organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[(2Z)-2-Benzyl­­idene-3-oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl]acetic acid

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and dDépartement de chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: ellouz.chimie@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 May 2016; accepted 29 May 2016; online 17 June 2016)

In the title compound, C17H13NO3S, the thia­zine ring displays a screw-boat conformation. The dihedral angle between the terminal benzene ring and the mean plane of the 1,4-benzo­thia­zine fused-ring system is 51.52 (6)°. In the crystal, inversion dimers linked by pairs of O—H⋯Ot (t = thia­zine) hydrogen bonds generate R22(14) loops. The dimers are linked by pairwise C—H⋯O hydrogen bonds, resulting in [010] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies of substituted 1,4-benzo­thia­zine derivatives (Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]; Sebbar et al., 2015[Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o999.]), we report the synthesis of a 1,4-benzo­thia­zine derivative (Fig. 1[link]) by the hydrolysis reaction with aqueous solution of potassium hydroxide of ethyl 2-(3-oxo-2,3-di­hydro­[1,4]-benzo­thia­zin-4-yl)acetate in ethanol.

[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.

A puckering analysis of the heterocyclic ring gave parameters Q = 0.430 (1) Å, θ = 106.1 (2)° and φ = 167.5 (2)°. The dihedral angle between the C1–C6 and C10–C15 rings is 56.70 (5)°. In the crystal, pair-wise O2—H2A⋯O1i [symmetry code: (i) 2 − x, 1 − y, 2 − z) hydrogen bonds form inversion dimers, which are connected into chains running parallel to the b axis by pair-wise C16—H16A⋯O3ii [symmetry code: (ii) 2 − x, −y, 2 − z) hydrogen bonds (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.92 (2) 1.78 (2) 2.6591 (13) 161 (2)
C16—H16A⋯O3ii 0.99 2.47 3.3583 (16) 149
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y, -z+2.
[Figure 2]
Figure 2
A part of the unit cell showing inter­molecular hydrogen bonds (dotted lines) in the crystal structure of the title compound.

Synthesis and crystallization

A solution of potassium hydroxide (12.5 mmol) in water (5 ml) was added to the solution of ethyl (Z)-2-(2-benzyl­idene-2,3-di­hydro-[1,4]-benzo­thia­zin-3-one-4-yl)acetate­(3.07 mmol) in ethanol (10 ml). The resulting reaction mixture was stirred at room temperature for 6 h and the reaction completion was checked by TLC. The reaction mixture was poured into water and acidified with 3 M HCl to form the title compound as a colorless solid. The solid product was purified by recrystallization from ethanol solution to afford colorless crystals in 80% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H13NO3S
Mr 311.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.6760 (3), 8.7882 (3), 9.8142 (4)
α, β, γ (°) 78.200 (1), 73.311 (1), 86.242 (1)
V3) 701.61 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.16
Crystal size (mm) 0.17 × 0.11 × 0.09
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.68, 0.83
No. of measured, independent and observed [I > 2σ(I)] reflections 20850, 2816, 2698
Rint 0.028
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.04
No. of reflections 2816
No. of parameters 203
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[(2Z)-2-Benzylidene-3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl]acetic acid top
Crystal data top
C17H13NO3SZ = 2
Mr = 311.34F(000) = 324
Triclinic, P1Dx = 1.474 Mg m3
a = 8.6760 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.7882 (3) ÅCell parameters from 9893 reflections
c = 9.8142 (4) Åθ = 4.8–74.7°
α = 78.200 (1)°µ = 2.16 mm1
β = 73.311 (1)°T = 150 K
γ = 86.242 (1)°Block, colourless
V = 701.61 (4) Å30.17 × 0.11 × 0.09 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2816 independent reflections
Radiation source: INCOATEC IµS micro–focus source2698 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4167 pixels mm-1θmax = 74.6°, θmin = 4.8°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 910
Tmin = 0.68, Tmax = 0.83l = 1212
20850 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.2923P]
where P = (Fo2 + 2Fc2)/3
2816 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61329 (4)0.52854 (4)0.64991 (3)0.02465 (11)
O10.73459 (11)0.46100 (11)1.01298 (10)0.0243 (2)
O21.08484 (12)0.38446 (11)0.88403 (10)0.0264 (2)
H2A1.159 (3)0.417 (3)0.922 (2)0.056 (6)*
O31.06908 (13)0.17480 (12)1.06181 (11)0.0322 (2)
N10.80930 (13)0.32446 (12)0.83337 (11)0.0207 (2)
C10.85510 (15)0.31621 (15)0.68359 (14)0.0206 (3)
C20.98019 (16)0.21791 (16)0.62797 (15)0.0253 (3)
H21.03670.15720.69030.030*
C31.02251 (17)0.20820 (17)0.48272 (16)0.0291 (3)
H31.10700.14000.44650.035*
C40.94287 (18)0.29701 (17)0.38981 (15)0.0294 (3)
H40.97170.28940.29040.035*
C50.82079 (17)0.39689 (16)0.44328 (15)0.0264 (3)
H50.76710.45960.37970.032*
C60.77588 (15)0.40624 (15)0.58941 (14)0.0217 (3)
C70.66020 (15)0.57311 (15)0.79937 (14)0.0207 (3)
C80.73771 (15)0.45155 (15)0.88811 (13)0.0202 (3)
C90.61808 (15)0.70741 (15)0.84638 (15)0.0230 (3)
H90.64710.71500.93100.028*
C100.53440 (15)0.84350 (15)0.78719 (14)0.0228 (3)
C110.42571 (16)0.83932 (16)0.70696 (15)0.0263 (3)
H110.40390.74340.68610.032*
C120.34936 (18)0.97462 (18)0.65750 (16)0.0318 (3)
H120.27650.97080.60220.038*
C130.37898 (18)1.11481 (17)0.68845 (17)0.0346 (3)
H130.32771.20720.65320.042*
C140.48335 (19)1.12025 (18)0.7708 (2)0.0376 (4)
H140.50211.21610.79370.045*
C150.56053 (17)0.98580 (17)0.81981 (18)0.0319 (3)
H150.63200.99030.87620.038*
C160.86963 (16)0.20705 (15)0.93505 (14)0.0229 (3)
H16A0.89360.11060.89520.027*
H16B0.78320.18311.02740.027*
C171.01887 (16)0.25291 (15)0.96737 (14)0.0222 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02793 (18)0.02328 (18)0.02754 (18)0.00799 (12)0.01553 (13)0.00721 (12)
O10.0268 (5)0.0251 (5)0.0222 (4)0.0002 (4)0.0094 (4)0.0041 (3)
O20.0276 (5)0.0275 (5)0.0256 (5)0.0022 (4)0.0124 (4)0.0007 (4)
O30.0417 (6)0.0271 (5)0.0335 (5)0.0042 (4)0.0232 (5)0.0019 (4)
N10.0226 (5)0.0191 (5)0.0218 (5)0.0035 (4)0.0101 (4)0.0029 (4)
C10.0213 (6)0.0196 (6)0.0225 (6)0.0009 (5)0.0082 (5)0.0041 (5)
C20.0232 (6)0.0237 (6)0.0306 (7)0.0037 (5)0.0104 (5)0.0059 (5)
C30.0259 (7)0.0283 (7)0.0334 (7)0.0029 (5)0.0055 (6)0.0116 (6)
C40.0328 (7)0.0307 (7)0.0251 (7)0.0020 (6)0.0062 (6)0.0089 (5)
C50.0308 (7)0.0261 (7)0.0244 (6)0.0006 (5)0.0116 (5)0.0036 (5)
C60.0230 (6)0.0190 (6)0.0246 (6)0.0001 (5)0.0091 (5)0.0040 (5)
C70.0183 (6)0.0205 (6)0.0236 (6)0.0009 (5)0.0073 (5)0.0031 (5)
C80.0187 (6)0.0200 (6)0.0225 (6)0.0007 (5)0.0072 (5)0.0032 (5)
C90.0201 (6)0.0230 (7)0.0272 (6)0.0016 (5)0.0088 (5)0.0053 (5)
C100.0197 (6)0.0207 (6)0.0265 (6)0.0026 (5)0.0046 (5)0.0046 (5)
C110.0264 (6)0.0246 (7)0.0289 (7)0.0061 (5)0.0095 (5)0.0069 (5)
C120.0297 (7)0.0339 (8)0.0305 (7)0.0104 (6)0.0105 (6)0.0038 (6)
C130.0296 (7)0.0242 (7)0.0411 (8)0.0068 (6)0.0042 (6)0.0035 (6)
C140.0306 (7)0.0202 (7)0.0595 (10)0.0005 (6)0.0096 (7)0.0071 (6)
C150.0254 (7)0.0257 (7)0.0473 (9)0.0013 (5)0.0125 (6)0.0100 (6)
C160.0259 (6)0.0195 (6)0.0236 (6)0.0027 (5)0.0107 (5)0.0007 (5)
C170.0255 (6)0.0219 (6)0.0207 (6)0.0061 (5)0.0086 (5)0.0061 (5)
Geometric parameters (Å, º) top
S1—C71.7519 (13)C7—C91.3449 (18)
S1—C61.7546 (13)C7—C81.4878 (17)
O1—C81.2376 (16)C9—C101.4626 (18)
O2—C171.3282 (17)C9—H90.9500
O2—H2A0.92 (2)C10—C111.3976 (19)
O3—C171.2052 (16)C10—C151.400 (2)
N1—C81.3729 (16)C11—C121.3905 (19)
N1—C11.4242 (16)C11—H110.9500
N1—C161.4637 (15)C12—C131.384 (2)
C1—C61.3954 (18)C12—H120.9500
C1—C21.3970 (18)C13—C141.384 (2)
C2—C31.385 (2)C13—H130.9500
C2—H20.9500C14—C151.387 (2)
C3—C41.385 (2)C14—H140.9500
C3—H30.9500C15—H150.9500
C4—C51.384 (2)C16—C171.5154 (18)
C4—H40.9500C16—H16A0.9900
C5—C61.3923 (19)C16—H16B0.9900
C5—H50.9500
C7—S1—C6100.41 (6)C7—C9—H9115.1
C17—O2—H2A109.4 (14)C10—C9—H9115.1
C8—N1—C1124.44 (10)C11—C10—C15118.42 (12)
C8—N1—C16114.83 (10)C11—C10—C9124.55 (12)
C1—N1—C16119.46 (10)C15—C10—C9116.96 (12)
C6—C1—C2118.67 (12)C12—C11—C10120.45 (13)
C6—C1—N1120.63 (11)C12—C11—H11119.8
C2—C1—N1120.71 (11)C10—C11—H11119.8
C3—C2—C1120.52 (12)C13—C12—C11120.32 (14)
C3—C2—H2119.7C13—C12—H12119.8
C1—C2—H2119.7C11—C12—H12119.8
C4—C3—C2120.62 (13)C12—C13—C14119.93 (13)
C4—C3—H3119.7C12—C13—H13120.0
C2—C3—H3119.7C14—C13—H13120.0
C5—C4—C3119.30 (13)C13—C14—C15120.01 (14)
C5—C4—H4120.4C13—C14—H14120.0
C3—C4—H4120.4C15—C14—H14120.0
C4—C5—C6120.59 (13)C14—C15—C10120.83 (14)
C4—C5—H5119.7C14—C15—H15119.6
C6—C5—H5119.7C10—C15—H15119.6
C5—C6—C1120.28 (12)N1—C16—C17115.04 (11)
C5—C6—S1117.61 (10)N1—C16—H16A108.5
C1—C6—S1122.06 (10)C17—C16—H16A108.5
C9—C7—C8117.37 (12)N1—C16—H16B108.5
C9—C7—S1123.59 (10)C17—C16—H16B108.5
C8—C7—S1118.80 (9)H16A—C16—H16B107.5
O1—C8—N1119.20 (11)O3—C17—O2124.70 (13)
O1—C8—C7120.81 (11)O3—C17—C16121.37 (12)
N1—C8—C7119.97 (11)O2—C17—C16113.93 (11)
C7—C9—C10129.89 (13)
C8—N1—C1—C626.36 (19)C16—N1—C8—C7175.22 (11)
C16—N1—C1—C6167.24 (12)C9—C7—C8—O113.88 (18)
C8—N1—C1—C2153.63 (12)S1—C7—C8—O1160.73 (10)
C16—N1—C1—C212.77 (18)C9—C7—C8—N1168.25 (12)
C6—C1—C2—C31.1 (2)S1—C7—C8—N117.15 (16)
N1—C1—C2—C3178.87 (12)C8—C7—C9—C10176.82 (12)
C1—C2—C3—C40.7 (2)S1—C7—C9—C102.5 (2)
C2—C3—C4—C50.5 (2)C7—C9—C10—C1127.5 (2)
C3—C4—C5—C61.2 (2)C7—C9—C10—C15155.58 (14)
C4—C5—C6—C10.8 (2)C15—C10—C11—C121.8 (2)
C4—C5—C6—S1176.86 (11)C9—C10—C11—C12178.69 (13)
C2—C1—C6—C50.36 (19)C10—C11—C12—C130.6 (2)
N1—C1—C6—C5179.65 (12)C11—C12—C13—C140.9 (2)
C2—C1—C6—S1177.95 (10)C12—C13—C14—C151.2 (2)
N1—C1—C6—S12.06 (17)C13—C14—C15—C100.0 (2)
C7—S1—C6—C5153.85 (11)C11—C10—C15—C141.5 (2)
C7—S1—C6—C128.50 (12)C9—C10—C15—C14178.61 (14)
C6—S1—C7—C9150.49 (12)C8—N1—C16—C1772.15 (14)
C6—S1—C7—C835.26 (11)C1—N1—C16—C1795.52 (14)
C1—N1—C8—O1164.28 (11)N1—C16—C17—O3171.05 (12)
C16—N1—C8—O12.69 (17)N1—C16—C17—O28.42 (16)
C1—N1—C8—C717.81 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.92 (2)1.78 (2)2.6591 (13)161 (2)
C16—H16A···O3ii0.992.473.3583 (16)149
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds