organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-[(5Z)-5-(4-methyl­benzyl­­idene)-2,4-dioxo-1,3-thia­zolidin-3-yl]acetate

aLaboratoire National de Controle des Médicaments, D M P, Ministère de la Santé, Madinat Al Irfane, BP, Rabat, Morocco, bLaboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, Faculty of Sciences, Mohammed V University, Rabat, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and dLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: yramli76@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 May 2016; accepted 25 May 2016; online 17 June 2016)

In the title mol­ecule, C15H15NO4S, the dihedral angle between the almost planar heterocyclic ring (r.m.s. deviation = 0.027 Å) and the benzene ring is 5.33 (8)°. The chain of the ester group adopts an extended conformation [C—O—C—C = −174.80 (14)°]. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(10) loops and further such bonds connect the dimers into `stair-step' chains propagating in [100].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The 2,4-thia­zolidinone ring system is a core structure in various synthetic pharmaceutical agents, displaying a broad spectrum of biological activities such as anti­diabetic (Sohda et al., 1992[Sohda, T., Mizuno, K., Momose, Y., Ikeda, H., Fujita, T. & Meguro, K. (1992). J. Med. Chem. 35, 2617-2626.]), anti­cancer (Kaminskyy et al., 2016[Kaminskyy, D., den Hartog, G. J. M., Wojtyra, M., Lelyukh, M., Gzella, A., Bast, A. & Lesyk, R. (2016). Eur. J. Med. Chem. 112, 180-195.]) and anti-tubercular (Narute et al., 2008[Narute, A., Khedekar, P. & Bhusari, K. (2008). Ind. J. Chem. 47, 586.]) activities. In this study, we report the N-alkyl­ation of 5-(4-methyl­benzyl­idene)thia­zolidine-2,4-dione, with ethyl bromo­acetate, which gave the title compound (Fig. 1[link]) whose crystal structure is reported here.

[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.

The mol­ecule exists in an `extended' conformation with a dihedral angle of 5.3 (1)° between the benzene and heterocyclic rings. In the crystal, pairwise C8—H8⋯O1i [symmetry code: (i) −x, −y + 1, −z + 1] hydrogen bonds form dimers (Table 1[link] and Fig. 2[link]), which are further associated by pairwise C12—H12A⋯O3ii [symmetry code: (ii) x + 1, y, z] into `stair-step' chains propagating in [100] (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.46 3.3612 (18) 159
C12—H12A⋯O3ii 0.99 2.31 3.2757 (19) 166
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z.
[Figure 2]
Figure 2
A portion of the packing projected onto (100) showing two dimers connected by C—H⋯O hydrogen bonds (dotted lines).
[Figure 3]
Figure 3
Packing projected onto (1 11 [\overline{4}]) showing a portion of the stepped stack of dimers with C—H⋯O hydrogen bonds shown as dotted lines.

Synthesis and crystallization

To a solution of 5-(4-methyl­benzyl­idene)thia­zolidine-2,4-dione (1 mmol) in acetone (30 ml), an excess of tri­ethyl­amine (1.5 mmol) was added and stirred for 10 min at RT. The alkyl­ating agent, ethyl bromo­acetate (1.5 mmol), was added slowly. The reaction mixture was then refluxed for 10 h. The progress of reaction was monitored by TLC. The reaction mixture was allowed to attain RT, filtered and concentrated on a rotary evaporator. The residue was dissolved in ethanol. The formed crystals were filtered off, washed with ethanol and recrystallized from ethanol solution. Yield 77%; m.p. 127–129°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Trial refinements using the single-component reflection extracted with TWINABS and the full, two-component data showed the former refinement to be superior. The crystal did not diffract well at high angles, possibly as the result of the twinning. For this reason, the completeness of the data is somewhat less than optimal but, nevertheless, all features of chemical inter­est are quite satisfactorily determined.

Table 2
Experimental details

Crystal data
Chemical formula C15H15NO4S
Mr 305.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 4.7310 (1), 11.9082 (3), 13.2907 (4)
α, β, γ (°) 87.354 (1), 82.381 (1), 85.283 (1)
V3) 739.17 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.09
Crystal size (mm) 0.19 × 0.08 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). CELL_NOW and TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.54, 0.85
No. of measured, independent and observed [I > 2σ(I)] reflections 11328, 2825, 2648
Rint 0.026
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.07
No. of reflections 2825
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.27
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), CELL_NOW (Sheldrick, 2009[Sheldrick, G. M. (2009). CELL_NOW and TWINABS. University of Göttingen, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016) and CELL_NOW (Sheldrick, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 2-[(5Z)-5-(4-methylbenzylidene)-2,4-dioxo-1,3-thiazolidin-3-yl]acetate top
Crystal data top
C15H15NO4SZ = 2
Mr = 305.34F(000) = 320
Triclinic, P1Dx = 1.372 Mg m3
a = 4.7310 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.9082 (3) ÅCell parameters from 5760 reflections
c = 13.2907 (4) Åθ = 3.4–74.5°
α = 87.354 (1)°µ = 2.09 mm1
β = 82.381 (1)°T = 150 K
γ = 85.283 (1)°Column, colourless
V = 739.17 (3) Å30.19 × 0.08 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2825 independent reflections
Radiation source: INCOATEC IµS micro–focus source2648 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 3.7°
ω scansh = 55
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1414
Tmin = 0.54, Tmax = 0.85l = 1512
11328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.096H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.290P]
where P = (Fo2 + 2Fc2)/3
2825 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Experimental. Analysis of 1664 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2009) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the c* axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Trial refinements using the single- component reflection extracted with TWINABS and the full, two- component data showed the former refinement to be superior.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.46791 (8)0.80982 (3)0.58528 (3)0.02562 (13)
O10.2523 (2)0.50494 (9)0.59713 (8)0.0284 (3)
O20.7768 (3)0.74899 (10)0.73387 (9)0.0338 (3)
O30.1983 (2)0.55164 (10)0.85155 (9)0.0325 (3)
O40.4985 (2)0.39867 (9)0.87431 (8)0.0300 (3)
N10.5379 (3)0.61154 (10)0.67263 (9)0.0233 (3)
C10.0634 (3)0.78637 (12)0.39196 (11)0.0238 (3)
C20.1525 (4)0.89592 (14)0.38704 (14)0.0337 (4)
H20.26830.91720.43510.040*
C30.0744 (4)0.97353 (14)0.31324 (14)0.0362 (4)
H30.13791.04730.31150.043*
C40.0950 (4)0.94608 (14)0.24161 (13)0.0323 (4)
C50.1872 (4)0.83785 (15)0.24710 (14)0.0384 (4)
H50.30590.81740.19970.046*
C60.1092 (4)0.75930 (13)0.32051 (13)0.0315 (4)
H60.17420.68580.32230.038*
C70.1802 (5)1.03219 (16)0.16215 (15)0.0483 (5)
H7A0.10611.00930.09310.072*0.66 (3)
H7B0.38841.04470.16470.072*0.66 (3)
H7C0.10891.10580.17030.072*0.66 (3)
H7D0.29541.00100.11560.072*0.34 (3)
H7E0.01381.06110.12010.072*0.34 (3)
H7F0.29411.09760.19230.072*0.34 (3)
C80.1368 (3)0.69861 (12)0.46601 (11)0.0232 (3)
H80.05880.62880.45910.028*
C90.2959 (3)0.69950 (11)0.54241 (11)0.0220 (3)
C100.3506 (3)0.59488 (12)0.60384 (11)0.0218 (3)
C110.6206 (3)0.71986 (13)0.67685 (12)0.0250 (3)
C120.6377 (3)0.52013 (13)0.73800 (11)0.0250 (3)
H12A0.81260.54050.76400.030*
H12B0.68850.45170.69780.030*
C130.4152 (3)0.49421 (12)0.82666 (11)0.0224 (3)
C140.3050 (4)0.36299 (16)0.96293 (13)0.0365 (4)
H14A0.12160.34430.94210.044*
H14B0.26510.42411.01200.044*
C150.4510 (5)0.26072 (17)1.01043 (15)0.0461 (5)
H15A0.32320.23211.06830.069*
H15B0.62720.28131.03380.069*
H15C0.49760.20220.96010.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0323 (2)0.01908 (19)0.0270 (2)0.00486 (14)0.00876 (14)0.00268 (13)
O10.0349 (6)0.0206 (5)0.0311 (6)0.0083 (4)0.0077 (4)0.0044 (4)
O20.0405 (7)0.0318 (6)0.0328 (6)0.0108 (5)0.0152 (5)0.0030 (5)
O30.0259 (6)0.0396 (6)0.0299 (6)0.0046 (5)0.0013 (4)0.0024 (5)
O40.0347 (6)0.0270 (5)0.0258 (6)0.0007 (4)0.0009 (4)0.0082 (4)
N10.0253 (6)0.0213 (6)0.0234 (7)0.0027 (5)0.0051 (5)0.0042 (5)
C10.0273 (7)0.0210 (7)0.0225 (8)0.0001 (5)0.0030 (6)0.0009 (5)
C20.0427 (9)0.0247 (8)0.0373 (9)0.0076 (7)0.0173 (7)0.0056 (7)
C30.0452 (10)0.0242 (8)0.0407 (10)0.0062 (7)0.0122 (8)0.0083 (7)
C40.0427 (9)0.0272 (8)0.0262 (8)0.0033 (7)0.0064 (7)0.0045 (6)
C50.0569 (11)0.0300 (8)0.0316 (9)0.0003 (8)0.0212 (8)0.0000 (7)
C60.0442 (9)0.0217 (7)0.0306 (9)0.0029 (6)0.0128 (7)0.0001 (6)
C70.0719 (14)0.0365 (10)0.0374 (11)0.0028 (9)0.0195 (9)0.0110 (8)
C80.0262 (7)0.0195 (7)0.0236 (8)0.0021 (5)0.0027 (5)0.0008 (5)
C90.0245 (7)0.0176 (6)0.0233 (7)0.0024 (5)0.0012 (5)0.0015 (5)
C100.0221 (7)0.0220 (7)0.0208 (7)0.0023 (5)0.0008 (5)0.0012 (5)
C110.0273 (7)0.0238 (7)0.0242 (8)0.0048 (6)0.0030 (6)0.0018 (5)
C120.0241 (7)0.0247 (7)0.0250 (8)0.0007 (5)0.0030 (6)0.0061 (6)
C130.0240 (7)0.0243 (7)0.0201 (7)0.0043 (5)0.0061 (5)0.0005 (5)
C140.0418 (9)0.0432 (10)0.0238 (9)0.0121 (8)0.0009 (7)0.0092 (7)
C150.0704 (13)0.0395 (10)0.0302 (10)0.0148 (9)0.0113 (9)0.0136 (8)
Geometric parameters (Å, º) top
S1—C91.7553 (15)C5—H50.9500
S1—C111.7708 (16)C6—H60.9500
O1—C101.2140 (18)C7—H7A0.9800
O2—C111.2066 (19)C7—H7B0.9801
O3—C131.2025 (18)C7—H7C0.9800
O4—C131.3329 (18)C7—H7D0.9800
O4—C141.4619 (19)C7—H7E0.9801
N1—C111.3840 (19)C7—H7F0.9800
N1—C101.3858 (19)C8—C91.343 (2)
N1—C121.4490 (18)C8—H80.9500
C1—C61.396 (2)C9—C101.4816 (19)
C1—C21.400 (2)C12—C131.511 (2)
C1—C81.455 (2)C12—H12A0.9900
C2—C31.382 (2)C12—H12B0.9900
C2—H20.9500C14—C151.505 (3)
C3—C41.389 (2)C14—H14A0.9900
C3—H30.9500C14—H14B0.9900
C4—C51.390 (2)C15—H15A0.9800
C4—C71.508 (2)C15—H15B0.9800
C5—C61.385 (2)C15—H15C0.9800
C9—S1—C1192.06 (7)H7E—C7—H7F106.7
C13—O4—C14115.90 (12)C9—C8—C1130.99 (14)
C11—N1—C10116.74 (12)C9—C8—H8114.5
C11—N1—C12121.85 (12)C1—C8—H8114.5
C10—N1—C12121.40 (12)C8—C9—C10119.93 (13)
C6—C1—C2117.54 (14)C8—C9—S1130.02 (11)
C6—C1—C8117.54 (13)C10—C9—S1110.04 (10)
C2—C1—C8124.92 (14)O1—C10—N1122.54 (13)
C3—C2—C1120.88 (15)O1—C10—C9126.79 (13)
C3—C2—H2119.6N1—C10—C9110.67 (12)
C1—C2—H2119.6O2—C11—N1125.07 (14)
C2—C3—C4121.47 (15)O2—C11—S1124.62 (12)
C2—C3—H3119.3N1—C11—S1110.31 (11)
C4—C3—H3119.3N1—C12—C13112.17 (12)
C3—C4—C5117.82 (15)N1—C12—H12A109.2
C3—C4—C7120.74 (16)C13—C12—H12A109.2
C5—C4—C7121.42 (16)N1—C12—H12B109.2
C6—C5—C4121.16 (16)C13—C12—H12B109.2
C6—C5—H5119.4H12A—C12—H12B107.9
C4—C5—H5119.4O3—C13—O4125.07 (14)
C5—C6—C1121.11 (15)O3—C13—C12125.38 (13)
C5—C6—H6119.4O4—C13—C12109.54 (12)
C1—C6—H6119.4O4—C14—C15107.17 (15)
C4—C7—H7A112.1O4—C14—H14A110.3
C4—C7—H7B112.1C15—C14—H14A110.3
H7A—C7—H7B106.7O4—C14—H14B110.3
C4—C7—H7C112.2C15—C14—H14B110.3
H7A—C7—H7C106.7H14A—C14—H14B108.5
H7B—C7—H7C106.7C14—C15—H15A109.5
C4—C7—H7D112.1C14—C15—H15B109.5
C4—C7—H7E112.1H15A—C15—H15B109.5
H7D—C7—H7E106.7C14—C15—H15C109.5
C4—C7—H7F112.1H15A—C15—H15C109.5
H7D—C7—H7F106.7H15B—C15—H15C109.5
C6—C1—C2—C30.7 (3)C12—N1—C10—C9176.67 (12)
C8—C1—C2—C3179.36 (15)C8—C9—C10—O14.5 (2)
C1—C2—C3—C40.1 (3)S1—C9—C10—O1176.30 (13)
C2—C3—C4—C50.8 (3)C8—C9—C10—N1174.96 (13)
C2—C3—C4—C7179.48 (18)S1—C9—C10—N14.26 (15)
C3—C4—C5—C61.0 (3)C10—N1—C11—O2178.32 (14)
C7—C4—C5—C6179.73 (18)C12—N1—C11—O20.6 (2)
C4—C5—C6—C10.4 (3)C10—N1—C11—S12.44 (16)
C2—C1—C6—C50.5 (2)C12—N1—C11—S1178.60 (10)
C8—C1—C6—C5179.61 (16)C9—S1—C11—O2179.04 (15)
C6—C1—C8—C9179.98 (16)C9—S1—C11—N10.21 (11)
C2—C1—C8—C90.1 (3)C11—N1—C12—C13101.44 (16)
C1—C8—C9—C10176.52 (14)C10—N1—C12—C1377.47 (17)
C1—C8—C9—S12.5 (3)C14—O4—C13—O30.5 (2)
C11—S1—C9—C8176.60 (15)C14—O4—C13—C12179.43 (13)
C11—S1—C9—C102.52 (11)N1—C12—C13—O311.2 (2)
C11—N1—C10—O1176.16 (14)N1—C12—C13—O4169.83 (12)
C12—N1—C10—O12.8 (2)C13—O4—C14—C15174.80 (14)
C11—N1—C10—C94.37 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.463.3612 (18)159
C12—H12A···O3ii0.992.313.2757 (19)166
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaminskyy, D., den Hartog, G. J. M., Wojtyra, M., Lelyukh, M., Gzella, A., Bast, A. & Lesyk, R. (2016). Eur. J. Med. Chem. 112, 180–195.  CSD CrossRef CAS PubMed Google Scholar
First citationNarute, A., Khedekar, P. & Bhusari, K. (2008). Ind. J. Chem. 47, 586.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). CELL_NOW and TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSohda, T., Mizuno, K., Momose, Y., Ikeda, H., Fujita, T. & Meguro, K. (1992). J. Med. Chem. 35, 2617–2626.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds