organic compounds
5,7,7,12,14,14-Hexamethyl-4,11-diaza-1,8-diazoniacyclotetradeca-4,11-diene bis(methanesulfonate)
aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu
In the title molecular salt, C16H34N42+·2CH3SO3−, the centrosymmetric macrocyclic molecule has all four N atoms oriented towards the inside of the cavity, similar to its conformation in metal complexes. The conformation of the ethylenediamine fragment is trans–gauche–trans and the conformation of the propylenediamine group is trans–cis–gauche–gauche. In the crystal, each protonated N atom makes a strong hydrogen bond with a sulfonate O atom and another intramolecular hydrogen bond connects two N atoms of the same macrocyclic ring to generate ensembles of one dication and two anions.
Keywords: crystal structure; macrocyclic tetraamine; methanesulfonate.
CCDC reference: 1487686
Structure description
The title salt belongs to a class of widely studied azamacrocycles discovered by Curtis (1960). The reaction between ethylenediamine and acetone after addition of perchloric acid (Curtis, 1968) is, perhaps, the simplest known macrocyclic synthesis. However, the potentially hazardous nature of perchloric acid prevents its use in an undergraduate laboratory. Several alternatives to HClO4 were suggested (Curtis, 1968; Tait & Busch, 1978), requiring more complicated preparations. We report here the synthesis of the Curtis macrocycle in the presence of methanesulfonic acid. Its availability in an anhydrous liquid form favors a condensation reaction.
In the ). The conformations of the ethylenediamine fragments are trans–gauche–trans and the conformations of the propylenediamine fragments are trans–cis–gauche–gauche (see Table 1). The diprotonated tetramine macrocycle forms a neutral salt with two methanesulfonate ions. Each protonated N atom makes a strong hydrogen bond with one of the O atoms of the sulfonate group (Table 2, Fig. 2). Another hydrogen bond connects two N atoms of the same macrocyclic ring (Fig. 3).
of the title salt, the centrosymmetric macrocyclic molecule has all four N atoms oriented towards the inside of the cavity, similar to its conformation in metal complexes (Fig. 1Synthesis and crystallization
The title compound was prepared in a manner similar to a known procedure with perchloric acid (Tait & Busch, 1978) by slow addition of 0.96 g (0.01 mol) methanesulfonic acid to a solution of ethylenediamine (0.6 g, 0.01 mol) in 20 ml of acetone. (Caution! Potentially violent neutralization reaction.) Colorless crystals were collected after several hours. Some of these crystals appeared to be suitable for X-ray crystallography analysis. The bulk product reacts with CuII ions yielding a solution of the well-known red macrocyclic complex.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1487686
10.1107/S2414314616010336/hb4059sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616010336/hb4059Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616010336/hb4059Isup3.cdx
Supporting information file. DOI: 10.1107/S2414314616010336/hb4059Isup4.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C16H34N42+·2CH3O3S− | F(000) = 512 |
Mr = 472.66 | Dx = 1.312 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7931 (12) Å | Cell parameters from 9910 reflections |
b = 8.6816 (11) Å | θ = 3.1–33.8° |
c = 14.1098 (17) Å | µ = 0.26 mm−1 |
β = 94.003 (4)° | T = 173 K |
V = 1196.7 (3) Å3 | Block, colourless |
Z = 2 | 0.59 × 0.42 × 0.22 mm |
Bruker PHOTON 100 CMOS diffractometer | 3974 reflections with I > 2σ(I) |
Radiation source: sealedtube | Rint = 0.052 |
φ and ω scans | θmax = 35.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −15→15 |
Tmin = 0.893, Tmax = 0.952 | k = −14→14 |
62436 measured reflections | l = −22→22 |
5245 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0567P)2 + 0.2818P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
5245 reflections | Δρmax = 0.51 e Å−3 |
206 parameters | Δρmin = −0.38 e Å−3 |
Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0555 before and 0.0536 after correction. The Ratio of minimum to maximum transmission is 0.9378. The λ/2 correction factor is 0.00150. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.59253 (8) | 0.19791 (10) | 0.43144 (6) | 0.01580 (14) | |
H1A | 0.5572 (15) | 0.1012 (18) | 0.4307 (10) | 0.026 (4)* | |
H1B | 0.5421 (14) | 0.2614 (18) | 0.3951 (11) | 0.024 (3)* | |
N2 | 0.38388 (9) | 0.11848 (10) | 0.56274 (6) | 0.01794 (15) | |
C1 | 0.15447 (12) | 0.23278 (13) | 0.52301 (10) | 0.0294 (2) | |
H1C | 0.0816 (8) | 0.2253 (7) | 0.5587 (6) | 0.035* | |
H1D | 0.1260 (8) | 0.2250 (6) | 0.4608 (6) | 0.035* | |
H1E | 0.1961 (5) | 0.3248 (9) | 0.5338 (6) | 0.035* | |
C2 | 0.18794 (10) | −0.05125 (11) | 0.55689 (7) | 0.01856 (17) | |
H2A | 0.1594 (15) | −0.0847 (17) | 0.4937 (11) | 0.024 (3)* | |
H2B | 0.1079 (17) | −0.0392 (18) | 0.5879 (11) | 0.032 (4)* | |
C3 | 0.25378 (10) | 0.10527 (11) | 0.54911 (7) | 0.01759 (17) | |
C4 | 0.44688 (11) | 0.27092 (12) | 0.55915 (8) | 0.02115 (19) | |
H4A | 0.3995 (15) | 0.3410 (18) | 0.5181 (11) | 0.028 (4)* | |
H4B | 0.4501 (16) | 0.3166 (19) | 0.6210 (12) | 0.033 (4)* | |
C5 | 0.59251 (10) | 0.25877 (12) | 0.53033 (7) | 0.01873 (17) | |
H5A | 0.6330 (15) | 0.3588 (18) | 0.5318 (10) | 0.026 (4)* | |
H5B | 0.6485 (15) | 0.1925 (17) | 0.5700 (10) | 0.024 (3)* | |
C6 | 0.73047 (10) | 0.17883 (12) | 0.38985 (7) | 0.01878 (17) | |
C7 | 0.80936 (12) | 0.33048 (14) | 0.39918 (10) | 0.0276 (2) | |
H7A | 0.8375 (15) | 0.3512 (17) | 0.4650 (11) | 0.025 (4)* | |
H7B | 0.8870 (17) | 0.324 (2) | 0.3631 (12) | 0.038 (4)* | |
H7C | 0.7508 (16) | 0.4143 (19) | 0.3701 (11) | 0.033 (4)* | |
C8 | 0.69890 (13) | 0.13881 (16) | 0.28543 (8) | 0.0286 (2) | |
H8A | 0.6461 (17) | 0.218 (2) | 0.2539 (12) | 0.041 (4)* | |
H8B | 0.7831 (17) | 0.125 (2) | 0.2553 (12) | 0.040 (4)* | |
H8C | 0.6453 (17) | 0.0418 (18) | 0.2775 (11) | 0.031 (4)* | |
S1 | 0.37838 (3) | 0.46573 (3) | 0.24372 (2) | 0.01973 (7) | |
O1 | 0.42782 (10) | 0.41405 (11) | 0.33881 (6) | 0.03133 (19) | |
O2 | 0.43476 (10) | 0.61414 (11) | 0.22043 (7) | 0.0351 (2) | |
O3 | 0.39480 (10) | 0.34887 (11) | 0.17162 (6) | 0.0320 (2) | |
C9 | 0.20072 (13) | 0.49311 (18) | 0.24961 (11) | 0.0343 (3) | |
H9A | 0.1624 (19) | 0.399 (2) | 0.2635 (12) | 0.045 (5)* | |
H9B | 0.1858 (18) | 0.566 (2) | 0.2955 (13) | 0.042 (5)* | |
H9C | 0.1639 (19) | 0.533 (2) | 0.1860 (14) | 0.043 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0155 (3) | 0.0160 (3) | 0.0158 (3) | 0.0005 (3) | 0.0003 (3) | 0.0006 (3) |
N2 | 0.0177 (4) | 0.0166 (3) | 0.0197 (4) | −0.0006 (3) | 0.0025 (3) | −0.0016 (3) |
C1 | 0.0221 (5) | 0.0214 (5) | 0.0437 (7) | 0.0030 (4) | −0.0044 (4) | 0.0033 (5) |
C2 | 0.0148 (4) | 0.0184 (4) | 0.0224 (4) | −0.0002 (3) | 0.0008 (3) | 0.0001 (3) |
C3 | 0.0187 (4) | 0.0170 (4) | 0.0169 (4) | 0.0009 (3) | 0.0001 (3) | −0.0018 (3) |
C4 | 0.0211 (4) | 0.0172 (4) | 0.0259 (5) | −0.0018 (3) | 0.0061 (4) | −0.0046 (4) |
C5 | 0.0187 (4) | 0.0198 (4) | 0.0177 (4) | −0.0028 (3) | 0.0011 (3) | −0.0031 (3) |
C6 | 0.0178 (4) | 0.0204 (4) | 0.0185 (4) | 0.0004 (3) | 0.0042 (3) | 0.0025 (3) |
C7 | 0.0239 (5) | 0.0221 (5) | 0.0376 (6) | −0.0033 (4) | 0.0078 (4) | 0.0066 (4) |
C8 | 0.0309 (6) | 0.0383 (6) | 0.0168 (4) | 0.0053 (5) | 0.0042 (4) | 0.0015 (4) |
S1 | 0.02069 (12) | 0.01985 (12) | 0.01816 (11) | 0.00210 (8) | −0.00218 (8) | 0.00111 (8) |
O1 | 0.0413 (5) | 0.0299 (4) | 0.0213 (4) | 0.0110 (4) | −0.0083 (3) | 0.0019 (3) |
O2 | 0.0368 (5) | 0.0267 (4) | 0.0421 (5) | −0.0053 (4) | 0.0046 (4) | 0.0071 (4) |
O3 | 0.0383 (5) | 0.0340 (5) | 0.0239 (4) | 0.0045 (4) | 0.0023 (3) | −0.0075 (3) |
C9 | 0.0221 (5) | 0.0346 (6) | 0.0456 (7) | 0.0035 (5) | −0.0018 (5) | −0.0082 (6) |
N1—H1A | 0.908 (16) | C5—H5B | 0.950 (15) |
N1—H1B | 0.880 (15) | C6—C2i | 1.5316 (14) |
N1—C5 | 1.4921 (12) | C6—C7 | 1.5275 (15) |
N1—C6 | 1.5190 (13) | C6—C8 | 1.5242 (15) |
N2—C3 | 1.2803 (13) | C7—H7A | 0.966 (15) |
N2—C4 | 1.4625 (13) | C7—H7B | 0.946 (17) |
C1—H1C | 0.905 (9) | C7—H7C | 0.997 (17) |
C1—H1D | 0.905 (9) | C8—H8A | 0.952 (18) |
C1—H1E | 0.905 (9) | C8—H8B | 0.962 (17) |
C1—C3 | 1.5023 (15) | C8—H8C | 0.994 (16) |
C2—H2A | 0.960 (15) | S1—O1 | 1.4647 (9) |
C2—H2B | 0.930 (16) | S1—O2 | 1.4485 (9) |
C2—C3 | 1.5113 (14) | S1—O3 | 1.4536 (9) |
C2—C6i | 1.5317 (14) | S1—C9 | 1.7637 (13) |
C4—H4A | 0.940 (16) | C9—H9A | 0.92 (2) |
C4—H4B | 0.956 (17) | C9—H9B | 0.925 (18) |
C4—C5 | 1.5137 (14) | C9—H9C | 1.006 (19) |
C5—H5A | 0.954 (15) | ||
H1A—N1—H1B | 112.0 (13) | C4—C5—H5B | 113.6 (8) |
C5—N1—H1A | 108.3 (9) | H5A—C5—H5B | 108.5 (12) |
C5—N1—H1B | 106.6 (10) | N1—C6—C2i | 109.68 (8) |
C5—N1—C6 | 117.26 (8) | N1—C6—C7 | 109.32 (8) |
C6—N1—H1A | 104.1 (9) | N1—C6—C8 | 105.81 (8) |
C6—N1—H1B | 108.8 (9) | C7—C6—C2i | 109.73 (9) |
C3—N2—C4 | 119.58 (9) | C8—C6—C2i | 111.91 (9) |
H1C—C1—H1D | 109.5 | C8—C6—C7 | 110.30 (9) |
H1C—C1—H1E | 109.5 | C6—C7—H7A | 110.6 (9) |
H1D—C1—H1E | 109.5 | C6—C7—H7B | 108.8 (11) |
C3—C1—H1C | 109.5 | C6—C7—H7C | 108.7 (9) |
C3—C1—H1D | 109.5 | H7A—C7—H7B | 110.0 (14) |
C3—C1—H1E | 109.5 | H7A—C7—H7C | 112.1 (13) |
H2A—C2—H2B | 105.7 (13) | H7B—C7—H7C | 106.5 (13) |
C3—C2—H2A | 107.6 (9) | C6—C8—H8A | 110.7 (10) |
C3—C2—H2B | 108.1 (10) | C6—C8—H8B | 109.5 (10) |
C3—C2—C6i | 118.37 (8) | C6—C8—H8C | 111.8 (9) |
C6i—C2—H2A | 110.2 (9) | H8A—C8—H8B | 109.8 (14) |
C6i—C2—H2B | 106.2 (10) | H8A—C8—H8C | 107.1 (14) |
N2—C3—C1 | 126.24 (9) | H8B—C8—H8C | 107.8 (14) |
N2—C3—C2 | 119.65 (9) | O1—S1—C9 | 105.20 (7) |
C1—C3—C2 | 114.09 (8) | O2—S1—O1 | 111.93 (6) |
N2—C4—H4A | 114.6 (9) | O2—S1—O3 | 113.55 (6) |
N2—C4—H4B | 109.3 (10) | O2—S1—C9 | 106.48 (7) |
N2—C4—C5 | 110.73 (8) | O3—S1—O1 | 112.43 (5) |
H4A—C4—H4B | 106.1 (13) | O3—S1—C9 | 106.54 (6) |
C5—C4—H4A | 108.2 (9) | S1—C9—H9A | 107.9 (12) |
C5—C4—H4B | 107.6 (9) | S1—C9—H9B | 109.3 (11) |
N1—C5—C4 | 109.73 (8) | S1—C9—H9C | 107.3 (10) |
N1—C5—H5A | 108.4 (9) | H9A—C9—H9B | 111.6 (15) |
N1—C5—H5B | 107.4 (9) | H9A—C9—H9C | 111.6 (16) |
C4—C5—H5A | 109.2 (9) | H9B—C9—H9C | 108.9 (15) |
C6—N1—C5—C4 | 179.58 (8) | C5—N1—C6—C8 | −171.83 (9) |
N2—C4—C5—N1 | 64.44 (11) | C6i—C2—C3—N2 | 18.86 (14) |
C3—N2—C4—C5 | −153.05 (9) | C6i—C2—C3—C1 | −162.42 (9) |
C4—N2—C3—C1 | 4.03 (16) | N1—C6—C2i—C3i | 54.12 (11) |
C4—N2—C3—C2 | −177.43 (9) | C5—N1—C6—C2i | 67.30 (11) |
C5—N1—C6—C7 | −53.05 (11) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N2i | 0.908 (16) | 1.993 (16) | 2.7572 (13) | 140.9 (13) |
N1—H1B···O1 | 0.880 (15) | 1.875 (15) | 2.7453 (12) | 169.5 (14) |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
Financial support from the State University of New York for the acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.
References
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Curtis, N. F. (1960). J. Chem. Soc. pp. 4409–4416. CrossRef Google Scholar
Curtis, N. F. (1968). Coord. Chem. Rev. 3, 3–47. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tait, A. M. & Busch, D. H. (1978). Inorg. Synth. 18, 2–9. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.