organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Sulfamethizole–2-amino-4,6-di­meth­­oxy­pyrimidine (1/1)

aOndokuz Mayis University, KITAM Research Center, 55139 Atakum-Samsun, Turkey, bOndokuz Mayis University, Faculty of Arts and Sciences, Department of Chemistry, 55139 Atakum-Samsun, Turkey, and cOndokuz Mayis University, Faculty of Arts and Sciences, Department of Physics, 55139 Atakum-Samsun, Turkey
*Correspondence e-mail: iclalb@omu.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 June 2016; accepted 24 June 2016; online 30 June 2016)

In the title 1:1 co-crystal, C9H10N4O2S2·C6H9N3O2 [systematic name: 4-amino-N-(5-methyl-1,3,4-thia­diazol-2-yl)benzene­sulfonamide–2-amino-4,6-di­meth­oxy­pyrimidine (1/1)], the sulfamethazole mol­ecule is found in the form of the imidine tautomer. In the crystal, the components are linked by a pair of N—H⋯N hydrogen bonds, which generate an R22(8) loop. Further N—H⋯N and N—H⋯O hydrogen bonds link the dimers into [100] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Sulfamethizole [4-amino-N-(5-methyl-1,3,4-thia­diazol-2-yl)benzene­sulfonamide; SMT] is a bacteriostatic anti­biotic drug that contains the sulfonamide group and acts through the competitive inhibition of folic acid synthesis in bacteria (Kerrn et al., 2003[Kerrn, M. B., Frimodth-Møller, N. & Espersen, F. (2003). Antimicrob. Agents Chemother. 47, 1002-1009.]). The crystal structure of SMT shows that the mol­ecule exists as the imidine tautomer (Fuglp & Kalman, 1987[Fuglp, V. & Kalman, A. (1987). J. Mol. Struct. 159, 303-310.]). SMT displays good solubility in water, but it has a short biological half–life due to fast elimination and therefore bioavailability is limited (Suresh et al., 2015[Suresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E. & Nangia, A. (2015). Cryst. Growth Des. 15, 3498-3510.]). The drug dose should be increased to overcome this problem. Nevertheless, increasing the drug dosage leads to the occurrence of unwanted side effects and systemic toxicity. It has been reported that the biopharmaceutical properties of drugs can be improved by cocrystalization (Duggirala et al., 2016[Duggirala, N. K., Perry, M. L., Almarsson, Ö. & Zaworotko, M. (2016). Chem. Commun. 52, 640-655.]). Pharmaceutical cocrystal formation can result in a lower dissolution rate and thus, the bioavailability of the drug is increased. The hydrogen-bonding groups in the drug mol­ecule make it capable of forming cocrystals.

Sulfamethizole is a conformationally flexible drug and has rich hydrogen-bond groups (donors: amine NH2 and imine NH; acceptors: sulfonyl O atoms, thia­zolidine N and S, and imidine N). Therefore, sulfamethizole can easily form a cocrystal and this is reported extensively in the literature (Suresh et al., 2015[Suresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E. & Nangia, A. (2015). Cryst. Growth Des. 15, 3498-3510.]; Thomas et al., 2015[Thomas, S. P., Veccham, S. P. K. P., Farrugia, L. J. & Row, T. N. G. (2015). Cryst. Growth Des. 15, 2110-2118.]).

We now report the structure of the 1:1 co-crystal between sulfamethizole and 2-amino-4,6-di­meth­oxy­pyrimidine (Fig. 1[link]), which may provide insight into drug–protein recognition processes in biological systems.

[Figure 1]
Figure 1
The mol­ecular structure of the title co-crystal, with displacement elipsoids drawn at the 40% probability level.

The sulfamethizole mol­ecule is found in the form of the imidine tautomer (see Scheme). Two inter­molecular N—H⋯N hydrogen bonds appear in the asymmetric unit of the structure (Table 1[link]). The first (N7—H7A⋯N1) is between the pyrimidine NH group and the sulfaimidine N atom. The other (N2—H2⋯N5) is between the H atom on the thia­zole N atom and a pyrimidine ring N atom. These homonuclear hydrogen bonds generate an R22(8) loop motif (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N5 0.86 (3) 1.99 (3) 2.842 (2) 179 (2)
N4—H4A⋯N6i 0.87 (2) 2.29 (3) 3.151 (2) 172 (2)
N4—H4B⋯O1ii 0.84 (2) 2.25 (2) 3.026 (2) 153.4 (19)
N7—H7A⋯N1 0.83 (3) 2.33 (3) 3.160 (2) 179 (2)
N7—H7B⋯N4iii 0.86 (3) 2.62 (2) 3.176 (3) 123.7 (18)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z; (iii) x+1, y, z.
[Figure 2]
Figure 2
The hydrogen-bonding inter­actions in the title compound forming the crystal packing. The N—H⋯N hydrogen bonds form an R22(8) ring motif.

The dihedral angle between the planes of the thia­zole and benzene rings is 82.97 (5)°. The S2—C7—N1—S1 torsion angle is 5.0 (2)°, which is comparable with the sulfa (2.8°) and selanate (5.7°) salts of sulfamethizole, but lower than in sulfamethizole–4-amino­pyridine (7.16°) and much lower than in cocrystals of suılfamethizole–4-amino benzoic acid (30.8°) (Thomas et al., 2015[Thomas, S. P., Veccham, S. P. K. P., Farrugia, L. J. & Row, T. N. G. (2015). Cryst. Growth Des. 15, 2110-2118.]). These variations in the dihedral angle were attributed to the strength of the hydrogen bonding involved, since this affects the orientation, conformation and tautomeric form of sulfamethizole due to flexible rotation of the sulfonamide group (Suresh et al., 2015[Suresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E. & Nangia, A. (2015). Cryst. Growth Des. 15, 3498-3510.]).

Synthesis and crystallization

The title compound was prepared by mixing of 0.5 mmol qu­anti­ties of 2-amino-4,6-di­meth­oxy­pyrimidine with 0.5 mmol sulfamethizole obtained commercially. The mixture was then refluxed for 30 min at 323 K and left for slow evaporation for two weeks. Well-defined colourless crystals were collected for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H10N4O2S2·C6H9N3O2
Mr 425.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.9645 (5), 10.3576 (6), 12.7222 (7)
α, β, γ (°) 101.576 (5), 101.640 (5), 100.566 (5)
V3) 979.21 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.55 × 0.50 × 0.43
 
Data collection
Diffractometer Stoe IPDS II
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie, (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.843, 0.875
No. of measured, independent and observed [I > 2σ(I)] reflections 19762, 4515, 3910
Rint 0.118
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.08
No. of reflections 4515
No. of parameters 273
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.28
Computer programs: X-AREA and, X-RED32 (Stoe & Cie, 2002[Stoe & Cie, (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows(Farrugia,2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

4-Amino-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide; 2-amino-4,6-dimethoxypyrimidine top
Crystal data top
C9H10N4O2S2·C6H9N3O2Z = 2
Mr = 425.49F(000) = 444
Triclinic, P1Dx = 1.443 Mg m3
a = 7.9645 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3576 (6) ÅCell parameters from 19970 reflections
c = 12.7222 (7) Åθ = 2.7–26°
α = 101.576 (5)°µ = 0.31 mm1
β = 101.640 (5)°T = 293 K
γ = 100.566 (5)°Prism, colorless
V = 979.21 (10) Å30.55 × 0.50 × 0.43 mm
Data collection top
Stoe IPDS II
diffractometer
4515 independent reflections
Radiation source: fine-focus sealed tube3910 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.118
rotation method scansθmax = 27.6°, θmin = 2.7°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1010
Tmin = 0.843, Tmax = 0.875k = 1313
19762 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2223P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4515 reflectionsΔρmax = 0.38 e Å3
273 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2941 (2)0.31995 (17)0.69271 (13)0.0383 (3)
C20.3406 (2)0.45325 (18)0.75414 (15)0.0445 (4)
H2C0.45360.50530.76410.053*
C30.2202 (2)0.50910 (18)0.80052 (15)0.0460 (4)
H30.25250.59890.84130.055*
C40.0504 (2)0.43251 (17)0.78698 (13)0.0399 (3)
C50.0044 (2)0.29768 (17)0.72458 (14)0.0421 (4)
H50.10830.24520.71460.051*
C60.1245 (2)0.24235 (17)0.67801 (14)0.0417 (4)
H60.09260.15290.63660.050*
C70.4293 (2)0.01659 (18)0.67771 (13)0.0399 (3)
C80.2797 (3)0.2225 (2)0.60952 (16)0.0525 (4)
C90.1694 (4)0.3590 (2)0.5459 (2)0.0760 (7)
H9A0.10190.35230.47640.114*
H9B0.24430.42010.53260.114*
H9C0.09100.39250.58770.114*
C100.8114 (2)0.15307 (18)0.99761 (13)0.0404 (4)
C110.9544 (3)0.0998 (2)1.14895 (14)0.0456 (4)
C120.8567 (3)0.03299 (19)1.11218 (14)0.0478 (4)
H120.87270.09751.15230.057*
C130.7345 (2)0.06289 (18)1.01245 (14)0.0421 (4)
C140.6485 (3)0.2931 (2)1.0150 (2)0.0664 (6)
H14A0.56650.37540.97120.100*
H14B0.76660.30541.02250.100*
H14C0.62590.27071.08700.100*
C151.1865 (4)0.2621 (3)1.28728 (18)0.0719 (7)
H15A1.26450.26781.35710.108*
H15B1.25450.28031.23540.108*
H15C1.11620.32761.29690.108*
N10.5048 (2)0.14709 (15)0.70960 (12)0.0445 (3)
N20.4668 (2)0.06597 (16)0.74267 (13)0.0484 (4)
N30.3839 (2)0.20093 (17)0.70591 (14)0.0546 (4)
N40.0696 (2)0.48684 (19)0.83644 (15)0.0493 (4)
N50.7090 (2)0.02878 (15)0.95416 (11)0.0428 (3)
N60.9366 (2)0.19515 (15)1.09468 (12)0.0431 (3)
N70.7878 (3)0.2465 (2)0.93969 (16)0.0560 (4)
O10.60116 (18)0.35499 (15)0.65218 (13)0.0567 (3)
O20.36048 (19)0.17430 (15)0.52230 (10)0.0543 (3)
O31.0740 (2)0.12920 (16)1.24624 (11)0.0650 (4)
O40.62877 (19)0.18590 (14)0.96184 (11)0.0556 (3)
S10.44759 (6)0.24784 (5)0.63460 (3)0.04182 (13)
S20.27661 (7)0.08031 (5)0.55645 (4)0.04938 (14)
H20.541 (3)0.037 (3)0.806 (2)0.066 (7)*
H4A0.043 (3)0.575 (3)0.8510 (18)0.057 (6)*
H4B0.176 (3)0.455 (2)0.8035 (18)0.049 (6)*
H7A0.713 (3)0.220 (2)0.880 (2)0.060 (7)*
H7B0.860 (3)0.324 (3)0.9634 (19)0.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0365 (8)0.0400 (8)0.0366 (7)0.0094 (7)0.0011 (6)0.0131 (6)
C20.0389 (9)0.0398 (9)0.0495 (9)0.0015 (7)0.0043 (7)0.0128 (7)
C30.0489 (10)0.0340 (8)0.0492 (9)0.0052 (7)0.0055 (8)0.0075 (7)
C40.0429 (9)0.0397 (8)0.0372 (8)0.0110 (7)0.0038 (6)0.0147 (6)
C50.0346 (8)0.0399 (9)0.0466 (9)0.0044 (7)0.0020 (7)0.0107 (7)
C60.0388 (8)0.0358 (8)0.0434 (8)0.0063 (7)0.0010 (7)0.0072 (6)
C70.0359 (8)0.0462 (9)0.0355 (8)0.0116 (7)0.0033 (6)0.0094 (7)
C80.0562 (11)0.0498 (11)0.0441 (9)0.0000 (9)0.0060 (8)0.0126 (8)
C90.0939 (18)0.0550 (13)0.0570 (13)0.0162 (12)0.0001 (12)0.0134 (10)
C100.0429 (9)0.0455 (9)0.0351 (8)0.0137 (7)0.0079 (7)0.0140 (7)
C110.0513 (10)0.0515 (10)0.0329 (8)0.0166 (8)0.0036 (7)0.0109 (7)
C120.0589 (11)0.0471 (10)0.0383 (8)0.0151 (8)0.0031 (8)0.0189 (7)
C130.0461 (9)0.0438 (9)0.0376 (8)0.0121 (7)0.0081 (7)0.0136 (7)
C140.0813 (15)0.0459 (11)0.0617 (12)0.0022 (11)0.0037 (11)0.0231 (10)
C150.0807 (16)0.0658 (14)0.0484 (11)0.0068 (12)0.0171 (11)0.0101 (10)
N10.0451 (8)0.0440 (8)0.0396 (7)0.0137 (6)0.0037 (6)0.0109 (6)
N20.0511 (9)0.0451 (8)0.0412 (8)0.0075 (7)0.0040 (7)0.0119 (6)
N30.0618 (10)0.0451 (9)0.0486 (9)0.0025 (8)0.0020 (7)0.0141 (7)
N40.0477 (9)0.0446 (9)0.0549 (9)0.0124 (7)0.0109 (7)0.0110 (7)
N50.0454 (8)0.0464 (8)0.0357 (7)0.0109 (6)0.0028 (6)0.0153 (6)
N60.0462 (8)0.0445 (8)0.0362 (7)0.0128 (6)0.0043 (6)0.0088 (6)
N70.0631 (11)0.0478 (10)0.0496 (9)0.0045 (9)0.0049 (8)0.0219 (8)
O10.0430 (7)0.0598 (8)0.0706 (9)0.0088 (6)0.0151 (6)0.0252 (7)
O20.0626 (8)0.0652 (9)0.0357 (6)0.0214 (7)0.0056 (6)0.0144 (6)
O30.0777 (10)0.0597 (9)0.0430 (7)0.0112 (8)0.0150 (7)0.0142 (6)
O40.0634 (9)0.0467 (7)0.0476 (7)0.0032 (6)0.0043 (6)0.0183 (6)
S10.0390 (2)0.0474 (2)0.0397 (2)0.01207 (18)0.00461 (16)0.01532 (17)
S20.0511 (3)0.0509 (3)0.0368 (2)0.0043 (2)0.00223 (18)0.00978 (18)
Geometric parameters (Å, º) top
C1—C21.385 (2)C11—N61.325 (2)
C1—C61.395 (2)C11—O31.341 (2)
C1—S11.7544 (17)C11—C121.385 (3)
C2—C31.377 (3)C12—C131.373 (2)
C2—H2C0.9300C12—H120.9300
C3—C41.395 (3)C13—N51.336 (2)
C3—H30.9300C13—O41.344 (2)
C4—N41.387 (2)C14—O41.427 (2)
C4—C51.402 (2)C14—H14A0.9600
C5—C61.374 (2)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300C15—O31.429 (3)
C7—N11.318 (2)C15—H15A0.9600
C7—N21.334 (2)C15—H15B0.9600
C7—S21.7437 (17)C15—H15C0.9600
C8—N31.286 (2)N1—S11.6142 (14)
C8—C91.492 (3)N2—N31.372 (2)
C8—S21.741 (2)N2—H20.86 (3)
C9—H9A0.9600N4—H4A0.87 (2)
C9—H9B0.9600N4—H4B0.84 (2)
C9—H9C0.9600N7—H7A0.83 (3)
C10—N51.332 (2)N7—H7B0.86 (3)
C10—N71.346 (2)O1—S11.4387 (15)
C10—N61.356 (2)O2—S11.4396 (14)
C2—C1—C6119.65 (16)C11—C12—H12122.3
C2—C1—S1120.42 (13)N5—C13—O4112.31 (15)
C6—C1—S1119.92 (13)N5—C13—C12123.03 (17)
C3—C2—C1120.25 (17)O4—C13—C12124.66 (16)
C3—C2—H2C119.9O4—C14—H14A109.5
C1—C2—H2C119.9O4—C14—H14B109.5
C2—C3—C4120.73 (17)H14A—C14—H14B109.5
C2—C3—H3119.6O4—C14—H14C109.5
C4—C3—H3119.6H14A—C14—H14C109.5
N4—C4—C3121.00 (17)H14B—C14—H14C109.5
N4—C4—C5120.36 (17)O3—C15—H15A109.5
C3—C4—C5118.62 (16)O3—C15—H15B109.5
C6—C5—C4120.56 (16)H15A—C15—H15B109.5
C6—C5—H5119.7O3—C15—H15C109.5
C4—C5—H5119.7H15A—C15—H15C109.5
C5—C6—C1120.20 (16)H15B—C15—H15C109.5
C5—C6—H6119.9C7—N1—S1120.34 (12)
C1—C6—H6119.9C7—N2—N3118.54 (15)
N1—C7—N2120.79 (15)C7—N2—H2122.1 (17)
N1—C7—S2131.24 (13)N3—N2—H2119.4 (17)
N2—C7—S2107.97 (13)C8—N3—N2109.41 (16)
N3—C8—C9123.13 (19)C4—N4—H4A111.3 (15)
N3—C8—S2115.29 (16)C4—N4—H4B116.1 (15)
C9—C8—S2121.58 (16)H4A—N4—H4B111 (2)
C8—C9—H9A109.5C10—N5—C13116.13 (14)
C8—C9—H9B109.5C11—N6—C10114.42 (16)
H9A—C9—H9B109.5C10—N7—H7A116.6 (17)
C8—C9—H9C109.5C10—N7—H7B117.5 (15)
H9A—C9—H9C109.5H7A—N7—H7B125 (2)
H9B—C9—H9C109.5C11—O3—C15119.04 (16)
N5—C10—N7116.88 (16)C13—O4—C14117.21 (15)
N5—C10—N6126.51 (15)O1—S1—O2117.78 (9)
N7—C10—N6116.61 (17)O1—S1—N1106.72 (8)
N6—C11—O3119.99 (18)O2—S1—N1111.25 (8)
N6—C11—C12124.48 (16)O1—S1—C1107.18 (9)
O3—C11—C12115.53 (16)O2—S1—C1107.85 (8)
C13—C12—C11115.43 (16)N1—S1—C1105.32 (8)
C13—C12—H12122.3C8—S2—C788.79 (9)
C6—C1—C2—C30.0 (2)O4—C13—N5—C10178.71 (15)
S1—C1—C2—C3179.37 (13)C12—C13—N5—C100.7 (3)
C1—C2—C3—C40.3 (3)O3—C11—N6—C10179.90 (16)
C2—C3—C4—N4177.91 (16)C12—C11—N6—C100.4 (3)
C2—C3—C4—C50.4 (3)N5—C10—N6—C110.0 (3)
N4—C4—C5—C6178.20 (15)N7—C10—N6—C11179.69 (17)
C3—C4—C5—C60.1 (2)N6—C11—O3—C152.9 (3)
C4—C5—C6—C10.2 (2)C12—C11—O3—C15176.8 (2)
C2—C1—C6—C50.2 (2)N5—C13—O4—C14178.00 (17)
S1—C1—C6—C5179.10 (12)C12—C13—O4—C141.4 (3)
N6—C11—C12—C130.2 (3)C7—N1—S1—O1149.25 (15)
O3—C11—C12—C13179.89 (16)C7—N1—S1—O219.54 (18)
C11—C12—C13—N50.4 (3)C7—N1—S1—C197.05 (15)
C11—C12—C13—O4178.95 (17)C2—C1—S1—O17.28 (16)
N2—C7—N1—S1175.32 (13)C6—C1—S1—O1173.37 (13)
S2—C7—N1—S15.0 (2)C2—C1—S1—O2135.02 (14)
N1—C7—N2—N3179.62 (17)C6—C1—S1—O245.64 (15)
S2—C7—N2—N30.6 (2)C2—C1—S1—N1106.10 (14)
C9—C8—N3—N2180.0 (2)C6—C1—S1—N173.24 (14)
S2—C8—N3—N20.5 (2)N3—C8—S2—C70.68 (18)
C7—N2—N3—C80.1 (3)C9—C8—S2—C7179.8 (2)
N7—C10—N5—C13179.77 (16)N1—C7—S2—C8179.59 (19)
N6—C10—N5—C130.5 (3)N2—C7—S2—C80.67 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N50.86 (3)1.99 (3)2.842 (2)179 (2)
N4—H4A···N6i0.87 (2)2.29 (3)3.151 (2)172 (2)
N4—H4B···O1ii0.84 (2)2.25 (2)3.026 (2)153.4 (19)
N7—H7A···N10.83 (3)2.33 (3)3.160 (2)179 (2)
N7—H7B···N4iii0.86 (3)2.62 (2)3.176 (3)123.7 (18)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

We thank Ondokuz Mayis University Research Fund (PYO.FEN.1904.12.019) for financial support and also to Professor Dr Orhan Büyükgüngör for collecting the XRD data.

References

First citationDuggirala, N. K., Perry, M. L., Almarsson, Ö. & Zaworotko, M. (2016). Chem. Commun. 52, 640–655.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuglp, V. & Kalman, A. (1987). J. Mol. Struct. 159, 303–310.  Google Scholar
First citationKerrn, M. B., Frimodth-Møller, N. & Espersen, F. (2003). Antimicrob. Agents Chemother. 47, 1002–1009.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie, (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E. & Nangia, A. (2015). Cryst. Growth Des. 15, 3498–3510.  CrossRef CAS Google Scholar
First citationThomas, S. P., Veccham, S. P. K. P., Farrugia, L. J. & Row, T. N. G. (2015). Cryst. Growth Des. 15, 2110–2118.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds