A—H12E109.5
C8i—C8—H8A108.8S2—C12A—H12F109.5
C7—C8—H8B108.8H12D—C12A—H12F109.5
C8i—C8—H8B108.8H12E—C12A—H12F109.5
C9—N1—N2—C10166.5 (2)C2—C1—C6—C51.0 (4)
C7—O1—C1—C29.7 (4)O1—C1—C6—C92.2 (3)
C7—O1—C1—C6171.7 (2)C2—C1—C6—C9179.1 (2)
O1—C1—C2—C3178.3 (2)C1—O1—C7—C8179.6 (2)
C6—C1—C2—C30.2 (4)O1—C7—C8—C8i63.5 (4)
C1—C2—C3—C40.3 (4)N2—N1—C9—C6179.4 (2)
C2—C3—C4—C50.0 (5)C5—C6—C9—N113.0 (4)
C3—C4—C5—C60.8 (4)C1—C6—C9—N1166.9 (2)
C4—C5—C6—C11.3 (4)N1—N2—C10—N31.9 (4)
C4—C5—C6—C9178.8 (2)N1—N2—C10—S1178.10 (18)
O1—C1—C6—C5177.7 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1ii0.912.493.371 (2)163
N3—H3A···O20.912.142.887 (3)139
N3—H3B···O2iii0.912.042.885 (3)153
C7—H7B···O2iv0.992.493.471 (3)174
Symmetry codes: (ii) x, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAdelstein, W. (1973). J. Med. Chem. 16, 309–312.  CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristlieb, M. & Dilworth, J. R. (2006). Chem. Eur. J. 12, 6194–6206.  CrossRef PubMed CAS Google Scholar
First citationGavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465–485.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPandeya, S. N. & Dimmock, J. R. (1993). Pharmazie, 48, 659–666.  CAS PubMed Web of Science Google Scholar
First citationQuiroga, A. G., Pérez, J. M., López-Solera, I., Masaguer, J. R., Luque, A., Román, P., Edwards, A., Alonso, C. & Navarro-Ranninger, C. (1998). J. Med. Chem. 41, 1399–1408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds