organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,7,7,12,14,14-Hexa­methyl-4,11-di­aza-1,8-di­azonia­cyclo­tetra­deca-4,11-diene bis­­(methane­sulfonate)

aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 June 2016; accepted 25 June 2016; online 30 June 2016)

In the title mol­ecular salt, C16H34N42+·2CH3SO3, the centrosymmetric macrocyclic mol­ecule has all four N atoms oriented towards the inside of the cavity, similar to its conformation in metal complexes. The conformation of the ethyl­enedi­amine fragment is trans–gauche–trans and the conformation of the propyl­enedi­amine group is trans–cis–gauche–gauche. In the crystal, each protonated N atom makes a strong hydrogen bond with a sulfonate O atom and another intra­molecular hydrogen bond connects two N atoms of the same macrocyclic ring to generate ensembles of one dication and two anions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title salt belongs to a class of widely studied aza­macrocycles discovered by Curtis (1960[Curtis, N. F. (1960). J. Chem. Soc. pp. 4409-4416.]). The reaction between ethyl­enedi­amine and acetone after addition of perchloric acid (Curtis, 1968[Curtis, N. F. (1968). Coord. Chem. Rev. 3, 3-47.]) is, perhaps, the simplest known macrocyclic synthesis. However, the potentially haza­rdous nature of perchloric acid prevents its use in an undergraduate laboratory. Several alternatives to HClO4 were suggested (Curtis, 1968[Curtis, N. F. (1968). Coord. Chem. Rev. 3, 3-47.]; Tait & Busch, 1978[Tait, A. M. & Busch, D. H. (1978). Inorg. Synth. 18, 2-9.]), requiring more complicated preparations. We report here the synthesis of the Curtis macrocycle in the presence of methane­sulfonic acid. Its availability in an anhydrous liquid form favors a condensation reaction.

In the crystal structure of the title salt, the centrosymmetric macrocyclic mol­ecule has all four N atoms oriented towards the inside of the cavity, similar to its conformation in metal complexes (Fig. 1[link]). The conformations of the ethyl­enedi­amine fragments are trans–gauche–trans and the conformations of the propyl­enedi­amine fragments are trans–cis–gauche–gauche (see Table 1[link]). The diprotonated tetra­mine macrocycle forms a neutral salt with two methane­sulfonate ions. Each protonated N atom makes a strong hydrogen bond with one of the O atoms of the sulfonate group (Table 2[link], Fig. 2[link]). Another hydrogen bond connects two N atoms of the same macrocyclic ring (Fig. 3[link]).

Table 1
Selected torsion angles (°)

C6—N1—C5—C4 179.58 (8) C6i—C2—C3—N2 18.86 (14)
N2—C4—C5—N1 64.44 (11) N1—C6—C2i—C3i 54.12 (11)
C3—N2—C4—C5 −153.05 (9) C5—N1—C6—C2i 67.30 (11)
C4—N2—C3—C2 −177.43 (9)    
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.908 (16) 1.993 (16) 2.7572 (13) 140.9 (13)
N1—H1B⋯O1 0.880 (15) 1.875 (15) 2.7453 (12) 169.5 (14)
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Packing diagram (view along the c axis).
[Figure 3]
Figure 3
Packing diagram (view along the a axis).

Synthesis and crystallization

The title compound was prepared in a manner similar to a known procedure with perchloric acid (Tait & Busch, 1978[Tait, A. M. & Busch, D. H. (1978). Inorg. Synth. 18, 2-9.]) by slow addition of 0.96 g (0.01 mol) methane­sulfonic acid to a solution of ethyl­enedi­amine (0.6 g, 0.01 mol) in 20 ml of acetone. (Caution! Potentially violent neutralization reaction.) Colorless crystals were collected after several hours. Some of these crystals appeared to be suitable for X-ray crystallography analysis. The bulk product reacts with CuII ions yielding a solution of the well-known red macrocyclic complex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C16H34N42+·2CH3O3S
Mr 472.66
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.7931 (12), 8.6816 (11), 14.1098 (17)
β (°) 94.003 (4)
V3) 1196.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.59 × 0.42 × 0.22
 
Data collection
Diffractometer Bruker PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.893, 0.952
No. of measured, independent and observed [I > 2σ(I)] reflections 62436, 5245, 3974
Rint 0.052
(sin θ/λ)max−1) 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.05
No. of reflections 5245
No. of parameters 206
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5,7,7,12,14,14-Hexamethyl-4,11-diaza-1,8-diazoniacyclotetradeca-4,11-diene bis(methanesulfonate) top
Crystal data top
C16H34N42+·2CH3O3SF(000) = 512
Mr = 472.66Dx = 1.312 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7931 (12) ÅCell parameters from 9910 reflections
b = 8.6816 (11) Åθ = 3.1–33.8°
c = 14.1098 (17) ŵ = 0.26 mm1
β = 94.003 (4)°T = 173 K
V = 1196.7 (3) Å3Block, colourless
Z = 20.59 × 0.42 × 0.22 mm
Data collection top
Bruker PHOTON 100 CMOS
diffractometer
3974 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.052
φ and ω scansθmax = 35.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1515
Tmin = 0.893, Tmax = 0.952k = 1414
62436 measured reflectionsl = 2222
5245 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.2818P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5245 reflectionsΔρmax = 0.51 e Å3
206 parametersΔρmin = 0.38 e Å3
Special details top

Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0555 before and 0.0536 after correction. The Ratio of minimum to maximum transmission is 0.9378. The λ/2 correction factor is 0.00150.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.59253 (8)0.19791 (10)0.43144 (6)0.01580 (14)
H1A0.5572 (15)0.1012 (18)0.4307 (10)0.026 (4)*
H1B0.5421 (14)0.2614 (18)0.3951 (11)0.024 (3)*
N20.38388 (9)0.11848 (10)0.56274 (6)0.01794 (15)
C10.15447 (12)0.23278 (13)0.52301 (10)0.0294 (2)
H1C0.0816 (8)0.2253 (7)0.5587 (6)0.035*
H1D0.1260 (8)0.2250 (6)0.4608 (6)0.035*
H1E0.1961 (5)0.3248 (9)0.5338 (6)0.035*
C20.18794 (10)0.05125 (11)0.55689 (7)0.01856 (17)
H2A0.1594 (15)0.0847 (17)0.4937 (11)0.024 (3)*
H2B0.1079 (17)0.0392 (18)0.5879 (11)0.032 (4)*
C30.25378 (10)0.10527 (11)0.54911 (7)0.01759 (17)
C40.44688 (11)0.27092 (12)0.55915 (8)0.02115 (19)
H4A0.3995 (15)0.3410 (18)0.5181 (11)0.028 (4)*
H4B0.4501 (16)0.3166 (19)0.6210 (12)0.033 (4)*
C50.59251 (10)0.25877 (12)0.53033 (7)0.01873 (17)
H5A0.6330 (15)0.3588 (18)0.5318 (10)0.026 (4)*
H5B0.6485 (15)0.1925 (17)0.5700 (10)0.024 (3)*
C60.73047 (10)0.17883 (12)0.38985 (7)0.01878 (17)
C70.80936 (12)0.33048 (14)0.39918 (10)0.0276 (2)
H7A0.8375 (15)0.3512 (17)0.4650 (11)0.025 (4)*
H7B0.8870 (17)0.324 (2)0.3631 (12)0.038 (4)*
H7C0.7508 (16)0.4143 (19)0.3701 (11)0.033 (4)*
C80.69890 (13)0.13881 (16)0.28543 (8)0.0286 (2)
H8A0.6461 (17)0.218 (2)0.2539 (12)0.041 (4)*
H8B0.7831 (17)0.125 (2)0.2553 (12)0.040 (4)*
H8C0.6453 (17)0.0418 (18)0.2775 (11)0.031 (4)*
S10.37838 (3)0.46573 (3)0.24372 (2)0.01973 (7)
O10.42782 (10)0.41405 (11)0.33881 (6)0.03133 (19)
O20.43476 (10)0.61414 (11)0.22043 (7)0.0351 (2)
O30.39480 (10)0.34887 (11)0.17162 (6)0.0320 (2)
C90.20072 (13)0.49311 (18)0.24961 (11)0.0343 (3)
H9A0.1624 (19)0.399 (2)0.2635 (12)0.045 (5)*
H9B0.1858 (18)0.566 (2)0.2955 (13)0.042 (5)*
H9C0.1639 (19)0.533 (2)0.1860 (14)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0155 (3)0.0160 (3)0.0158 (3)0.0005 (3)0.0003 (3)0.0006 (3)
N20.0177 (4)0.0166 (3)0.0197 (4)0.0006 (3)0.0025 (3)0.0016 (3)
C10.0221 (5)0.0214 (5)0.0437 (7)0.0030 (4)0.0044 (4)0.0033 (5)
C20.0148 (4)0.0184 (4)0.0224 (4)0.0002 (3)0.0008 (3)0.0001 (3)
C30.0187 (4)0.0170 (4)0.0169 (4)0.0009 (3)0.0001 (3)0.0018 (3)
C40.0211 (4)0.0172 (4)0.0259 (5)0.0018 (3)0.0061 (4)0.0046 (4)
C50.0187 (4)0.0198 (4)0.0177 (4)0.0028 (3)0.0011 (3)0.0031 (3)
C60.0178 (4)0.0204 (4)0.0185 (4)0.0004 (3)0.0042 (3)0.0025 (3)
C70.0239 (5)0.0221 (5)0.0376 (6)0.0033 (4)0.0078 (4)0.0066 (4)
C80.0309 (6)0.0383 (6)0.0168 (4)0.0053 (5)0.0042 (4)0.0015 (4)
S10.02069 (12)0.01985 (12)0.01816 (11)0.00210 (8)0.00218 (8)0.00111 (8)
O10.0413 (5)0.0299 (4)0.0213 (4)0.0110 (4)0.0083 (3)0.0019 (3)
O20.0368 (5)0.0267 (4)0.0421 (5)0.0053 (4)0.0046 (4)0.0071 (4)
O30.0383 (5)0.0340 (5)0.0239 (4)0.0045 (4)0.0023 (3)0.0075 (3)
C90.0221 (5)0.0346 (6)0.0456 (7)0.0035 (5)0.0018 (5)0.0082 (6)
Geometric parameters (Å, º) top
N1—H1A0.908 (16)C5—H5B0.950 (15)
N1—H1B0.880 (15)C6—C2i1.5316 (14)
N1—C51.4921 (12)C6—C71.5275 (15)
N1—C61.5190 (13)C6—C81.5242 (15)
N2—C31.2803 (13)C7—H7A0.966 (15)
N2—C41.4625 (13)C7—H7B0.946 (17)
C1—H1C0.905 (9)C7—H7C0.997 (17)
C1—H1D0.905 (9)C8—H8A0.952 (18)
C1—H1E0.905 (9)C8—H8B0.962 (17)
C1—C31.5023 (15)C8—H8C0.994 (16)
C2—H2A0.960 (15)S1—O11.4647 (9)
C2—H2B0.930 (16)S1—O21.4485 (9)
C2—C31.5113 (14)S1—O31.4536 (9)
C2—C6i1.5317 (14)S1—C91.7637 (13)
C4—H4A0.940 (16)C9—H9A0.92 (2)
C4—H4B0.956 (17)C9—H9B0.925 (18)
C4—C51.5137 (14)C9—H9C1.006 (19)
C5—H5A0.954 (15)
H1A—N1—H1B112.0 (13)C4—C5—H5B113.6 (8)
C5—N1—H1A108.3 (9)H5A—C5—H5B108.5 (12)
C5—N1—H1B106.6 (10)N1—C6—C2i109.68 (8)
C5—N1—C6117.26 (8)N1—C6—C7109.32 (8)
C6—N1—H1A104.1 (9)N1—C6—C8105.81 (8)
C6—N1—H1B108.8 (9)C7—C6—C2i109.73 (9)
C3—N2—C4119.58 (9)C8—C6—C2i111.91 (9)
H1C—C1—H1D109.5C8—C6—C7110.30 (9)
H1C—C1—H1E109.5C6—C7—H7A110.6 (9)
H1D—C1—H1E109.5C6—C7—H7B108.8 (11)
C3—C1—H1C109.5C6—C7—H7C108.7 (9)
C3—C1—H1D109.5H7A—C7—H7B110.0 (14)
C3—C1—H1E109.5H7A—C7—H7C112.1 (13)
H2A—C2—H2B105.7 (13)H7B—C7—H7C106.5 (13)
C3—C2—H2A107.6 (9)C6—C8—H8A110.7 (10)
C3—C2—H2B108.1 (10)C6—C8—H8B109.5 (10)
C3—C2—C6i118.37 (8)C6—C8—H8C111.8 (9)
C6i—C2—H2A110.2 (9)H8A—C8—H8B109.8 (14)
C6i—C2—H2B106.2 (10)H8A—C8—H8C107.1 (14)
N2—C3—C1126.24 (9)H8B—C8—H8C107.8 (14)
N2—C3—C2119.65 (9)O1—S1—C9105.20 (7)
C1—C3—C2114.09 (8)O2—S1—O1111.93 (6)
N2—C4—H4A114.6 (9)O2—S1—O3113.55 (6)
N2—C4—H4B109.3 (10)O2—S1—C9106.48 (7)
N2—C4—C5110.73 (8)O3—S1—O1112.43 (5)
H4A—C4—H4B106.1 (13)O3—S1—C9106.54 (6)
C5—C4—H4A108.2 (9)S1—C9—H9A107.9 (12)
C5—C4—H4B107.6 (9)S1—C9—H9B109.3 (11)
N1—C5—C4109.73 (8)S1—C9—H9C107.3 (10)
N1—C5—H5A108.4 (9)H9A—C9—H9B111.6 (15)
N1—C5—H5B107.4 (9)H9A—C9—H9C111.6 (16)
C4—C5—H5A109.2 (9)H9B—C9—H9C108.9 (15)
C6—N1—C5—C4179.58 (8)C5—N1—C6—C8171.83 (9)
N2—C4—C5—N164.44 (11)C6i—C2—C3—N218.86 (14)
C3—N2—C4—C5153.05 (9)C6i—C2—C3—C1162.42 (9)
C4—N2—C3—C14.03 (16)N1—C6—C2i—C3i54.12 (11)
C4—N2—C3—C2177.43 (9)C5—N1—C6—C2i67.30 (11)
C5—N1—C6—C753.05 (11)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.908 (16)1.993 (16)2.7572 (13)140.9 (13)
N1—H1B···O10.880 (15)1.875 (15)2.7453 (12)169.5 (14)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

Financial support from the State University of New York for the acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

References

First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCurtis, N. F. (1960). J. Chem. Soc. pp. 4409–4416.  CrossRef Google Scholar
First citationCurtis, N. F. (1968). Coord. Chem. Rev. 3, 3–47.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTait, A. M. & Busch, D. H. (1978). Inorg. Synth. 18, 2–9.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds