organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4E)-1-Phenyl-4-[(piperidin-1-yl)methyl­­idene]pyrazolidine-3,5-dione

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, fNational Organization for Drug Control and Research (NODCAR), Giza, Egypt, and gKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 June 2016; accepted 24 June 2016; online 30 June 2016)

In the title compound, C15H17N3O2, the dihedral angle between the planes of the pyrazolidine and phenyl rings is 29.91 (6)°. The piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked into chains running parallel to the a-axis direction by a combination of N—H⋯O and C—H⋯O hydrogen bonds. Furthermore, there exist C—H⋯π inter­actions and ππ stacking inter­actions [centroid-to-centroid distance = 3.5274 (10) Å] between the pyrazolidine rings of adjacent molecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolone derivatives have diverse pharmacological properties, such as cytotoxic, anti-inflammatory, anti­microbial, anti­oxidant, anti­fungal, anti­viral and oral hypoglycaemic activity (Kumar et al., 2012[Kumar, L., Thakur, C. & Sharma, V. (2012). Int. J. Res. Pharm. Sci. 2(2), 13-22.]). As part of our studies in this area, the synthesis and structure of the title compound are reported.

In the title compound, the piperidine ring (atoms N3/C5–C9) adopts a chair conformation, with the puckering parameters QT = 0.547 (2) Å, θ = 176.2 (2)° and φ = 344 (3)°. The dihedral angle between the planes of the phenyl and pyrazolidine rings is 29.91 (6)°. The mol­ecular conformation is partially determined by an intra­molecular C5—H5B⋯O1 hydrogen bond (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.94 (2) 1.86 (2) 2.8008 (18) 171 (2)
C5—H5B⋯O1 0.99 2.24 2.979 (2) 131
C9—H9A⋯O1ii 0.99 2.51 3.421 (2) 152
C11—H11⋯O2iii 0.95 2.52 3.471 (2) 178
C9—H9BCg3iv 0.99 2.91 3.741 (2) 143
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule, shown with 50% probability displacement ellipsoids. The intra­molecular C—H⋯O hydrogen bond is shown by a dotted line.

In the crystal, mol­ecules pack in columns running parallel to the a axis which are assembled by N2—H2⋯O1i and a combination of C9—H9A⋯O1ii and C11—H11⋯O2iii hydrogen bonds [symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) x − 1, y, z; (iii) x + 1, y, z] (Table 1[link] and Figs. 2[link] and 3[link]). In addition, C—H⋯π inter­actions (Table 1[link]) and ππ stacking inter­actions [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.5274 (10) Å; where Cg1 is the centroid of the pyrazolidine ring (N1/N2/C1–C3)] are observed in the crystal structure.

[Figure 2]
Figure 2
The packing, viewed along the a axis, with inter­molecular N—H⋯O and C—H⋯O hydrogen bonds shown, respectively, as blue and black dotted lines.
[Figure 3]
Figure 3
Side view of a portion of the central chain shown in Fig. 2[link], with inter­molecular N—H⋯O and C—H⋯O hydrogen bonds shown, respectively, as blue and black dotted lines.

Synthesis and crystallization

A mixture of 1 mmol (231.3 mg) of 4-[(di­methyl­amino)­methyl­idene]-1-phenyl­pyrazolidine-3,5-dione and 1 mmol (85 mg) of piperidine was refluxed in 30 ml dioxane for 2 h. The obtained solid product was collected under vacuum and recrystallized from ethanol to yield colourless rods of the title compound (yield 95%; m.p. 518–520 K).

Refinement

Trial refinements with both the single-component reflection file extracted from the full data set with TWINABS (Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.]) and with the complete two-component reflection file indicated the former to provide superior results. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H17N3O2
Mr 271.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 6.3184 (2), 15.4673 (6), 13.2528 (5)
β (°) 98.762 (2)
V3) 1280.06 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.78
Crystal size (mm) 0.12 × 0.07 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.81, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 16143, 2493, 1946
Rint 0.053
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.03
No. of reflections 2493
No. of parameters 186
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).

(4E)-1-Phenyl-4-[(piperidin-1-yl)methylidene]pyrazolidine-3,5-dione top
Crystal data top
C15H17N3O2F(000) = 576
Mr = 271.32Dx = 1.408 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 6.3184 (2) ÅCell parameters from 6240 reflections
b = 15.4673 (6) Åθ = 4.4–72.2°
c = 13.2528 (5) ŵ = 0.78 mm1
β = 98.762 (2)°T = 150 K
V = 1280.06 (8) Å3Rod, colourless
Z = 40.12 × 0.07 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2493 independent reflections
Radiation source: INCOATEC IµS micro–focus source1946 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.053
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 4.4°
ω scansh = 77
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1818
Tmin = 0.81, Tmax = 0.97l = 1616
16143 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.055P)2 + 0.3794P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2493 reflectionsΔρmax = 0.21 e Å3
186 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (6)
Special details top

Experimental. Analysis of 961 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the a axis. The raw data were processed using the multi-component version ofSAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84360 (19)0.52001 (8)0.37140 (9)0.0280 (3)
O20.31975 (19)0.66186 (8)0.53428 (9)0.0305 (3)
N10.6720 (2)0.61623 (9)0.57952 (10)0.0246 (3)
N20.8306 (2)0.58417 (9)0.52548 (10)0.0239 (3)
H20.943 (4)0.5538 (15)0.5650 (16)0.041 (6)*
N30.3412 (2)0.56277 (10)0.24051 (10)0.0273 (3)
C10.7405 (3)0.56111 (10)0.42895 (12)0.0230 (4)
C20.5203 (3)0.59034 (11)0.41576 (12)0.0225 (4)
C30.4811 (3)0.62622 (11)0.51260 (12)0.0231 (4)
C40.3478 (3)0.58062 (11)0.33819 (12)0.0245 (4)
H40.21160.58810.35900.029*
C50.5288 (3)0.56342 (15)0.18738 (13)0.0355 (5)
H5A0.55790.50400.16530.043*
H5B0.65580.58360.23460.043*
C60.4900 (3)0.62225 (14)0.09547 (14)0.0346 (4)
H6A0.61330.61860.05770.042*
H6B0.47890.68270.11850.042*
C70.2870 (3)0.59810 (14)0.02483 (14)0.0362 (5)
H7A0.30240.53960.00360.043*
H7B0.26190.63950.03270.043*
C80.0982 (3)0.59946 (14)0.08315 (14)0.0354 (5)
H8A0.07340.65940.10470.042*
H8B0.03200.57990.03780.042*
C90.1371 (3)0.54169 (13)0.17623 (13)0.0314 (4)
H9A0.01850.54880.21650.038*
H9B0.13920.48060.15430.038*
C100.7371 (3)0.65691 (11)0.67417 (12)0.0239 (4)
C110.9487 (3)0.68439 (11)0.70058 (13)0.0280 (4)
H111.04860.67690.65450.034*
C121.0114 (3)0.72278 (12)0.79519 (14)0.0336 (4)
H121.15510.74170.81360.040*
C130.8670 (3)0.73380 (12)0.86315 (14)0.0357 (5)
H130.91090.76050.92750.043*
C140.6583 (3)0.70556 (12)0.83624 (14)0.0332 (4)
H140.55910.71310.88270.040*
C150.5910 (3)0.66642 (11)0.74251 (13)0.0277 (4)
H150.44790.64650.72520.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0264 (6)0.0348 (7)0.0231 (6)0.0078 (5)0.0045 (5)0.0008 (5)
O20.0232 (6)0.0392 (7)0.0293 (7)0.0055 (5)0.0044 (5)0.0031 (5)
N10.0206 (7)0.0311 (8)0.0220 (7)0.0034 (6)0.0028 (6)0.0030 (6)
N20.0189 (7)0.0306 (8)0.0216 (7)0.0049 (6)0.0014 (6)0.0017 (6)
N30.0210 (7)0.0391 (9)0.0215 (7)0.0018 (6)0.0025 (6)0.0006 (6)
C10.0229 (8)0.0239 (8)0.0222 (8)0.0005 (6)0.0029 (7)0.0017 (6)
C20.0218 (8)0.0246 (8)0.0209 (8)0.0010 (6)0.0028 (6)0.0011 (6)
C30.0204 (8)0.0252 (8)0.0234 (8)0.0002 (6)0.0027 (6)0.0011 (6)
C40.0225 (8)0.0272 (8)0.0241 (8)0.0011 (6)0.0042 (7)0.0021 (6)
C50.0226 (9)0.0612 (13)0.0233 (9)0.0078 (8)0.0054 (7)0.0039 (8)
C60.0312 (10)0.0435 (11)0.0297 (10)0.0031 (8)0.0063 (8)0.0024 (8)
C70.0343 (10)0.0466 (12)0.0270 (10)0.0050 (8)0.0028 (8)0.0054 (8)
C80.0276 (10)0.0491 (12)0.0277 (10)0.0065 (8)0.0012 (8)0.0009 (8)
C90.0230 (9)0.0449 (11)0.0255 (9)0.0037 (7)0.0012 (7)0.0037 (7)
C100.0279 (9)0.0216 (8)0.0210 (8)0.0028 (6)0.0003 (7)0.0001 (6)
C110.0272 (9)0.0283 (9)0.0280 (9)0.0002 (7)0.0027 (7)0.0010 (7)
C120.0332 (10)0.0303 (10)0.0344 (10)0.0000 (7)0.0043 (8)0.0048 (7)
C130.0457 (11)0.0328 (10)0.0260 (9)0.0082 (8)0.0032 (8)0.0065 (7)
C140.0401 (11)0.0340 (10)0.0257 (9)0.0105 (8)0.0056 (8)0.0016 (7)
C150.0285 (9)0.0292 (9)0.0252 (9)0.0038 (7)0.0037 (7)0.0009 (7)
Geometric parameters (Å, º) top
O1—C11.250 (2)C7—C81.517 (3)
O2—C31.231 (2)C7—H7A0.9900
N1—C31.393 (2)C7—H7B0.9900
N1—C101.408 (2)C8—C91.513 (3)
N1—N21.4078 (19)C8—H8A0.9900
N2—C11.366 (2)C8—H8B0.9900
N2—H20.94 (2)C9—H9A0.9900
N3—C41.318 (2)C9—H9B0.9900
N3—C51.468 (2)C10—C151.396 (2)
N3—C91.470 (2)C10—C111.396 (2)
C1—C21.448 (2)C11—C121.389 (2)
C2—C41.388 (2)C11—H110.9500
C2—C31.454 (2)C12—C131.387 (3)
C4—H40.9500C12—H120.9500
C5—C61.510 (3)C13—C141.383 (3)
C5—H5A0.9900C13—H130.9500
C5—H5B0.9900C14—C151.389 (2)
C6—C71.515 (3)C14—H140.9500
C6—H6A0.9900C15—H150.9500
C6—H6B0.9900
C3—N1—C10128.69 (14)C8—C7—H7A109.7
C3—N1—N2109.25 (13)C6—C7—H7B109.7
C10—N1—N2118.48 (13)C8—C7—H7B109.7
C1—N2—N1109.92 (13)H7A—C7—H7B108.2
C1—N2—H2124.2 (13)C9—C8—C7111.39 (16)
N1—N2—H2115.4 (13)C9—C8—H8A109.4
C4—N3—C5124.23 (15)C7—C8—H8A109.4
C4—N3—C9120.63 (15)C9—C8—H8B109.4
C5—N3—C9115.13 (14)C7—C8—H8B109.4
O1—C1—N2121.49 (15)H8A—C8—H8B108.0
O1—C1—C2131.76 (15)N3—C9—C8111.15 (16)
N2—C1—C2106.70 (14)N3—C9—H9A109.4
C4—C2—C1133.42 (16)C8—C9—H9A109.4
C4—C2—C3118.37 (15)N3—C9—H9B109.4
C1—C2—C3107.60 (14)C8—C9—H9B109.4
O2—C3—N1124.67 (15)H9A—C9—H9B108.0
O2—C3—C2129.46 (15)C15—C10—C11120.53 (16)
N1—C3—C2105.81 (14)C15—C10—N1119.54 (15)
N3—C4—C2130.85 (16)C11—C10—N1119.88 (15)
N3—C4—H4114.6C12—C11—C10119.13 (17)
C2—C4—H4114.6C12—C11—H11120.4
N3—C5—C6110.34 (15)C10—C11—H11120.4
N3—C5—H5A109.6C13—C12—C11120.89 (18)
C6—C5—H5A109.6C13—C12—H12119.6
N3—C5—H5B109.6C11—C12—H12119.6
C6—C5—H5B109.6C14—C13—C12119.30 (17)
H5A—C5—H5B108.1C14—C13—H13120.3
C5—C6—C7111.58 (17)C12—C13—H13120.3
C5—C6—H6A109.3C13—C14—C15121.20 (18)
C7—C6—H6A109.3C13—C14—H14119.4
C5—C6—H6B109.3C15—C14—H14119.4
C7—C6—H6B109.3C14—C15—C10118.93 (17)
H6A—C6—H6B108.0C14—C15—H15120.5
C6—C7—C8109.83 (16)C10—C15—H15120.5
C6—C7—H7A109.7
C3—N1—N2—C18.90 (19)C4—N3—C5—C6125.26 (19)
C10—N1—N2—C1169.40 (14)C9—N3—C5—C653.8 (2)
N1—N2—C1—O1169.98 (15)N3—C5—C6—C754.8 (2)
N1—N2—C1—C27.91 (18)C5—C6—C7—C856.4 (2)
O1—C1—C2—C42.8 (3)C6—C7—C8—C955.3 (2)
N2—C1—C2—C4174.77 (18)C4—N3—C9—C8125.88 (18)
O1—C1—C2—C3173.40 (17)C5—N3—C9—C853.2 (2)
N2—C1—C2—C34.19 (18)C7—C8—C9—N353.1 (2)
C10—N1—C3—O213.6 (3)C3—N1—C10—C1542.5 (2)
N2—N1—C3—O2171.57 (16)N2—N1—C10—C15161.32 (15)
C10—N1—C3—C2163.79 (16)C3—N1—C10—C11139.96 (18)
N2—N1—C3—C25.86 (18)N2—N1—C10—C1116.2 (2)
C4—C2—C3—O211.6 (3)C15—C10—C11—C121.1 (3)
C1—C2—C3—O2176.20 (18)N1—C10—C11—C12178.65 (16)
C4—C2—C3—N1171.17 (15)C10—C11—C12—C130.1 (3)
C1—C2—C3—N11.07 (18)C11—C12—C13—C140.4 (3)
C5—N3—C4—C211.1 (3)C12—C13—C14—C150.0 (3)
C9—N3—C4—C2169.92 (18)C13—C14—C15—C101.0 (3)
C1—C2—C4—N321.8 (3)C11—C10—C15—C141.5 (3)
C3—C2—C4—N3168.43 (17)N1—C10—C15—C14179.07 (16)
Hydrogen-bond geometry (Å, º) top
Cg3 is a centroid of the C10–C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.94 (2)1.86 (2)2.8008 (18)171 (2)
C5—H5B···O10.992.242.979 (2)131
C9—H9A···O1ii0.992.513.421 (2)152
C11—H11···O2iii0.952.523.471 (2)178
C9—H9B···Cg3iv0.992.913.741 (2)143
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumar, L., Thakur, C. & Sharma, V. (2012). Int. J. Res. Pharm. Sci. 2(2), 13–22.  Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds