organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4S,5R)-3-(4-Chloro­phen­yl)-5-(4-meth­­oxy­phen­yl)-4-methyl-1-phenyl-4,5-di­hydro-1H-pyrazole

aLaboratoire de Chimie Moléculaire, Faculté des Sciences Semlalia, BP 2390, Université Cadi Ayyad, 40001, Marrakech, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and cLaboratoire de Chimie des Substances Naturelles, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco
*Correspondence e-mail: berraho@uca.ma

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 9 June 2016; accepted 22 June 2016; online 24 June 2016)

The title compound, C23H21ClN2O, was obtained via the condensation of trans anethole [systematic name: (E)-1-Methoxy-4-(1-propenyl)benzene] with di­aryl­nitrilimine. In the mol­ecule, the pyrazole ring adopts a twisted conformation. Dihedral angles between the pyrazole group and the three aromatic subunits (chloro­phenyl, meth­oxy­phenyl and phen­yl) are 9.44 (14), 83.14 (1) and 20.86 (15)°, respectively. In the crystal, no classic hydrogen bonds are found; however C—H⋯π inter­actions link the mol­ecules into chains parallel to the c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Trans-anethole is the active ingredient of the anise essential oil and the source of the anise scent. It has anti­carcinogenic (Chainy et al., 2000[Chainy, G. B. N., Manna, S. K., Chaturvedi, M. M. & Aggarwal, B. B. (2000). Oncogene, 19, 2943-2950.]), anti­genotoxic (Abraham et al., 2001[Abraham, S. K. (2001). Food Chem. Toxicol. 39, 493-498.]), gastroprotective and anti-oxidative (Freire et al., 2005[Freire, R. S., Morais, S. M., Catunda-Junior, F. E. A. & Pinheiro, D. C. S. N. (2005). Bioorg. Med. Chem. 13, 4353-4358.]), anti­thrombotic (Tognolini et al., 2007[Tognolini, M., Ballabeni, V., Bertoni, S., Bruni, R., Impicciatore, M. & Barocelli, E. (2007). Pharmacol. Res. 56, 254-260.]), anti­microbial and anti­viral (Astani et al., 2011[Astani, A., Reichling, R. & Schnitzler, P. (2011). Evid. Based Complement. Alternat. Med. pp. 1-8.]) properties. The double bond in the aromatic α position confers some reactivity. In this work, we focused our efforts on the preparation of new heterocyclic systems by the 1,3-dipolar cyclo­addition reaction from trans-anethole and di­aryl­nitrilimine. The condensation of trans-anethole with di­aryl­nitrilimine generated in situ by the action of tri­ethyl­amine on N-phenyl­aryl­ohydrazonoyl chloride (Huisgen et al., 1962[Huisgen, R., Seidel, M., Wallbillich, G. & Knupfer, H. (1962). Tetrahedron, 17, 3-29.]) is carried out in di­chloro­methane at room temperature. The obtained residue was purified by column chromatography on silica gel and the adduct was isolated in a satisfactory yield.

The structure of this new product (Fig. 1[link]) was determined using its single-crystal X-ray diffraction data. The pyrazole ring has a twist conformation as indicated by the total puckering amplitude QT =0.158 (2) Å and φ =86.1 (8)°. The dihedral angles between the five-membered ring and the chloro­phenyl, meth­oxy­phenyl and phenyl rings are 9.44 (14), 83.14 (1) and 20.86 (15)°, respectively. The crystal structure features C—H⋯π inter­actions (Table 1[link]), which link the mol­ecules into chains parallel to the c axis as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C10–C15 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg3i 0.98 2.98 3.847 (3) 148
C23—H23CCg4ii 0.96 2.80 3.679 (3) 153
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2]
Figure 2
Packing of the title compound showing mol­ecules inter­connected by C—H⋯π inter­actions and forming types parallel to the c-axis direction.

Synthesis and crystallization

Tri­ethyl­amine (9 mmol) dissolved in di­chloro­methane (5 mL) was added dropwise to a solution of trans-anethole (6.74 mmol) and the precursor di­aryl­nitrilimine (6.74 mmol) contained in a three-necked flask in di­chloro­methane (15 mL). After stirring for one day at room temperature, the mixture was washed several times with water (20 mL). The organic layers were separated, dried by anhydrous sodium sulfate, filtered and evaporated. The residue was purified in a silica-gel column (eluent: hexa­ne/ethyl acetate 2/98), giving the title compound in 54% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H21ClN2O
Mr 376.87
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 19.564 (16), 9.127 (8), 11.001 (10)
β (°) 94.88 (4)
V3) 1957 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.30 × 0.26 × 0.17
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.658, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 16805, 3988, 1917
Rint 0.065
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.123, 0.97
No. of reflections 3988
No. of parameters 246
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.22
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

(4S,5R)-3-(4-Chlorophenyl)-5-(4-methoxyphenyl)-4-methyl-1-phenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C23H21ClN2OF(000) = 792
Mr = 376.87Dx = 1.279 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.564 (16) ÅCell parameters from 3988 reflections
b = 9.127 (8) Åθ = 2.5–26.4°
c = 11.001 (10) ŵ = 0.21 mm1
β = 94.88 (4)°T = 298 K
V = 1957 (3) Å3Prism, colourless
Z = 40.30 × 0.26 × 0.17 mm
Data collection top
Bruker X8 APEX
diffractometer
3988 independent reflections
Radiation source: fine-focus sealed tube1917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
φ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2424
Tmin = 0.658, Tmax = 0.747k = 1111
16805 measured reflectionsl = 713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
3988 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04749 (4)0.25816 (8)0.48890 (8)0.0981 (3)
O10.51903 (9)0.34290 (18)0.41122 (18)0.0765 (5)
N20.25023 (10)0.4231 (2)0.05057 (19)0.0617 (6)
N10.19177 (9)0.43689 (19)0.10970 (18)0.0553 (5)
C40.35035 (11)0.3054 (2)0.1608 (2)0.0485 (6)
C10.18069 (12)0.3154 (2)0.1641 (2)0.0522 (6)
C100.26488 (12)0.5215 (2)0.0399 (2)0.0521 (6)
C30.28620 (12)0.2843 (2)0.0788 (2)0.0554 (6)
H30.29710.23640.00300.066*
C80.41134 (12)0.4210 (2)0.3330 (2)0.0553 (6)
H80.41380.49340.39270.066*
C90.35455 (12)0.4104 (2)0.2521 (2)0.0539 (6)
H90.31810.47470.25840.065*
C20.23065 (11)0.1962 (2)0.1382 (2)0.0551 (6)
H20.25020.15300.21500.066*
C70.46469 (12)0.3248 (2)0.3262 (2)0.0537 (6)
C180.06354 (13)0.1616 (3)0.3852 (3)0.0634 (7)
H180.05940.07690.43100.076*
C50.40490 (13)0.2124 (2)0.1551 (2)0.0607 (7)
H50.40350.14210.09370.073*
C190.01805 (13)0.2738 (3)0.3930 (3)0.0648 (7)
C160.12361 (12)0.3001 (2)0.2407 (2)0.0523 (6)
C170.11574 (12)0.1745 (2)0.3091 (2)0.0590 (7)
H170.14630.09730.30360.071*
C110.32179 (13)0.5030 (3)0.1049 (2)0.0584 (6)
H110.35230.42690.08470.070*
C150.22128 (13)0.6379 (2)0.0700 (2)0.0657 (7)
H150.18350.65420.02590.079*
C210.07674 (13)0.4117 (3)0.2509 (2)0.0646 (7)
H210.08060.49700.20570.077*
C60.46144 (13)0.2201 (3)0.2374 (3)0.0641 (7)
H60.49740.15420.23270.077*
C120.33373 (14)0.5966 (3)0.1997 (2)0.0684 (7)
H120.37220.58320.24250.082*
C230.19815 (13)0.0763 (3)0.0553 (2)0.0766 (8)
H23A0.16220.02920.09500.115*
H23B0.23240.00530.03900.115*
H23C0.17940.11900.02000.115*
C200.02443 (13)0.3997 (3)0.3264 (3)0.0689 (7)
H200.00640.47630.33240.083*
C140.23385 (15)0.7297 (3)0.1652 (3)0.0763 (8)
H140.20410.80710.18500.092*
C220.56136 (14)0.2214 (3)0.4389 (3)0.0920 (10)
H22A0.53430.14220.46660.138*
H22B0.59630.24720.50180.138*
H22C0.58240.19150.36720.138*
C130.28932 (17)0.7088 (3)0.2310 (3)0.0769 (8)
H130.29670.77010.29610.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0884 (6)0.0939 (5)0.1166 (8)0.0106 (4)0.0361 (5)0.0046 (5)
O10.0652 (12)0.0747 (12)0.0852 (15)0.0043 (9)0.0190 (11)0.0003 (10)
N20.0594 (13)0.0641 (12)0.0614 (15)0.0122 (10)0.0035 (11)0.0200 (11)
N10.0532 (12)0.0553 (12)0.0565 (14)0.0051 (9)0.0015 (10)0.0106 (10)
C40.0522 (15)0.0453 (12)0.0479 (15)0.0079 (11)0.0034 (12)0.0062 (12)
C10.0551 (15)0.0484 (13)0.0500 (16)0.0001 (11)0.0128 (13)0.0054 (12)
C100.0590 (15)0.0464 (13)0.0488 (15)0.0071 (12)0.0073 (12)0.0029 (12)
C30.0636 (16)0.0502 (13)0.0512 (16)0.0115 (12)0.0019 (13)0.0037 (12)
C80.0650 (16)0.0458 (13)0.0551 (17)0.0041 (12)0.0051 (14)0.0022 (12)
C90.0563 (15)0.0461 (13)0.0590 (17)0.0119 (11)0.0043 (13)0.0005 (13)
C20.0613 (16)0.0498 (13)0.0515 (16)0.0065 (12)0.0105 (12)0.0071 (12)
C70.0523 (16)0.0533 (14)0.0548 (17)0.0016 (12)0.0012 (14)0.0062 (13)
C180.0651 (17)0.0564 (15)0.0662 (19)0.0136 (13)0.0082 (15)0.0092 (13)
C50.0636 (17)0.0606 (15)0.0587 (18)0.0132 (13)0.0096 (14)0.0101 (13)
C190.0578 (16)0.0647 (16)0.071 (2)0.0088 (13)0.0018 (14)0.0002 (15)
C160.0539 (15)0.0495 (13)0.0508 (16)0.0022 (11)0.0105 (13)0.0046 (12)
C170.0560 (16)0.0527 (14)0.0665 (18)0.0021 (12)0.0061 (14)0.0061 (13)
C110.0680 (17)0.0523 (14)0.0532 (16)0.0053 (12)0.0051 (13)0.0035 (13)
C150.0741 (18)0.0476 (14)0.074 (2)0.0006 (13)0.0006 (15)0.0078 (14)
C210.0689 (17)0.0551 (14)0.0685 (19)0.0026 (13)0.0013 (15)0.0117 (14)
C60.0515 (16)0.0656 (16)0.075 (2)0.0175 (12)0.0034 (15)0.0051 (15)
C120.086 (2)0.0581 (15)0.0615 (19)0.0192 (15)0.0115 (15)0.0076 (15)
C230.0889 (19)0.0564 (15)0.081 (2)0.0011 (14)0.0101 (16)0.0044 (14)
C200.0661 (18)0.0619 (16)0.078 (2)0.0083 (13)0.0034 (16)0.0054 (15)
C140.094 (2)0.0478 (15)0.085 (2)0.0013 (14)0.0043 (18)0.0201 (16)
C220.071 (2)0.098 (2)0.103 (3)0.0150 (17)0.0181 (18)0.0142 (19)
C130.109 (2)0.0524 (16)0.069 (2)0.0153 (16)0.0058 (18)0.0062 (15)
Geometric parameters (Å, º) top
Cl1—C191.734 (3)C5—C61.370 (3)
O1—C71.365 (3)C5—H50.9300
O1—C221.402 (3)C19—C201.373 (3)
N2—N11.369 (2)C16—C211.382 (3)
N2—C101.389 (3)C16—C171.387 (3)
N2—C31.469 (3)C17—H170.9300
N1—C11.287 (3)C11—C121.383 (3)
C4—C51.369 (3)C11—H110.9300
C4—C91.386 (3)C15—C141.380 (3)
C4—C31.495 (3)C15—H150.9300
C1—C161.462 (3)C21—C201.377 (3)
C1—C21.506 (3)C21—H210.9300
C10—C111.384 (3)C6—H60.9300
C10—C151.385 (3)C12—C131.368 (3)
C3—C21.541 (3)C12—H120.9300
C3—H30.9800C23—H23A0.9600
C8—C91.366 (3)C23—H23B0.9600
C8—C71.371 (3)C23—H23C0.9600
C8—H80.9300C20—H200.9300
C9—H90.9300C14—C131.368 (4)
C2—C231.527 (3)C14—H140.9300
C2—H20.9800C22—H22A0.9600
C7—C61.365 (3)C22—H22B0.9600
C18—C191.365 (3)C22—H22C0.9600
C18—C171.380 (3)C13—H130.9300
C18—H180.9300
C7—O1—C22117.7 (2)C20—C19—Cl1119.9 (2)
N1—N2—C10120.85 (19)C21—C16—C17117.4 (2)
N1—N2—C3112.56 (18)C21—C16—C1121.4 (2)
C10—N2—C3125.8 (2)C17—C16—C1121.2 (2)
C1—N1—N2108.79 (18)C18—C17—C16121.5 (2)
C5—C4—C9117.6 (2)C18—C17—H17119.3
C5—C4—C3120.7 (2)C16—C17—H17119.3
C9—C4—C3121.5 (2)C12—C11—C10120.6 (2)
N1—C1—C16121.2 (2)C12—C11—H11119.7
N1—C1—C2113.4 (2)C10—C11—H11119.7
C16—C1—C2125.4 (2)C14—C15—C10120.1 (3)
C11—C10—C15118.5 (2)C14—C15—H15120.0
C11—C10—N2121.0 (2)C10—C15—H15120.0
C15—C10—N2120.5 (2)C20—C21—C16121.5 (2)
N2—C3—C4112.25 (19)C20—C21—H21119.3
N2—C3—C2101.37 (18)C16—C21—H21119.3
C4—C3—C2113.40 (19)C7—C6—C5119.7 (2)
N2—C3—H3109.8C7—C6—H6120.2
C4—C3—H3109.8C5—C6—H6120.2
C2—C3—H3109.8C13—C12—C11120.5 (3)
C9—C8—C7120.0 (2)C13—C12—H12119.7
C9—C8—H8120.0C11—C12—H12119.7
C7—C8—H8120.0C2—C23—H23A109.5
C8—C9—C4121.0 (2)C2—C23—H23B109.5
C8—C9—H9119.5H23A—C23—H23B109.5
C4—C9—H9119.5C2—C23—H23C109.5
C1—C2—C23112.7 (2)H23A—C23—H23C109.5
C1—C2—C3101.28 (17)H23B—C23—H23C109.5
C23—C2—C3113.2 (2)C19—C20—C21119.7 (2)
C1—C2—H2109.8C19—C20—H20120.2
C23—C2—H2109.8C21—C20—H20120.2
C3—C2—H2109.8C13—C14—C15121.2 (3)
C6—C7—O1124.2 (2)C13—C14—H14119.4
C6—C7—C8119.9 (2)C15—C14—H14119.4
O1—C7—C8115.9 (2)O1—C22—H22A109.5
C19—C18—C17119.6 (2)O1—C22—H22B109.5
C19—C18—H18120.2H22A—C22—H22B109.5
C17—C18—H18120.2O1—C22—H22C109.5
C4—C5—C6121.8 (2)H22A—C22—H22C109.5
C4—C5—H5119.1H22B—C22—H22C109.5
C6—C5—H5119.1C12—C13—C14119.1 (3)
C18—C19—C20120.3 (2)C12—C13—H13120.4
C18—C19—Cl1119.7 (2)C14—C13—H13120.4
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C10–C15 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i0.982.983.847 (3)148
C23—H23C···Cg4ii0.962.803.679 (3)153
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1/2, z3/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbraham, S. K. (2001). Food Chem. Toxicol. 39, 493–498.  CrossRef PubMed CAS Google Scholar
First citationAstani, A., Reichling, R. & Schnitzler, P. (2011). Evid. Based Complement. Alternat. Med. pp. 1–8.  CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChainy, G. B. N., Manna, S. K., Chaturvedi, M. M. & Aggarwal, B. B. (2000). Oncogene, 19, 2943–2950.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreire, R. S., Morais, S. M., Catunda-Junior, F. E. A. & Pinheiro, D. C. S. N. (2005). Bioorg. Med. Chem. 13, 4353–4358.  CrossRef PubMed CAS Google Scholar
First citationHuisgen, R., Seidel, M., Wallbillich, G. & Knupfer, H. (1962). Tetrahedron, 17, 3–29.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTognolini, M., Ballabeni, V., Bertoni, S., Bruni, R., Impicciatore, M. & Barocelli, E. (2007). Pharmacol. Res. 56, 254–260.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds