organic compounds
1-Allyl-5-chloroindoline-2,3-dione
aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, and dDépartement de Chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: haoudi_amal@yahoo.fr
In the title compound, C11H8ClNO2, the allyl side chain is almost perpendicular to the 5-chloroindoline-2,3-dione ring system, with a dihedral angle of 88.0 (3)°. In the crystal, C—H⋯O interactions link the molecules into layers lying parallel to the bc plane.
Keywords: crystal structure; hydrogen bonds; layers; indoline.
CCDC reference: 1482398
Structure description
As part of our ongoing studies of 5-chloroisatin derivatives (Kharbach et al., 2016), we now describe the structure of the title compound, C11H8ClNO2 (Fig. 1), which was obtained by reaction of 5-chloroisatin with allyl bromide in conditions.
The allyl group is almost perpendicular to the 5-chloroindoline-2,3-dione ring system (r.m.s. deviation = 0.034 Å) with a dihedral angle of 88.0 (3)°: the N1—C9—C10—C11 torsion angle is −5.7 (5)°. In the crystal, C—H⋯O interactions (Fig. 2, Table 1) link molecules into layers running parallel to the bc plane (Fig. 3).
Synthesis and crystallization
To a solution of 5-chloro-1H-indole-2,3-dione (0.4 g, 2,20 mmol) in DMF (25 ml) was added K2CO3 (0.5 g, 3,30 mmol) as a base, tetra-n-butylammoium bromide (0.1 g, 0,3 mmol) as catalyst and then 3-bromoprop-1-ene (0.34 ml, 2.97 mmol). The reaction mixture was stirred for 48 h at room temperature; once the reaction was complete, the solvent was evaporated in vacuo. The title compound obtained was recrystallized from ethanol solution to afford red crystals (yield: 89%, m.p.: 415 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1482398
10.1107/S2414314616008622/hb4053sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616008622/hb4053Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616008622/hb4053Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C11H8ClNO2 | Dx = 1.430 Mg m−3 |
Mr = 221.63 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pccn | Cell parameters from 9899 reflections |
a = 31.2222 (6) Å | θ = 2.7–26.7° |
b = 7.9107 (2) Å | µ = 0.35 mm−1 |
c = 8.3373 (2) Å | T = 296 K |
V = 2059.23 (8) Å3 | Block, red |
Z = 8 | 0.53 × 0.30 × 0.28 mm |
F(000) = 912 |
Bruker APEXII CCD diffractometer | 1889 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.030 |
Absorption correction: multi-scan (SADABS, Bruker, 2015) | θmax = 28.3°, θmin = 2.6° |
Tmin = 0.705, Tmax = 0.746 | h = −41→41 |
33452 measured reflections | k = −10→10 |
2554 independent reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | All H-atom parameters refined |
wR(F2) = 0.146 | w = 1/[σ2(Fo2) + (0.0718P)2 + 0.7243P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2554 reflections | Δρmax = 0.28 e Å−3 |
168 parameters | Δρmin = −0.20 e Å−3 |
0 restraints |
Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0610 before and 0.0436 after correction. The Ratio of minimum to maximum transmission is 0.9447. The λ/2 correction factor is Not present. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.74155 (2) | 0.50698 (9) | 0.57033 (8) | 0.0830 (3) | |
O1 | 0.63056 (6) | 0.04791 (17) | 0.2249 (2) | 0.0740 (5) | |
N1 | 0.59967 (5) | 0.4519 (2) | 0.10974 (19) | 0.0534 (4) | |
O2 | 0.56737 (5) | 0.2127 (2) | 0.0112 (2) | 0.0819 (5) | |
C6 | 0.65189 (5) | 0.3371 (2) | 0.2739 (2) | 0.0442 (4) | |
C1 | 0.63365 (6) | 0.4861 (2) | 0.2156 (2) | 0.0442 (4) | |
C7 | 0.62735 (6) | 0.1975 (2) | 0.2048 (2) | 0.0527 (5) | |
C5 | 0.68569 (6) | 0.3403 (2) | 0.3809 (2) | 0.0503 (4) | |
C2 | 0.64914 (7) | 0.6414 (2) | 0.2625 (2) | 0.0536 (5) | |
C8 | 0.59347 (6) | 0.2826 (3) | 0.0950 (2) | 0.0573 (5) | |
C4 | 0.70061 (6) | 0.4964 (3) | 0.4293 (2) | 0.0545 (5) | |
C3 | 0.68305 (7) | 0.6445 (3) | 0.3703 (3) | 0.0568 (5) | |
C9 | 0.57319 (8) | 0.5799 (4) | 0.0313 (3) | 0.0660 (6) | |
C10 | 0.53684 (8) | 0.6399 (4) | 0.1317 (3) | 0.0751 (7) | |
C11 | 0.52504 (9) | 0.5846 (4) | 0.2675 (3) | 0.0843 (8) | |
H2 | 0.6377 (7) | 0.744 (3) | 0.220 (3) | 0.066 (6)* | |
H5 | 0.6966 (7) | 0.247 (3) | 0.423 (2) | 0.058 (6)* | |
H3 | 0.6932 (7) | 0.743 (3) | 0.409 (3) | 0.072 (7)* | |
H9A | 0.5617 (9) | 0.529 (3) | −0.069 (3) | 0.086 (8)* | |
H11A | 0.5430 (13) | 0.501 (4) | 0.331 (4) | 0.116 (11)* | |
H10 | 0.5239 (13) | 0.753 (6) | 0.133 (5) | 0.162 (15)* | |
H11B | 0.5002 (10) | 0.641 (4) | 0.330 (4) | 0.102 (9)* | |
H9B | 0.5925 (9) | 0.678 (4) | 0.002 (4) | 0.095 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0629 (4) | 0.1088 (6) | 0.0774 (4) | −0.0004 (3) | −0.0143 (3) | −0.0100 (3) |
O1 | 0.0905 (11) | 0.0387 (7) | 0.0928 (11) | −0.0027 (7) | 0.0278 (9) | −0.0023 (7) |
N1 | 0.0521 (8) | 0.0554 (9) | 0.0527 (8) | 0.0046 (7) | 0.0032 (7) | −0.0018 (7) |
O2 | 0.0649 (9) | 0.0938 (12) | 0.0869 (11) | −0.0134 (8) | 0.0027 (8) | −0.0329 (10) |
C6 | 0.0468 (9) | 0.0383 (8) | 0.0474 (9) | 0.0017 (6) | 0.0135 (7) | 0.0007 (7) |
C1 | 0.0446 (8) | 0.0434 (8) | 0.0447 (8) | 0.0027 (7) | 0.0098 (7) | 0.0011 (7) |
C7 | 0.0584 (10) | 0.0418 (9) | 0.0578 (10) | −0.0020 (7) | 0.0238 (9) | −0.0051 (8) |
C5 | 0.0493 (9) | 0.0487 (10) | 0.0529 (10) | 0.0093 (8) | 0.0106 (8) | 0.0057 (8) |
C2 | 0.0616 (11) | 0.0372 (9) | 0.0620 (11) | 0.0050 (8) | 0.0098 (9) | 0.0021 (8) |
C8 | 0.0499 (9) | 0.0625 (12) | 0.0595 (11) | −0.0044 (9) | 0.0136 (9) | −0.0139 (9) |
C4 | 0.0457 (9) | 0.0652 (12) | 0.0525 (10) | −0.0001 (8) | 0.0050 (8) | −0.0041 (9) |
C3 | 0.0572 (11) | 0.0482 (10) | 0.0651 (12) | −0.0076 (8) | 0.0097 (9) | −0.0097 (9) |
C9 | 0.0627 (13) | 0.0810 (15) | 0.0543 (11) | 0.0172 (11) | −0.0011 (10) | 0.0087 (11) |
C10 | 0.0705 (14) | 0.0852 (17) | 0.0695 (14) | 0.0262 (12) | −0.0011 (11) | 0.0013 (12) |
C11 | 0.0718 (15) | 0.111 (2) | 0.0702 (16) | 0.0296 (15) | 0.0040 (13) | −0.0046 (15) |
Cl1—C4 | 1.739 (2) | C5—H5 | 0.89 (2) |
O1—C7 | 1.200 (2) | C2—C3 | 1.389 (3) |
N1—C1 | 1.406 (2) | C2—H2 | 0.95 (2) |
N1—C8 | 1.359 (3) | C4—C3 | 1.384 (3) |
N1—C9 | 1.461 (3) | C3—H3 | 0.91 (3) |
O2—C8 | 1.208 (2) | C9—C10 | 1.487 (3) |
C6—C1 | 1.396 (2) | C9—H9A | 1.00 (3) |
C6—C7 | 1.462 (3) | C9—H9B | 1.01 (3) |
C6—C5 | 1.382 (3) | C10—C11 | 1.269 (4) |
C1—C2 | 1.377 (3) | C10—H10 | 0.98 (5) |
C7—C8 | 1.552 (3) | C11—H11A | 1.02 (4) |
C5—C4 | 1.380 (3) | C11—H11B | 1.04 (3) |
C1—N1—C9 | 125.07 (18) | O2—C8—C7 | 127.1 (2) |
C8—N1—C1 | 110.69 (16) | C5—C4—Cl1 | 119.25 (16) |
C8—N1—C9 | 124.2 (2) | C5—C4—C3 | 121.34 (19) |
C1—C6—C7 | 106.63 (16) | C3—C4—Cl1 | 119.40 (16) |
C5—C6—C1 | 121.35 (16) | C2—C3—H3 | 121.0 (15) |
C5—C6—C7 | 131.98 (16) | C4—C3—C2 | 121.12 (18) |
C6—C1—N1 | 111.36 (15) | C4—C3—H3 | 117.8 (15) |
C2—C1—N1 | 127.91 (17) | N1—C9—C10 | 113.65 (19) |
C2—C1—C6 | 120.73 (17) | N1—C9—H9A | 107.4 (16) |
O1—C7—C6 | 130.2 (2) | N1—C9—H9B | 107.7 (17) |
O1—C7—C8 | 124.55 (19) | C10—C9—H9A | 109.1 (16) |
C6—C7—C8 | 105.22 (15) | C10—C9—H9B | 110.3 (17) |
C6—C5—H5 | 122.0 (14) | H9A—C9—H9B | 109 (2) |
C4—C5—C6 | 117.58 (17) | C9—C10—H10 | 128 (3) |
C4—C5—H5 | 120.3 (14) | C11—C10—C9 | 127.8 (2) |
C1—C2—C3 | 117.86 (18) | C11—C10—H10 | 101 (3) |
C1—C2—H2 | 121.4 (14) | C10—C11—H11A | 122 (2) |
C3—C2—H2 | 120.7 (14) | C10—C11—H11B | 121.3 (16) |
N1—C8—C7 | 106.07 (16) | H11A—C11—H11B | 116 (3) |
O2—C8—N1 | 126.8 (2) | ||
Cl1—C4—C3—C2 | −177.33 (15) | C1—C2—C3—C4 | −0.3 (3) |
O1—C7—C8—N1 | 177.91 (18) | C7—C6—C1—N1 | −1.66 (18) |
O1—C7—C8—O2 | −3.3 (3) | C7—C6—C1—C2 | 178.41 (16) |
N1—C1—C2—C3 | 179.47 (17) | C7—C6—C5—C4 | −176.80 (17) |
N1—C9—C10—C11 | −5.7 (5) | C5—C6—C1—N1 | −179.56 (15) |
C6—C1—C2—C3 | −0.6 (3) | C5—C6—C1—C2 | 0.5 (3) |
C6—C7—C8—N1 | −1.16 (18) | C5—C6—C7—O1 | 0.3 (3) |
C6—C7—C8—O2 | 177.59 (18) | C5—C6—C7—C8 | 179.26 (17) |
C6—C5—C4—Cl1 | 177.25 (13) | C5—C4—C3—C2 | 1.3 (3) |
C6—C5—C4—C3 | −1.4 (3) | C8—N1—C1—C6 | 0.9 (2) |
C1—N1—C8—O2 | −178.56 (18) | C8—N1—C1—C2 | −179.15 (18) |
C1—N1—C8—C7 | 0.19 (19) | C8—N1—C9—C10 | 92.4 (3) |
C1—N1—C9—C10 | −84.7 (3) | C9—N1—C1—C6 | 178.33 (17) |
C1—C6—C7—O1 | −177.32 (19) | C9—N1—C1—C2 | −1.7 (3) |
C1—C6—C7—C8 | 1.67 (17) | C9—N1—C8—O2 | 4.0 (3) |
C1—C6—C5—C4 | 0.5 (3) | C9—N1—C8—C7 | −177.24 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.96 (2) | 2.42 (2) | 3.283 (2) | 151.0 (19) |
C11—H11A···O2ii | 1.02 (4) | 2.39 (3) | 3.377 (3) | 165 (3) |
C11—H11B···O2iii | 1.04 (3) | 2.55 (3) | 3.572 (3) | 167 (2) |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2. |
References
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160559. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.