organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(2-Amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)acetohydrazide monohydrate

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cDépartement de chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: lahmidi_sanae@yahoo.fr

Edited by P. C. Healy, Griffith University, Australia (Received 25 May 2016; accepted 30 May 2016; online 17 June 2016)

In the crystal structure of the title mol­ecule, C8H11N7O·H2O, a network of O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds links the components, forming layers which include the lattice water mol­ecules. The layers are held together by ππ stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrimidine is one of the most important heterocycles that are widely used as a key building unit for the preparation of many pharmaceutical compounds. Fusion of pyrimidine with 1,2,4-triazole gives 1,2,4-triazolo[1,5-a]pyrimidine (Salas et al., 1999[Salas, J. M., Romero, M. A., Sánchez, M. P. & Quirós, M. (1999). Coord. Chem. Rev. 193-195, 1119-1142.]). These mol­ecules are thermodynamically stable and, thus, the most studied (Fischer et al., 2008[Fischer, G. (2008). Adv. Heterocycl. Chem. 95, 144-220.]). Recently, due to their diverse pharmacological activities, such as anti­tumor potency (Zhang et al., 2007[Zhang, N., Ayral-Kaloustian, S., Nguyen, T., Afragola, J., Hernandez, R., Lucas, J., Gibbons, J. & Beyer, C. (2007). J. Med. Chem. 50, 319-327.]) and anti­microbial activity (Luo et al., 2013[Luo, Y., Zhang, S., Liu, Z. J., Chen, W., Fu, J., Zeng, Q. F. & Zhu, H. L. (2013). Eur. J. Med. Chem. 64, 54-61.]), it is understandable that research on the synthesis of these compounds has intensified.

As part of our ongoing research program on heterocyclic compounds which may serve as leads for designing novel chemotherapeutic agents, we were particularly inter­ested to examined the action of hydrazine hydrate on ethyl 2-(2-amino-5-methyl-1,2,4-triazolo[1,5-a] pyrimidin-7-yl) acetate leading to the corresponding 2-(2-amino-5-meth­yl[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)acetohydrazide (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The O—H⋯O hydrogen bond is shown as a dotted line.

In the crystal, a network of O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds (Table 1[link]) links the components into layers which include the lattice water mol­ecules (Fig. 2[link]). The layers are held together by ππ stacking inter­actions as shown in Fig. 3[link]. The dihedral angle between the mean planes of the two mol­ecules is 1.48 (8)° and the slippage is 0.89 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O1 0.87 2.00 2.8478 (15) 166
O2—H2A⋯N4i 0.87 2.06 2.9004 (16) 162
N5—H5B⋯N7ii 0.91 2.17 3.0636 (17) 167
N5—H5A⋯N3iii 0.91 2.06 2.9713 (17) 177
N6—H6D⋯O2iv 0.91 2.02 2.9193 (16) 169
N7—H7D⋯O1v 0.91 2.15 2.8715 (16) 135
C7—H7A⋯O2vi 0.99 2.43 3.4215 (18) 175
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+2, -z+1; (iii) -x+2, -y+1, -z; (iv) x+1, y, z; (v) -x+1, -y+2, -z+2; (vi) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
Packing projected onto (382) showing a portion of the layer structure. O—H⋯O and O—H⋯N hydrogen bonds are shown as red dotted lines while N—H⋯O and N—H⋯N hydrogen bonds are shown as blue dotted lines.
[Figure 3]
Figure 3
A detail of the ππ stacking inter­actions between mol­ecules at x, y, z and 2 − x, 1 − y, 1 − z.

