organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Benzyl-5-chloro­indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Iimmouzzer, BP 2202, Fez, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, and dDépartement de chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: haoudi_amal@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 May 2016; accepted 26 May 2016; online 17 June 2016)

The title compound, C15H10ClNO2, crystallizes with two mol­ecules (A and B) in the asymmetric unit, which have almost identical conformations (r.m.s. overlay fit = 0.057 Å). In mol­ecule A, the dihedral angle between the indole ring system (r.m.s. deviation = 0.025 Å) and the phenyl group is 71.39 (8)°. Equivalent data for mol­ecule B are 0.023 Å and 71.43 (9)°. In the crystal, the A and B mol­ecules are linked by a C—H⋯O hydrogen bond and aromatic ππ stacking is also observed [shortest centroid–centroid separation = 3.5810 (11) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

5-Chloro-indoline-2,3-dione has been used as a starting material for a variety of chemical reactions such as 1,3-dipolar cyclo­addition (Ranjith Kumar et al., 2009[Ranjith Kumar, R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 3821-3829.]) and in the synthesis of several heterocyclic systems (Kharbach et al., 2016[Kharbach, Y., Kandri Rodi, Y., Capet, F., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160371.]). As part of our studies in this area, the synthesis and structure of the title compound, C15H10ClNO2, are now described.

The title compound crystallizes with two mol­ecules (A and B) in the asymmetric unit (Fig. 1[link]). In each mol­ecule, the indoline ring system is almost planar, with the largest deviation from the mean plane being 0.0230 (17) Å in mol­ecule A and 0.0418 (18) Å in mol­ecule B. The conformation of the two mol­ecules are almost identical, as indicated by the angles of inclination of the indole moiety with respect to the benzyl ring system, the dihedral angles being 71.43 (9) and 71.39 (8)° in mol­ecules A and B, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, showing displacement ellipsoids drawn at the 30% probability level.

In the crystal, the A and B mol­ecules are linked by a C—H⋯O hydrogen bond (Table 1[link]) and aromatic ππ stacking is also observed [shortest centroid–centroid separation = 3.5810 (11) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3 0.93 2.32 3.198 (3) 157

Synthesis and crystallization

To a solution of 5-chloro-1H-indole-2,3-dione (0.4 g, 2,20 mmol) in N,N-di­methyl­formamide (25 ml), were added (0.5 g, 3,3 mmol) K2CO3, tetra-n-butyl­ammonium fluoride (0.1 g, 0.3 mmol), and benzyl chloride (0.27 ml, 2,42 mmol)·The reaction mixture was stirred for 48 h at room temperature. After filtration the solution was evaporated under reduced pressure. The residue obtained was recrystallized from ethanol solution to afford the title compound as red crystals in a yield of 72% (m.p. 413 K)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H10ClNO2
Mr 271.69
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 4.4576 (2), 27.6646 (11), 20.9530 (8)
β (°) 93.870 (2)
V3) 2577.98 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.32 × 0.26 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA])
Tmin, Tmax 0.694, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 44717, 6252, 4206
Rint 0.034
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.02
No. of reflections 6252
No. of parameters 343
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Benzyl-5-chloroindoline-2,3-dione top
Crystal data top
C15H10ClNO2F(000) = 1120
Mr = 271.69Dx = 1.400 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.4576 (2) ÅCell parameters from 9947 reflections
b = 27.6646 (11) Åθ = 2.4–25.1°
c = 20.9530 (8) ŵ = 0.29 mm1
β = 93.870 (2)°T = 296 K
V = 2577.98 (18) Å3Block, red
Z = 80.32 × 0.26 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
4206 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 28.3°, θmin = 2.4°
Tmin = 0.694, Tmax = 0.746h = 55
44717 measured reflectionsk = 3636
6252 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.6966P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6252 reflectionsΔρmax = 0.22 e Å3
343 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0610 before and 0.0474 after correction. The Ratio of minimum to maximum transmission is 0.9304. The λ/2 correction factor is Not present.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89958 (12)0.43330 (2)0.48461 (2)0.06747 (16)
Cl21.48632 (14)0.11968 (2)0.42404 (3)0.08210 (19)
N10.0180 (3)0.46593 (5)0.26720 (7)0.0491 (3)
O10.1339 (4)0.57466 (5)0.34834 (7)0.0820 (5)
O20.2505 (4)0.53491 (6)0.24114 (7)0.0808 (4)
N20.6629 (4)0.22139 (6)0.23884 (7)0.0589 (4)
C10.2383 (4)0.45266 (5)0.31566 (8)0.0418 (4)
C60.3177 (4)0.49196 (5)0.35516 (8)0.0436 (4)
C160.8647 (4)0.19261 (6)0.27710 (8)0.0464 (4)
C100.0785 (4)0.43138 (6)0.16009 (8)0.0480 (4)
C250.7006 (4)0.21277 (6)0.12230 (8)0.0489 (4)
C50.5237 (4)0.48727 (6)0.40690 (8)0.0468 (4)
H50.57640.51350.43300.056*
C40.6490 (4)0.44222 (6)0.41863 (8)0.0465 (4)
C30.5724 (4)0.40332 (6)0.37927 (8)0.0505 (4)
H30.66120.37340.38810.061*
C20.3667 (4)0.40793 (6)0.32713 (8)0.0486 (4)
H20.31680.38170.30070.058*
O40.4619 (6)0.29741 (7)0.24693 (8)0.1259 (8)
C210.9722 (5)0.21743 (6)0.33183 (8)0.0556 (5)
C201.1657 (5)0.19600 (7)0.37758 (9)0.0599 (5)
H201.23620.21260.41410.072*
C170.9515 (4)0.14584 (6)0.26680 (9)0.0520 (4)
H170.88240.12910.23030.062*
C110.2055 (4)0.38866 (7)0.14143 (10)0.0600 (5)
H110.17890.36060.16480.072*
C90.1098 (4)0.43402 (7)0.21675 (9)0.0561 (5)
H9A0.30910.44550.20270.067*
H9B0.13080.40180.23420.067*
C191.2502 (4)0.14898 (7)0.36694 (8)0.0534 (4)
C70.1390 (5)0.53319 (6)0.33089 (9)0.0551 (4)
C300.7950 (5)0.25819 (7)0.10518 (9)0.0608 (5)
H300.74440.28490.12910.073*
C80.0624 (4)0.51317 (7)0.27356 (9)0.0567 (5)
C181.1458 (4)0.12459 (6)0.31285 (9)0.0565 (5)
H181.20750.09290.30700.068*
C150.1231 (5)0.47248 (7)0.12408 (9)0.0637 (5)
H150.03950.50170.13570.076*
O30.8623 (7)0.29835 (6)0.36596 (9)0.1378 (10)
C120.3732 (5)0.38726 (9)0.08782 (11)0.0717 (6)
H120.45790.35830.07560.086*
C240.5105 (4)0.20621 (8)0.17810 (9)0.0644 (5)
H24A0.32680.22480.17060.077*
H24B0.45530.17240.18110.077*
C260.7800 (5)0.17377 (8)0.08660 (11)0.0725 (6)
H260.71960.14290.09760.087*
C290.9621 (5)0.26426 (9)0.05342 (10)0.0757 (6)
H291.02300.29510.04210.091*
C130.4138 (5)0.42790 (10)0.05335 (11)0.0769 (6)
H130.52600.42680.01750.092*
C230.6255 (6)0.26494 (8)0.26680 (10)0.0837 (7)
C140.2892 (6)0.47045 (9)0.07147 (11)0.0806 (7)
H140.31750.49830.04780.097*
C281.0399 (6)0.22532 (12)0.01830 (11)0.0878 (8)
H281.15490.22940.01670.105*
C220.8338 (7)0.26512 (8)0.32918 (10)0.0838 (7)
C270.9474 (7)0.18010 (11)0.03494 (12)0.0937 (8)
H270.99900.15350.01090.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0701 (3)0.0689 (3)0.0622 (3)0.0014 (2)0.0044 (2)0.0077 (2)
Cl20.0794 (4)0.0920 (4)0.0726 (3)0.0125 (3)0.0121 (3)0.0205 (3)
N10.0558 (9)0.0433 (8)0.0488 (8)0.0013 (6)0.0066 (7)0.0031 (6)
O10.1337 (14)0.0374 (7)0.0748 (10)0.0197 (8)0.0069 (9)0.0047 (6)
O20.0923 (11)0.0728 (10)0.0758 (10)0.0292 (9)0.0041 (8)0.0133 (8)
N20.0693 (10)0.0558 (9)0.0523 (9)0.0217 (8)0.0098 (8)0.0083 (7)
C10.0463 (9)0.0358 (8)0.0447 (8)0.0021 (7)0.0129 (7)0.0010 (6)
C60.0553 (10)0.0308 (8)0.0465 (9)0.0000 (7)0.0166 (7)0.0006 (6)
C160.0516 (10)0.0430 (9)0.0457 (9)0.0047 (7)0.0105 (7)0.0037 (7)
C100.0464 (9)0.0504 (10)0.0459 (9)0.0078 (8)0.0066 (7)0.0006 (7)
C250.0444 (9)0.0526 (10)0.0481 (9)0.0034 (7)0.0097 (7)0.0061 (7)
C50.0578 (10)0.0369 (8)0.0468 (9)0.0062 (7)0.0119 (8)0.0029 (7)
C40.0488 (9)0.0451 (9)0.0469 (9)0.0004 (7)0.0118 (7)0.0031 (7)
C30.0595 (11)0.0357 (9)0.0577 (10)0.0078 (8)0.0152 (8)0.0035 (7)
C20.0618 (11)0.0334 (8)0.0518 (9)0.0009 (7)0.0117 (8)0.0048 (7)
O40.197 (2)0.0971 (13)0.0846 (12)0.0978 (15)0.0187 (13)0.0159 (10)
C210.0792 (13)0.0421 (9)0.0467 (9)0.0079 (9)0.0128 (9)0.0020 (7)
C200.0810 (14)0.0544 (11)0.0443 (9)0.0040 (10)0.0030 (9)0.0040 (8)
C170.0619 (11)0.0399 (9)0.0538 (10)0.0006 (8)0.0006 (8)0.0041 (7)
C110.0643 (12)0.0506 (11)0.0629 (12)0.0039 (9)0.0119 (10)0.0024 (9)
C90.0557 (11)0.0571 (11)0.0549 (10)0.0132 (9)0.0003 (8)0.0017 (8)
C190.0537 (10)0.0527 (11)0.0538 (10)0.0008 (8)0.0036 (8)0.0092 (8)
C70.0757 (12)0.0393 (9)0.0521 (10)0.0073 (9)0.0182 (9)0.0036 (8)
C300.0744 (13)0.0535 (11)0.0532 (11)0.0010 (9)0.0055 (10)0.0050 (8)
C80.0664 (12)0.0484 (10)0.0567 (10)0.0107 (9)0.0136 (9)0.0080 (8)
C180.0651 (12)0.0414 (9)0.0628 (11)0.0081 (8)0.0020 (9)0.0004 (8)
C150.0784 (14)0.0528 (11)0.0606 (12)0.0021 (10)0.0098 (10)0.0044 (9)
O30.262 (3)0.0681 (11)0.0817 (12)0.0613 (14)0.0030 (15)0.0282 (9)
C120.0679 (13)0.0734 (15)0.0726 (14)0.0055 (11)0.0049 (11)0.0232 (12)
C240.0523 (11)0.0772 (14)0.0630 (12)0.0059 (10)0.0022 (9)0.0143 (10)
C260.0907 (16)0.0543 (12)0.0715 (14)0.0025 (11)0.0026 (12)0.0034 (10)
C290.0802 (15)0.0833 (16)0.0622 (13)0.0167 (12)0.0043 (11)0.0214 (12)
C130.0771 (15)0.0949 (18)0.0600 (12)0.0107 (13)0.0141 (11)0.0138 (12)
C230.125 (2)0.0678 (14)0.0607 (12)0.0473 (14)0.0264 (13)0.0102 (11)
C140.1027 (18)0.0774 (16)0.0638 (13)0.0130 (13)0.0205 (13)0.0109 (11)
C280.0759 (16)0.137 (3)0.0511 (12)0.0076 (16)0.0073 (11)0.0098 (14)
C220.144 (2)0.0541 (12)0.0549 (12)0.0337 (13)0.0206 (13)0.0019 (10)
C270.117 (2)0.0932 (19)0.0712 (16)0.0253 (17)0.0095 (15)0.0180 (14)
Geometric parameters (Å, º) top
Cl1—C41.7355 (18)C20—H200.9300
Cl2—C191.7399 (18)C20—C191.376 (3)
N1—C11.413 (2)C17—H170.9300
N1—C91.463 (2)C17—C181.384 (2)
N1—C81.364 (2)C11—H110.9300
O1—C71.205 (2)C11—C121.391 (3)
O2—C81.204 (2)C9—H9A0.9700
N2—C161.410 (2)C9—H9B0.9700
N2—C241.463 (2)C19—C181.373 (3)
N2—C231.355 (3)C7—C81.553 (3)
C1—C61.397 (2)C30—H300.9300
C1—C21.377 (2)C30—C291.367 (3)
C6—C51.379 (2)C18—H180.9300
C6—C71.463 (2)C15—H150.9300
C16—C211.394 (2)C15—C141.370 (3)
C16—C171.372 (2)O3—C221.201 (3)
C10—C111.378 (3)C12—H120.9300
C10—C91.501 (3)C12—C131.355 (3)
C10—C151.386 (2)C24—H24A0.9700
C25—C301.380 (3)C24—H24B0.9700
C25—C241.501 (3)C26—H260.9300
C25—C261.373 (3)C26—C271.367 (3)
C5—H50.9300C29—H290.9300
C5—C41.381 (2)C29—C281.362 (4)
C4—C31.385 (2)C13—H130.9300
C3—H30.9300C13—C141.366 (3)
C3—C21.384 (3)C23—C221.551 (4)
C2—H20.9300C14—H140.9300
O4—C231.213 (3)C28—H280.9300
C21—C201.379 (3)C28—C271.370 (4)
C21—C221.456 (3)C27—H270.9300
C1—N1—C9125.50 (14)C20—C19—Cl2119.23 (14)
C8—N1—C1110.68 (14)C18—C19—Cl2119.61 (14)
C8—N1—C9123.82 (16)C18—C19—C20121.14 (17)
C16—N2—C24124.99 (15)O1—C7—C6131.16 (19)
C23—N2—C16110.41 (16)O1—C7—C8123.55 (17)
C23—N2—C24124.59 (17)C6—C7—C8105.29 (14)
C6—C1—N1111.08 (14)C25—C30—H30119.7
C2—C1—N1128.26 (15)C29—C30—C25120.7 (2)
C2—C1—C6120.66 (16)C29—C30—H30119.7
C1—C6—C7106.90 (15)N1—C8—C7105.98 (15)
C5—C6—C1121.40 (15)O2—C8—N1126.95 (19)
C5—C6—C7131.67 (15)O2—C8—C7127.06 (17)
C21—C16—N2111.13 (15)C17—C18—H18119.1
C17—C16—N2128.25 (16)C19—C18—C17121.86 (17)
C17—C16—C21120.60 (16)C19—C18—H18119.1
C11—C10—C9121.88 (17)C10—C15—H15119.7
C11—C10—C15118.18 (18)C14—C15—C10120.6 (2)
C15—C10—C9119.93 (17)C14—C15—H15119.7
C30—C25—C24120.71 (18)C11—C12—H12119.8
C26—C25—C30118.66 (19)C13—C12—C11120.4 (2)
C26—C25—C24120.63 (18)C13—C12—H12119.8
C6—C5—H5121.1N2—C24—C25112.91 (16)
C6—C5—C4117.70 (15)N2—C24—H24A109.0
C4—C5—H5121.1N2—C24—H24B109.0
C5—C4—Cl1120.08 (13)C25—C24—H24A109.0
C5—C4—C3121.00 (16)C25—C24—H24B109.0
C3—C4—Cl1118.91 (13)H24A—C24—H24B107.8
C4—C3—H3119.3C25—C26—H26119.8
C2—C3—C4121.47 (16)C27—C26—C25120.4 (2)
C2—C3—H3119.3C27—C26—H26119.8
C1—C2—C3117.76 (15)C30—C29—H29119.9
C1—C2—H2121.1C28—C29—C30120.2 (2)
C3—C2—H2121.1C28—C29—H29119.9
C16—C21—C22107.07 (17)C12—C13—H13120.2
C20—C21—C16121.61 (16)C12—C13—C14119.7 (2)
C20—C21—C22131.28 (18)C14—C13—H13120.2
C21—C20—H20121.3N2—C23—C22106.44 (17)
C19—C20—C21117.31 (17)O4—C23—N2126.8 (2)
C19—C20—H20121.3O4—C23—C22126.8 (2)
C16—C17—H17121.3C15—C14—H14119.6
C16—C17—C18117.47 (16)C13—C14—C15120.7 (2)
C18—C17—H17121.3C13—C14—H14119.6
C10—C11—H11119.8C29—C28—H28120.2
C10—C11—C12120.40 (19)C29—C28—C27119.5 (2)
C12—C11—H11119.8C27—C28—H28120.2
N1—C9—C10112.91 (14)C21—C22—C23104.91 (17)
N1—C9—H9A109.0O3—C22—C21130.0 (2)
N1—C9—H9B109.0O3—C22—C23125.1 (2)
C10—C9—H9A109.0C26—C27—C28120.5 (2)
C10—C9—H9B109.0C26—C27—H27119.7
H9A—C9—H9B107.8C28—C27—H27119.7
Cl1—C4—C3—C2177.96 (13)O4—C23—C22—O31.0 (5)
Cl2—C19—C18—C17178.32 (15)C21—C16—C17—C180.6 (3)
N1—C1—C6—C5178.31 (14)C21—C20—C19—Cl2178.39 (15)
N1—C1—C6—C70.09 (18)C21—C20—C19—C180.1 (3)
N1—C1—C2—C3177.86 (15)C20—C21—C22—O32.5 (5)
O1—C7—C8—N1177.33 (18)C20—C21—C22—C23176.5 (2)
O1—C7—C8—O22.4 (3)C20—C19—C18—C170.2 (3)
N2—C16—C21—C20177.89 (17)C17—C16—C21—C200.7 (3)
N2—C16—C21—C220.1 (2)C17—C16—C21—C22178.68 (18)
N2—C16—C17—C18177.71 (17)C11—C10—C9—N1118.18 (18)
N2—C23—C22—C212.0 (3)C11—C10—C15—C140.0 (3)
N2—C23—C22—O3178.9 (3)C11—C12—C13—C140.0 (3)
C1—N1—C9—C1084.7 (2)C9—N1—C1—C6178.35 (15)
C1—N1—C8—O2177.55 (19)C9—N1—C1—C22.9 (3)
C1—N1—C8—C72.67 (18)C9—N1—C8—O22.4 (3)
C1—C6—C5—C40.2 (2)C9—N1—C8—C7177.42 (15)
C1—C6—C7—O1178.3 (2)C9—C10—C11—C12178.53 (16)
C1—C6—C7—C81.63 (18)C9—C10—C15—C14178.65 (19)
C6—C1—C2—C30.8 (2)C7—C6—C5—C4177.75 (17)
C6—C5—C4—Cl1177.70 (12)C30—C25—C24—N262.5 (2)
C6—C5—C4—C30.7 (2)C30—C25—C26—C270.4 (3)
C6—C7—C8—N12.65 (19)C30—C29—C28—C270.5 (4)
C6—C7—C8—O2177.57 (19)C8—N1—C1—C61.75 (19)
C16—N2—C24—C2583.6 (2)C8—N1—C1—C2177.04 (17)
C16—N2—C23—O4178.2 (3)C8—N1—C9—C1095.4 (2)
C16—N2—C23—C221.9 (2)C15—C10—C11—C120.0 (3)
C16—C21—C20—C190.3 (3)C15—C10—C9—N163.3 (2)
C16—C21—C22—O3179.7 (3)C12—C13—C14—C150.1 (4)
C16—C21—C22—C231.2 (2)C24—N2—C16—C21179.86 (17)
C16—C17—C18—C190.2 (3)C24—N2—C16—C171.7 (3)
C10—C11—C12—C130.1 (3)C24—N2—C23—O40.7 (4)
C10—C15—C14—C130.1 (3)C24—N2—C23—C22179.14 (19)
C25—C30—C29—C280.6 (3)C24—C25—C30—C29178.42 (17)
C25—C26—C27—C280.4 (4)C24—C25—C26—C27178.5 (2)
C5—C6—C7—O13.5 (3)C26—C25—C30—C290.5 (3)
C5—C6—C7—C8176.54 (17)C26—C25—C24—N2118.6 (2)
C5—C4—C3—C20.5 (3)C29—C28—C27—C260.4 (4)
C4—C3—C2—C10.3 (3)C23—N2—C16—C211.2 (2)
C2—C1—C6—C50.6 (2)C23—N2—C16—C17177.2 (2)
C2—C1—C6—C7178.99 (15)C23—N2—C24—C2597.6 (2)
O4—C23—C22—C21178.2 (3)C22—C21—C20—C19177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.932.323.198 (3)157
 

References

First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationKharbach, Y., Kandri Rodi, Y., Capet, F., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160371.  Google Scholar
First citationRanjith Kumar, R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 3821–3829.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds