organic compounds
(4E)-1-Phenyl-4-[(piperidin-1-yl)methylidene]pyrazolidine-3,5-dione
aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, fNational Organization for Drug Control and Research (NODCAR), Giza, Egypt, and gKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C15H17N3O2, the dihedral angle between the planes of the pyrazolidine and phenyl rings is 29.91 (6)°. The piperidine ring adopts a chair conformation. In the crystal, molecules are linked into chains running parallel to the a-axis direction by a combination of N—H⋯O and C—H⋯O hydrogen bonds. Furthermore, there exist C—H⋯π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.5274 (10) Å] between the pyrazolidine rings of adjacent molecules.
CCDC reference: 1487642
Structure description
Pyrazolone derivatives have diverse pharmacological properties, such as cytotoxic, anti-inflammatory, antimicrobial, antioxidant, antifungal, antiviral and oral hypoglycaemic activity (Kumar et al., 2012). As part of our studies in this area, the synthesis and structure of the title compound are reported.
In the title compound, the piperidine ring (atoms N3/C5–C9) adopts a chair conformation, with the puckering parameters QT = 0.547 (2) Å, θ = 176.2 (2)° and φ = 344 (3)°. The dihedral angle between the planes of the phenyl and pyrazolidine rings is 29.91 (6)°. The molecular conformation is partially determined by an intramolecular C5—H5B⋯O1 hydrogen bond (Table 1 and Fig. 1).
In the crystal, molecules pack in columns running parallel to the a axis which are assembled by N2—H2⋯O1i and a combination of C9—H9A⋯O1ii and C11—H11⋯O2iii hydrogen bonds [symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) x − 1, y, z; (iii) x + 1, y, z] (Table 1 and Figs. 2 and 3). In addition, C—H⋯π interactions (Table 1) and π–π stacking interactions [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.5274 (10) Å; where Cg1 is the centroid of the pyrazolidine ring (N1/N2/C1–C3)] are observed in the crystal structure.
Synthesis and crystallization
A mixture of 1 mmol (231.3 mg) of 4-[(dimethylamino)methylidene]-1-phenylpyrazolidine-3,5-dione and 1 mmol (85 mg) of piperidine was refluxed in 30 ml dioxane for 2 h. The obtained solid product was collected under vacuum and recrystallized from ethanol to yield colourless rods of the title compound (yield 95%; m.p. 518–520 K).
Refinement
Trial refinements with both the single-component reflection file extracted from the full data set with TWINABS (Sheldrick, 2009) and with the complete two-component reflection file indicated the former to provide superior results. Crystal data, data collection and structure details are summarized in Table 2.
|
Structural data
CCDC reference: 1487642
10.1107/S2414314616010282/hb4060sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616010282/hb4060Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616010282/hb4060Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).C15H17N3O2 | F(000) = 576 |
Mr = 271.32 | Dx = 1.408 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 6.3184 (2) Å | Cell parameters from 6240 reflections |
b = 15.4673 (6) Å | θ = 4.4–72.2° |
c = 13.2528 (5) Å | µ = 0.78 mm−1 |
β = 98.762 (2)° | T = 150 K |
V = 1280.06 (8) Å3 | Rod, colourless |
Z = 4 | 0.12 × 0.07 × 0.04 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2493 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 1946 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.053 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.5°, θmin = 4.4° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) | k = −18→18 |
Tmin = 0.81, Tmax = 0.97 | l = −16→16 |
16143 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.055P)2 + 0.3794P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2493 reflections | Δρmax = 0.21 e Å−3 |
186 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0047 (6) |
Experimental. Analysis of 961 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the a axis. The raw data were processed using the multi-component version ofSAINT under control of the two-component orientation file generated by CELL_NOW. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.84360 (19) | 0.52001 (8) | 0.37140 (9) | 0.0280 (3) | |
O2 | 0.31975 (19) | 0.66186 (8) | 0.53428 (9) | 0.0305 (3) | |
N1 | 0.6720 (2) | 0.61623 (9) | 0.57952 (10) | 0.0246 (3) | |
N2 | 0.8306 (2) | 0.58417 (9) | 0.52548 (10) | 0.0239 (3) | |
H2 | 0.943 (4) | 0.5538 (15) | 0.5650 (16) | 0.041 (6)* | |
N3 | 0.3412 (2) | 0.56277 (10) | 0.24051 (10) | 0.0273 (3) | |
C1 | 0.7405 (3) | 0.56111 (10) | 0.42895 (12) | 0.0230 (4) | |
C2 | 0.5203 (3) | 0.59034 (11) | 0.41576 (12) | 0.0225 (4) | |
C3 | 0.4811 (3) | 0.62622 (11) | 0.51260 (12) | 0.0231 (4) | |
C4 | 0.3478 (3) | 0.58062 (11) | 0.33819 (12) | 0.0245 (4) | |
H4 | 0.2116 | 0.5881 | 0.3590 | 0.029* | |
C5 | 0.5288 (3) | 0.56342 (15) | 0.18738 (13) | 0.0355 (5) | |
H5A | 0.5579 | 0.5040 | 0.1653 | 0.043* | |
H5B | 0.6558 | 0.5836 | 0.2346 | 0.043* | |
C6 | 0.4900 (3) | 0.62225 (14) | 0.09547 (14) | 0.0346 (4) | |
H6A | 0.6133 | 0.6186 | 0.0577 | 0.042* | |
H6B | 0.4789 | 0.6827 | 0.1185 | 0.042* | |
C7 | 0.2870 (3) | 0.59810 (14) | 0.02483 (14) | 0.0362 (5) | |
H7A | 0.3024 | 0.5396 | −0.0036 | 0.043* | |
H7B | 0.2619 | 0.6395 | −0.0327 | 0.043* | |
C8 | 0.0982 (3) | 0.59946 (14) | 0.08315 (14) | 0.0354 (5) | |
H8A | 0.0734 | 0.6594 | 0.1047 | 0.042* | |
H8B | −0.0320 | 0.5799 | 0.0378 | 0.042* | |
C9 | 0.1371 (3) | 0.54169 (13) | 0.17623 (13) | 0.0314 (4) | |
H9A | 0.0185 | 0.5488 | 0.2165 | 0.038* | |
H9B | 0.1392 | 0.4806 | 0.1543 | 0.038* | |
C10 | 0.7371 (3) | 0.65691 (11) | 0.67417 (12) | 0.0239 (4) | |
C11 | 0.9487 (3) | 0.68439 (11) | 0.70058 (13) | 0.0280 (4) | |
H11 | 1.0486 | 0.6769 | 0.6545 | 0.034* | |
C12 | 1.0114 (3) | 0.72278 (12) | 0.79519 (14) | 0.0336 (4) | |
H12 | 1.1551 | 0.7417 | 0.8136 | 0.040* | |
C13 | 0.8670 (3) | 0.73380 (12) | 0.86315 (14) | 0.0357 (5) | |
H13 | 0.9109 | 0.7605 | 0.9275 | 0.043* | |
C14 | 0.6583 (3) | 0.70556 (12) | 0.83624 (14) | 0.0332 (4) | |
H14 | 0.5591 | 0.7131 | 0.8827 | 0.040* | |
C15 | 0.5910 (3) | 0.66642 (11) | 0.74251 (13) | 0.0277 (4) | |
H15 | 0.4479 | 0.6465 | 0.7252 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0264 (6) | 0.0348 (7) | 0.0231 (6) | 0.0078 (5) | 0.0045 (5) | −0.0008 (5) |
O2 | 0.0232 (6) | 0.0392 (7) | 0.0293 (7) | 0.0055 (5) | 0.0044 (5) | −0.0031 (5) |
N1 | 0.0206 (7) | 0.0311 (8) | 0.0220 (7) | 0.0034 (6) | 0.0028 (6) | −0.0030 (6) |
N2 | 0.0189 (7) | 0.0306 (8) | 0.0216 (7) | 0.0049 (6) | 0.0014 (6) | −0.0017 (6) |
N3 | 0.0210 (7) | 0.0391 (9) | 0.0215 (7) | 0.0018 (6) | 0.0025 (6) | 0.0006 (6) |
C1 | 0.0229 (8) | 0.0239 (8) | 0.0222 (8) | 0.0005 (6) | 0.0029 (7) | 0.0017 (6) |
C2 | 0.0218 (8) | 0.0246 (8) | 0.0209 (8) | 0.0010 (6) | 0.0028 (6) | 0.0011 (6) |
C3 | 0.0204 (8) | 0.0252 (8) | 0.0234 (8) | −0.0002 (6) | 0.0027 (6) | 0.0011 (6) |
C4 | 0.0225 (8) | 0.0272 (8) | 0.0241 (8) | 0.0011 (6) | 0.0042 (7) | 0.0021 (6) |
C5 | 0.0226 (9) | 0.0612 (13) | 0.0233 (9) | 0.0078 (8) | 0.0054 (7) | 0.0039 (8) |
C6 | 0.0312 (10) | 0.0435 (11) | 0.0297 (10) | −0.0031 (8) | 0.0063 (8) | 0.0024 (8) |
C7 | 0.0343 (10) | 0.0466 (12) | 0.0270 (10) | 0.0050 (8) | 0.0028 (8) | 0.0054 (8) |
C8 | 0.0276 (10) | 0.0491 (12) | 0.0277 (10) | 0.0065 (8) | −0.0012 (8) | −0.0009 (8) |
C9 | 0.0230 (9) | 0.0449 (11) | 0.0255 (9) | −0.0037 (7) | 0.0012 (7) | −0.0037 (7) |
C10 | 0.0279 (9) | 0.0216 (8) | 0.0210 (8) | 0.0028 (6) | 0.0003 (7) | 0.0001 (6) |
C11 | 0.0272 (9) | 0.0283 (9) | 0.0280 (9) | 0.0002 (7) | 0.0027 (7) | −0.0010 (7) |
C12 | 0.0332 (10) | 0.0303 (10) | 0.0344 (10) | 0.0000 (7) | −0.0043 (8) | −0.0048 (7) |
C13 | 0.0457 (11) | 0.0328 (10) | 0.0260 (9) | 0.0082 (8) | −0.0032 (8) | −0.0065 (7) |
C14 | 0.0401 (11) | 0.0340 (10) | 0.0257 (9) | 0.0105 (8) | 0.0056 (8) | −0.0016 (7) |
C15 | 0.0285 (9) | 0.0292 (9) | 0.0252 (9) | 0.0038 (7) | 0.0037 (7) | 0.0009 (7) |
O1—C1 | 1.250 (2) | C7—C8 | 1.517 (3) |
O2—C3 | 1.231 (2) | C7—H7A | 0.9900 |
N1—C3 | 1.393 (2) | C7—H7B | 0.9900 |
N1—C10 | 1.408 (2) | C8—C9 | 1.513 (3) |
N1—N2 | 1.4078 (19) | C8—H8A | 0.9900 |
N2—C1 | 1.366 (2) | C8—H8B | 0.9900 |
N2—H2 | 0.94 (2) | C9—H9A | 0.9900 |
N3—C4 | 1.318 (2) | C9—H9B | 0.9900 |
N3—C5 | 1.468 (2) | C10—C15 | 1.396 (2) |
N3—C9 | 1.470 (2) | C10—C11 | 1.396 (2) |
C1—C2 | 1.448 (2) | C11—C12 | 1.389 (2) |
C2—C4 | 1.388 (2) | C11—H11 | 0.9500 |
C2—C3 | 1.454 (2) | C12—C13 | 1.387 (3) |
C4—H4 | 0.9500 | C12—H12 | 0.9500 |
C5—C6 | 1.510 (3) | C13—C14 | 1.383 (3) |
C5—H5A | 0.9900 | C13—H13 | 0.9500 |
C5—H5B | 0.9900 | C14—C15 | 1.389 (2) |
C6—C7 | 1.515 (3) | C14—H14 | 0.9500 |
C6—H6A | 0.9900 | C15—H15 | 0.9500 |
C6—H6B | 0.9900 | ||
C3—N1—C10 | 128.69 (14) | C8—C7—H7A | 109.7 |
C3—N1—N2 | 109.25 (13) | C6—C7—H7B | 109.7 |
C10—N1—N2 | 118.48 (13) | C8—C7—H7B | 109.7 |
C1—N2—N1 | 109.92 (13) | H7A—C7—H7B | 108.2 |
C1—N2—H2 | 124.2 (13) | C9—C8—C7 | 111.39 (16) |
N1—N2—H2 | 115.4 (13) | C9—C8—H8A | 109.4 |
C4—N3—C5 | 124.23 (15) | C7—C8—H8A | 109.4 |
C4—N3—C9 | 120.63 (15) | C9—C8—H8B | 109.4 |
C5—N3—C9 | 115.13 (14) | C7—C8—H8B | 109.4 |
O1—C1—N2 | 121.49 (15) | H8A—C8—H8B | 108.0 |
O1—C1—C2 | 131.76 (15) | N3—C9—C8 | 111.15 (16) |
N2—C1—C2 | 106.70 (14) | N3—C9—H9A | 109.4 |
C4—C2—C1 | 133.42 (16) | C8—C9—H9A | 109.4 |
C4—C2—C3 | 118.37 (15) | N3—C9—H9B | 109.4 |
C1—C2—C3 | 107.60 (14) | C8—C9—H9B | 109.4 |
O2—C3—N1 | 124.67 (15) | H9A—C9—H9B | 108.0 |
O2—C3—C2 | 129.46 (15) | C15—C10—C11 | 120.53 (16) |
N1—C3—C2 | 105.81 (14) | C15—C10—N1 | 119.54 (15) |
N3—C4—C2 | 130.85 (16) | C11—C10—N1 | 119.88 (15) |
N3—C4—H4 | 114.6 | C12—C11—C10 | 119.13 (17) |
C2—C4—H4 | 114.6 | C12—C11—H11 | 120.4 |
N3—C5—C6 | 110.34 (15) | C10—C11—H11 | 120.4 |
N3—C5—H5A | 109.6 | C13—C12—C11 | 120.89 (18) |
C6—C5—H5A | 109.6 | C13—C12—H12 | 119.6 |
N3—C5—H5B | 109.6 | C11—C12—H12 | 119.6 |
C6—C5—H5B | 109.6 | C14—C13—C12 | 119.30 (17) |
H5A—C5—H5B | 108.1 | C14—C13—H13 | 120.3 |
C5—C6—C7 | 111.58 (17) | C12—C13—H13 | 120.3 |
C5—C6—H6A | 109.3 | C13—C14—C15 | 121.20 (18) |
C7—C6—H6A | 109.3 | C13—C14—H14 | 119.4 |
C5—C6—H6B | 109.3 | C15—C14—H14 | 119.4 |
C7—C6—H6B | 109.3 | C14—C15—C10 | 118.93 (17) |
H6A—C6—H6B | 108.0 | C14—C15—H15 | 120.5 |
C6—C7—C8 | 109.83 (16) | C10—C15—H15 | 120.5 |
C6—C7—H7A | 109.7 | ||
C3—N1—N2—C1 | −8.90 (19) | C4—N3—C5—C6 | −125.26 (19) |
C10—N1—N2—C1 | −169.40 (14) | C9—N3—C5—C6 | 53.8 (2) |
N1—N2—C1—O1 | −169.98 (15) | N3—C5—C6—C7 | −54.8 (2) |
N1—N2—C1—C2 | 7.91 (18) | C5—C6—C7—C8 | 56.4 (2) |
O1—C1—C2—C4 | 2.8 (3) | C6—C7—C8—C9 | −55.3 (2) |
N2—C1—C2—C4 | −174.77 (18) | C4—N3—C9—C8 | 125.88 (18) |
O1—C1—C2—C3 | 173.40 (17) | C5—N3—C9—C8 | −53.2 (2) |
N2—C1—C2—C3 | −4.19 (18) | C7—C8—C9—N3 | 53.1 (2) |
C10—N1—C3—O2 | −13.6 (3) | C3—N1—C10—C15 | 42.5 (2) |
N2—N1—C3—O2 | −171.57 (16) | N2—N1—C10—C15 | −161.32 (15) |
C10—N1—C3—C2 | 163.79 (16) | C3—N1—C10—C11 | −139.96 (18) |
N2—N1—C3—C2 | 5.86 (18) | N2—N1—C10—C11 | 16.2 (2) |
C4—C2—C3—O2 | −11.6 (3) | C15—C10—C11—C12 | −1.1 (3) |
C1—C2—C3—O2 | 176.20 (18) | N1—C10—C11—C12 | −178.65 (16) |
C4—C2—C3—N1 | 171.17 (15) | C10—C11—C12—C13 | 0.1 (3) |
C1—C2—C3—N1 | −1.07 (18) | C11—C12—C13—C14 | 0.4 (3) |
C5—N3—C4—C2 | −11.1 (3) | C12—C13—C14—C15 | 0.0 (3) |
C9—N3—C4—C2 | 169.92 (18) | C13—C14—C15—C10 | −1.0 (3) |
C1—C2—C4—N3 | −21.8 (3) | C11—C10—C15—C14 | 1.5 (3) |
C3—C2—C4—N3 | 168.43 (17) | N1—C10—C15—C14 | 179.07 (16) |
Cg3 is a centroid of the C10–C15 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.94 (2) | 1.86 (2) | 2.8008 (18) | 171 (2) |
C5—H5B···O1 | 0.99 | 2.24 | 2.979 (2) | 131 |
C9—H9A···O1ii | 0.99 | 2.51 | 3.421 (2) | 152 |
C11—H11···O2iii | 0.95 | 2.52 | 3.471 (2) | 178 |
C9—H9B···Cg3iv | 0.99 | 2.91 | 3.741 (2) | 143 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y, z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Kumar, L., Thakur, C. & Sharma, V. (2012). Int. J. Res. Pharm. Sci. 2(2), 13–22. Google Scholar
Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.