Synthesis and crystallization

Ethyl 2-(2-amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl) acetate 1 g (0.004 mol) was refluxed with hydrazine hydrate 0.44 ml (0.008 mol) in absolute ethanol for 4–5 h. On cooling the mixture, white crystals of 2-(2-amino-5-meth­yl[1,2,4]tria­zolo[1,5-a]pyrimidin-7-yl)acetohydrazide monohydrate separated out in 80% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H11N7O·H2O
Mr 239.25
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.2648 (3), 8.7228 (4), 8.9297 (4)
α, β, γ (°) 82.834 (2), 71.465 (2), 85.478 (1)
V3) 531.87 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.96
Crystal size (mm) 0.21 × 0.16 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.83, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 8613, 2135, 1966
Rint 0.027
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.06
No. of reflections 2135
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.22
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-(2-Amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)acetohydrazide monohydrate top
Crystal data top
C8H11N7O·H2OZ = 2
Mr = 239.25F(000) = 252
Triclinic, P1Dx = 1.494 Mg m3
a = 7.2648 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.7228 (4) ÅCell parameters from 7288 reflections
c = 8.9297 (4) Åθ = 5.1–74.4°
α = 82.834 (2)°µ = 0.96 mm1
β = 71.465 (2)°T = 150 K
γ = 85.478 (1)°Plate, colourless
V = 531.87 (4) Å30.21 × 0.16 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2135 independent reflections
Radiation source: INCOATEC IµS micro–focus source1966 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4167 pixels mm-1θmax = 74.4°, θmin = 5.1°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.83, Tmax = 0.92l = 1111
8613 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2766P]
where P = (Fo2 + 2Fc2)/3
2135 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen and to oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 and O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56050 (15)0.88518 (13)0.82814 (13)0.0295 (3)
N10.85056 (17)0.64386 (13)0.42124 (13)0.0188 (3)
N20.96315 (17)0.73473 (13)0.29304 (13)0.0212 (3)
N30.91216 (18)0.50117 (13)0.22122 (14)0.0221 (3)
N40.71916 (17)0.39440 (13)0.48112 (14)0.0211 (3)
N51.1119 (2)0.68303 (15)0.02980 (15)0.0302 (3)
H5B1.15180.78190.01070.036*
H5A1.10980.62740.04930.036*
N60.86297 (17)0.91552 (14)0.83455 (14)0.0231 (3)
H6D0.99310.91920.78430.028*
N70.79660 (18)0.97790 (14)0.98230 (14)0.0237 (3)
H7D0.66480.98741.00860.028*
H7C0.82830.90611.05420.028*
C10.9968 (2)0.64125 (16)0.17728 (16)0.0218 (3)
C20.8213 (2)0.50413 (15)0.37634 (16)0.0195 (3)
C30.6465 (2)0.42573 (16)0.63186 (17)0.0216 (3)
C40.6719 (2)0.56896 (16)0.68086 (17)0.0221 (3)
H40.61550.58780.78880.027*
C50.77773 (19)0.68022 (15)0.57282 (16)0.0192 (3)
C60.5390 (2)0.30117 (17)0.75096 (18)0.0276 (3)
H6A0.48410.23340.69790.041*
H6B0.43390.34800.83340.041*
H6C0.62860.24050.79960.041*
C70.8302 (2)0.83592 (16)0.59765 (16)0.0222 (3)
H7A0.78960.91520.52360.027*
H7B0.97320.83760.57030.027*
C80.7395 (2)0.87902 (15)0.76432 (17)0.0215 (3)
O20.27856 (16)0.88291 (12)0.66816 (13)0.0296 (3)
H2B0.37870.88560.70120.044*
H2A0.30670.79990.61910.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0224 (5)0.0370 (6)0.0313 (6)0.0006 (4)0.0067 (4)0.0172 (5)
N10.0234 (6)0.0169 (5)0.0185 (6)0.0004 (4)0.0083 (4)0.0057 (4)
N20.0278 (6)0.0185 (6)0.0179 (6)0.0035 (4)0.0066 (5)0.0035 (4)
N30.0296 (6)0.0192 (6)0.0198 (6)0.0024 (5)0.0089 (5)0.0059 (4)
N40.0246 (6)0.0190 (6)0.0223 (6)0.0010 (4)0.0103 (5)0.0040 (4)
N50.0475 (8)0.0251 (6)0.0188 (6)0.0116 (6)0.0078 (6)0.0056 (5)
N60.0222 (6)0.0259 (6)0.0225 (6)0.0022 (5)0.0053 (5)0.0108 (5)
N70.0250 (6)0.0260 (6)0.0214 (6)0.0017 (5)0.0062 (5)0.0097 (5)
C10.0274 (7)0.0201 (6)0.0204 (7)0.0010 (5)0.0098 (6)0.0054 (5)
C20.0237 (7)0.0165 (6)0.0223 (7)0.0008 (5)0.0114 (5)0.0066 (5)
C30.0214 (7)0.0213 (7)0.0242 (7)0.0003 (5)0.0098 (6)0.0027 (5)
C40.0240 (7)0.0220 (7)0.0214 (7)0.0001 (5)0.0073 (6)0.0059 (5)
C50.0208 (6)0.0192 (6)0.0198 (6)0.0017 (5)0.0081 (5)0.0075 (5)
C60.0304 (8)0.0240 (7)0.0279 (8)0.0058 (6)0.0084 (6)0.0004 (6)
C70.0259 (7)0.0200 (7)0.0213 (7)0.0030 (5)0.0060 (6)0.0076 (5)
C80.0237 (7)0.0170 (6)0.0249 (7)0.0011 (5)0.0072 (6)0.0070 (5)
O20.0307 (6)0.0266 (5)0.0366 (6)0.0024 (4)0.0147 (5)0.0132 (4)
Geometric parameters (Å, º) top
O1—C81.2425 (18)N7—H7D0.9099
N1—C51.3558 (17)N7—H7C0.9100
N1—N21.3742 (16)C3—C41.4180 (19)
N1—C21.3814 (16)C3—C61.496 (2)
N2—C11.3458 (17)C4—C51.370 (2)
N3—C21.3342 (18)C4—H40.9500
N3—C11.3677 (18)C5—C71.4997 (18)
N4—C31.3351 (18)C6—H6A0.9800
N4—C21.3377 (18)C6—H6B0.9800
N5—C11.3396 (19)C6—H6C0.9800
N5—H5B0.9099C7—C81.5058 (18)
N5—H5A0.9098C7—H7A0.9900
N6—C81.3237 (18)C7—H7B0.9900
N6—N71.4151 (15)O2—H2B0.8701
N6—H6D0.9100O2—H2A0.8702
C5—N1—N2126.59 (11)C4—C3—C6120.25 (13)
C5—N1—C2122.89 (12)C5—C4—C3120.14 (13)
N2—N1—C2110.52 (11)C5—C4—H4119.9
C1—N2—N1101.11 (11)C3—C4—H4119.9
C2—N3—C1103.21 (11)N1—C5—C4115.77 (12)
C3—N4—C2116.98 (12)N1—C5—C7114.62 (12)
C1—N5—H5B115.8C4—C5—C7129.60 (12)
C1—N5—H5A118.1C3—C6—H6A109.5
H5B—N5—H5A122.4C3—C6—H6B109.5
C8—N6—N7121.17 (12)H6A—C6—H6B109.5
C8—N6—H6D122.6C3—C6—H6C109.5
N7—N6—H6D115.3H6A—C6—H6C109.5
N6—N7—H7D106.4H6B—C6—H6C109.5
N6—N7—H7C106.6C5—C7—C8114.22 (12)
H7D—N7—H7C108.5C5—C7—H7A108.7
N5—C1—N2121.12 (13)C8—C7—H7A108.7
N5—C1—N3122.86 (12)C5—C7—H7B108.7
N2—C1—N3115.99 (13)C8—C7—H7B108.7
N3—C2—N4129.03 (12)H7A—C7—H7B107.6
N3—C2—N1109.16 (12)O1—C8—N6122.79 (13)
N4—C2—N1121.79 (12)O1—C8—C7121.80 (12)
N4—C3—C4122.42 (13)N6—C8—C7115.36 (12)
N4—C3—C6117.31 (12)H2B—O2—H2A101.3
C5—N1—N2—C1178.41 (13)C2—N4—C3—C6177.54 (12)
C2—N1—N2—C10.65 (14)N4—C3—C4—C51.4 (2)
N1—N2—C1—N5176.73 (13)C6—C3—C4—C5177.09 (13)
N1—N2—C1—N31.19 (15)N2—N1—C5—C4178.90 (12)
C2—N3—C1—N5176.63 (13)C2—N1—C5—C40.05 (19)
C2—N3—C1—N21.25 (16)N2—N1—C5—C70.43 (19)
C1—N3—C2—N4177.86 (14)C2—N1—C5—C7178.52 (12)
C1—N3—C2—N10.72 (14)C3—C4—C5—N10.81 (19)
C3—N4—C2—N3178.34 (13)C3—C4—C5—C7177.38 (13)
C3—N4—C2—N10.08 (19)N1—C5—C7—C8176.75 (11)
C5—N1—C2—N3179.15 (12)C4—C5—C7—C85.0 (2)
N2—N1—C2—N30.05 (15)N7—N6—C8—O15.9 (2)
C5—N1—C2—N40.4 (2)N7—N6—C8—C7171.46 (12)
N2—N1—C2—N4178.65 (12)C5—C7—C8—O158.21 (18)
C2—N4—C3—C40.98 (19)C5—C7—C8—N6124.40 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O10.872.002.8478 (15)166
O2—H2A···N4i0.872.062.9004 (16)162
N5—H5B···N7ii0.912.173.0636 (17)167
N5—H5A···N3iii0.912.062.9713 (17)177
N6—H6D···O2iv0.912.022.9193 (16)169
N7—H7D···O1v0.912.152.8715 (16)135
C7—H7A···O2vi0.992.433.4215 (18)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+1; (iii) x+2, y+1, z; (iv) x+1, y, z; (v) x+1, y+2, z+2; (vi) x+1, y+2, z+1.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFischer, G. (2008). Adv. Heterocycl. Chem. 95, 144–220.  Google Scholar
First citationLuo, Y., Zhang, S., Liu, Z. J., Chen, W., Fu, J., Zeng, Q. F. & Zhu, H. L. (2013). Eur. J. Med. Chem. 64, 54–61.  CrossRef CAS PubMed Google Scholar
First citationSalas, J. M., Romero, M. A., Sánchez, M. P. & Quirós, M. (1999). Coord. Chem. Rev. 193–195, 1119–1142.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, N., Ayral-Kaloustian, S., Nguyen, T., Afragola, J., Hernandez, R., Lucas, J., Gibbons, J. & Beyer, C. (2007). J. Med. Chem. 50, 319–327.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds