organic compounds
2-(2-Amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)acetohydrazide monohydrate
aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cDépartement de chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: lahmidi_sanae@yahoo.fr
In the 8H11N7O·H2O, a network of O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds links the components, forming layers which include the lattice water molecules. The layers are held together by π–π stacking interactions.
of the title molecule, CKeywords: crystal structure; pyrimidine; hydrogen bonds; layers.
CCDC reference: 1482515
Structure description
Pyrimidine is one of the most important heterocycles that are widely used as a key building unit for the preparation of many pharmaceutical compounds. Fusion of pyrimidine with 1,2,4-triazole gives 1,2,4-triazolo[1,5-a]pyrimidine (Salas et al., 1999). These molecules are thermodynamically stable and, thus, the most studied (Fischer et al., 2008). Recently, due to their diverse pharmacological activities, such as antitumor potency (Zhang et al., 2007) and antimicrobial activity (Luo et al., 2013), it is understandable that research on the synthesis of these compounds has intensified.
As part of our ongoing research program on a] pyrimidin-7-yl) acetate leading to the corresponding 2-(2-amino-5-methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)acetohydrazide (Fig. 1).
which may serve as leads for designing novel chemotherapeutic agents, we were particularly interested to examined the action of hydrazine hydrate on ethyl 2-(2-amino-5-methyl-1,2,4-triazolo[1,5-In the crystal, a network of O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds (Table 1) links the components into layers which include the lattice water molecules (Fig. 2). The layers are held together by π–π stacking interactions as shown in Fig. 3. The dihedral angle between the mean planes of the two molecules is 1.48 (8)° and the slippage is 0.89 Å.
Synthesis and crystallization
Ethyl 2-(2-amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl) acetate 1 g (0.004 mol) was refluxed with hydrazine hydrate 0.44 ml (0.008 mol) in absolute ethanol for 4–5 h. On cooling the mixture, white crystals of 2-(2-amino-5-methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)acetohydrazide monohydrate separated out in 80% yield.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1482515
10.1107/S2414314616008701/hg4007sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616008701/hg4007Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616008701/hg4007Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C8H11N7O·H2O | Z = 2 |
Mr = 239.25 | F(000) = 252 |
Triclinic, P1 | Dx = 1.494 Mg m−3 |
a = 7.2648 (3) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 8.7228 (4) Å | Cell parameters from 7288 reflections |
c = 8.9297 (4) Å | θ = 5.1–74.4° |
α = 82.834 (2)° | µ = 0.96 mm−1 |
β = 71.465 (2)° | T = 150 K |
γ = 85.478 (1)° | Plate, colourless |
V = 531.87 (4) Å3 | 0.21 × 0.16 × 0.08 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2135 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 1966 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.4°, θmin = 5.1° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −10→10 |
Tmin = 0.83, Tmax = 0.92 | l = −11→11 |
8613 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2766P] where P = (Fo2 + 2Fc2)/3 |
2135 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen and to oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 and O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.56050 (15) | 0.88518 (13) | 0.82814 (13) | 0.0295 (3) | |
N1 | 0.85056 (17) | 0.64386 (13) | 0.42124 (13) | 0.0188 (3) | |
N2 | 0.96315 (17) | 0.73473 (13) | 0.29304 (13) | 0.0212 (3) | |
N3 | 0.91216 (18) | 0.50117 (13) | 0.22122 (14) | 0.0221 (3) | |
N4 | 0.71916 (17) | 0.39440 (13) | 0.48112 (14) | 0.0211 (3) | |
N5 | 1.1119 (2) | 0.68303 (15) | 0.02980 (15) | 0.0302 (3) | |
H5B | 1.1518 | 0.7819 | 0.0107 | 0.036* | |
H5A | 1.1098 | 0.6274 | −0.0493 | 0.036* | |
N6 | 0.86297 (17) | 0.91552 (14) | 0.83455 (14) | 0.0231 (3) | |
H6D | 0.9931 | 0.9192 | 0.7843 | 0.028* | |
N7 | 0.79660 (18) | 0.97790 (14) | 0.98230 (14) | 0.0237 (3) | |
H7D | 0.6648 | 0.9874 | 1.0086 | 0.028* | |
H7C | 0.8283 | 0.9061 | 1.0542 | 0.028* | |
C1 | 0.9968 (2) | 0.64125 (16) | 0.17728 (16) | 0.0218 (3) | |
C2 | 0.8213 (2) | 0.50413 (15) | 0.37634 (16) | 0.0195 (3) | |
C3 | 0.6465 (2) | 0.42573 (16) | 0.63186 (17) | 0.0216 (3) | |
C4 | 0.6719 (2) | 0.56896 (16) | 0.68086 (17) | 0.0221 (3) | |
H4 | 0.6155 | 0.5878 | 0.7888 | 0.027* | |
C5 | 0.77773 (19) | 0.68022 (15) | 0.57282 (16) | 0.0192 (3) | |
C6 | 0.5390 (2) | 0.30117 (17) | 0.75096 (18) | 0.0276 (3) | |
H6A | 0.4841 | 0.2334 | 0.6979 | 0.041* | |
H6B | 0.4339 | 0.3480 | 0.8334 | 0.041* | |
H6C | 0.6286 | 0.2405 | 0.7996 | 0.041* | |
C7 | 0.8302 (2) | 0.83592 (16) | 0.59765 (16) | 0.0222 (3) | |
H7A | 0.7896 | 0.9152 | 0.5236 | 0.027* | |
H7B | 0.9732 | 0.8376 | 0.5703 | 0.027* | |
C8 | 0.7395 (2) | 0.87902 (15) | 0.76432 (17) | 0.0215 (3) | |
O2 | 0.27856 (16) | 0.88291 (12) | 0.66816 (13) | 0.0296 (3) | |
H2B | 0.3787 | 0.8856 | 0.7012 | 0.044* | |
H2A | 0.3067 | 0.7999 | 0.6191 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0224 (5) | 0.0370 (6) | 0.0313 (6) | −0.0006 (4) | −0.0067 (4) | −0.0172 (5) |
N1 | 0.0234 (6) | 0.0169 (5) | 0.0185 (6) | −0.0004 (4) | −0.0083 (4) | −0.0057 (4) |
N2 | 0.0278 (6) | 0.0185 (6) | 0.0179 (6) | −0.0035 (4) | −0.0066 (5) | −0.0035 (4) |
N3 | 0.0296 (6) | 0.0192 (6) | 0.0198 (6) | −0.0024 (5) | −0.0089 (5) | −0.0059 (4) |
N4 | 0.0246 (6) | 0.0190 (6) | 0.0223 (6) | −0.0010 (4) | −0.0103 (5) | −0.0040 (4) |
N5 | 0.0475 (8) | 0.0251 (6) | 0.0188 (6) | −0.0116 (6) | −0.0078 (6) | −0.0056 (5) |
N6 | 0.0222 (6) | 0.0259 (6) | 0.0225 (6) | −0.0022 (5) | −0.0053 (5) | −0.0108 (5) |
N7 | 0.0250 (6) | 0.0260 (6) | 0.0214 (6) | −0.0017 (5) | −0.0062 (5) | −0.0097 (5) |
C1 | 0.0274 (7) | 0.0201 (6) | 0.0204 (7) | −0.0010 (5) | −0.0098 (6) | −0.0054 (5) |
C2 | 0.0237 (7) | 0.0165 (6) | 0.0223 (7) | 0.0008 (5) | −0.0114 (5) | −0.0066 (5) |
C3 | 0.0214 (7) | 0.0213 (7) | 0.0242 (7) | −0.0003 (5) | −0.0098 (6) | −0.0027 (5) |
C4 | 0.0240 (7) | 0.0220 (7) | 0.0214 (7) | −0.0001 (5) | −0.0073 (6) | −0.0059 (5) |
C5 | 0.0208 (6) | 0.0192 (6) | 0.0198 (6) | 0.0017 (5) | −0.0081 (5) | −0.0075 (5) |
C6 | 0.0304 (8) | 0.0240 (7) | 0.0279 (8) | −0.0058 (6) | −0.0084 (6) | 0.0004 (6) |
C7 | 0.0259 (7) | 0.0200 (7) | 0.0213 (7) | −0.0030 (5) | −0.0060 (6) | −0.0076 (5) |
C8 | 0.0237 (7) | 0.0170 (6) | 0.0249 (7) | −0.0011 (5) | −0.0072 (6) | −0.0070 (5) |
O2 | 0.0307 (6) | 0.0266 (5) | 0.0366 (6) | 0.0024 (4) | −0.0147 (5) | −0.0132 (4) |
O1—C8 | 1.2425 (18) | N7—H7D | 0.9099 |
N1—C5 | 1.3558 (17) | N7—H7C | 0.9100 |
N1—N2 | 1.3742 (16) | C3—C4 | 1.4180 (19) |
N1—C2 | 1.3814 (16) | C3—C6 | 1.496 (2) |
N2—C1 | 1.3458 (17) | C4—C5 | 1.370 (2) |
N3—C2 | 1.3342 (18) | C4—H4 | 0.9500 |
N3—C1 | 1.3677 (18) | C5—C7 | 1.4997 (18) |
N4—C3 | 1.3351 (18) | C6—H6A | 0.9800 |
N4—C2 | 1.3377 (18) | C6—H6B | 0.9800 |
N5—C1 | 1.3396 (19) | C6—H6C | 0.9800 |
N5—H5B | 0.9099 | C7—C8 | 1.5058 (18) |
N5—H5A | 0.9098 | C7—H7A | 0.9900 |
N6—C8 | 1.3237 (18) | C7—H7B | 0.9900 |
N6—N7 | 1.4151 (15) | O2—H2B | 0.8701 |
N6—H6D | 0.9100 | O2—H2A | 0.8702 |
C5—N1—N2 | 126.59 (11) | C4—C3—C6 | 120.25 (13) |
C5—N1—C2 | 122.89 (12) | C5—C4—C3 | 120.14 (13) |
N2—N1—C2 | 110.52 (11) | C5—C4—H4 | 119.9 |
C1—N2—N1 | 101.11 (11) | C3—C4—H4 | 119.9 |
C2—N3—C1 | 103.21 (11) | N1—C5—C4 | 115.77 (12) |
C3—N4—C2 | 116.98 (12) | N1—C5—C7 | 114.62 (12) |
C1—N5—H5B | 115.8 | C4—C5—C7 | 129.60 (12) |
C1—N5—H5A | 118.1 | C3—C6—H6A | 109.5 |
H5B—N5—H5A | 122.4 | C3—C6—H6B | 109.5 |
C8—N6—N7 | 121.17 (12) | H6A—C6—H6B | 109.5 |
C8—N6—H6D | 122.6 | C3—C6—H6C | 109.5 |
N7—N6—H6D | 115.3 | H6A—C6—H6C | 109.5 |
N6—N7—H7D | 106.4 | H6B—C6—H6C | 109.5 |
N6—N7—H7C | 106.6 | C5—C7—C8 | 114.22 (12) |
H7D—N7—H7C | 108.5 | C5—C7—H7A | 108.7 |
N5—C1—N2 | 121.12 (13) | C8—C7—H7A | 108.7 |
N5—C1—N3 | 122.86 (12) | C5—C7—H7B | 108.7 |
N2—C1—N3 | 115.99 (13) | C8—C7—H7B | 108.7 |
N3—C2—N4 | 129.03 (12) | H7A—C7—H7B | 107.6 |
N3—C2—N1 | 109.16 (12) | O1—C8—N6 | 122.79 (13) |
N4—C2—N1 | 121.79 (12) | O1—C8—C7 | 121.80 (12) |
N4—C3—C4 | 122.42 (13) | N6—C8—C7 | 115.36 (12) |
N4—C3—C6 | 117.31 (12) | H2B—O2—H2A | 101.3 |
C5—N1—N2—C1 | 178.41 (13) | C2—N4—C3—C6 | −177.54 (12) |
C2—N1—N2—C1 | −0.65 (14) | N4—C3—C4—C5 | −1.4 (2) |
N1—N2—C1—N5 | −176.73 (13) | C6—C3—C4—C5 | 177.09 (13) |
N1—N2—C1—N3 | 1.19 (15) | N2—N1—C5—C4 | −178.90 (12) |
C2—N3—C1—N5 | 176.63 (13) | C2—N1—C5—C4 | 0.05 (19) |
C2—N3—C1—N2 | −1.25 (16) | N2—N1—C5—C7 | −0.43 (19) |
C1—N3—C2—N4 | −177.86 (14) | C2—N1—C5—C7 | 178.52 (12) |
C1—N3—C2—N1 | 0.72 (14) | C3—C4—C5—N1 | 0.81 (19) |
C3—N4—C2—N3 | 178.34 (13) | C3—C4—C5—C7 | −177.38 (13) |
C3—N4—C2—N1 | −0.08 (19) | N1—C5—C7—C8 | 176.75 (11) |
C5—N1—C2—N3 | −179.15 (12) | C4—C5—C7—C8 | −5.0 (2) |
N2—N1—C2—N3 | −0.05 (15) | N7—N6—C8—O1 | −5.9 (2) |
C5—N1—C2—N4 | −0.4 (2) | N7—N6—C8—C7 | 171.46 (12) |
N2—N1—C2—N4 | 178.65 (12) | C5—C7—C8—O1 | −58.21 (18) |
C2—N4—C3—C4 | 0.98 (19) | C5—C7—C8—N6 | 124.40 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O1 | 0.87 | 2.00 | 2.8478 (15) | 166 |
O2—H2A···N4i | 0.87 | 2.06 | 2.9004 (16) | 162 |
N5—H5B···N7ii | 0.91 | 2.17 | 3.0636 (17) | 167 |
N5—H5A···N3iii | 0.91 | 2.06 | 2.9713 (17) | 177 |
N6—H6D···O2iv | 0.91 | 2.02 | 2.9193 (16) | 169 |
N7—H7D···O1v | 0.91 | 2.15 | 2.8715 (16) | 135 |
C7—H7A···O2vi | 0.99 | 2.43 | 3.4215 (18) | 175 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+2, −z+1; (iii) −x+2, −y+1, −z; (iv) x+1, y, z; (v) −x+1, −y+2, −z+2; (vi) −x+1, −y+2, −z+1. |
Acknowledgements
The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fischer, G. (2008). Adv. Heterocycl. Chem. 95, 144–220. Google Scholar
Luo, Y., Zhang, S., Liu, Z. J., Chen, W., Fu, J., Zeng, Q. F. & Zhu, H. L. (2013). Eur. J. Med. Chem. 64, 54–61. CrossRef CAS PubMed Google Scholar
Salas, J. M., Romero, M. A., Sánchez, M. P. & Quirós, M. (1999). Coord. Chem. Rev. 193–195, 1119–1142. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, N., Ayral-Kaloustian, S., Nguyen, T., Afragola, J., Hernandez, R., Lucas, J., Gibbons, J. & Beyer, C. (2007). J. Med. Chem. 50, 319–327. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.