organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-[(Z)-2-(2-nitro­phen­yl)hydrazinyl­­idene]propano­ate

aLaboratoire de Chimie Bioorganique, Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: amal_errossafi@yahoo.fr

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 8 June 2016; accepted 21 June 2016; online 24 June 2016)

In the mol­ecule of the title compound, C11H13N3O4, all non-H atoms are nearly coplanar with the largest deviation from the mean plane being 0.152 (2) Å. A strong intra­molecular N—H⋯O hydrogen bond closes a six-membered ring. In the crystal, mol­ecules are linked by ππ inter­actions [inter­centroid distance = 3.724 (2) Å], forming stacks parallel to the c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The indole ring is an important pharmocophore in modern drug discovery (Kuethe et al., 2005[Kuethe, J. T., Wong, A., Qu, C., Smitrovich, J., Davies, I. W. & Hughes, D. L. (2005). J. Org. Chem. 70, 2555-2567.]). Phenyl­hydrazones represent the principal starting material in the synthesis of indole derivatives. Some works have reported the synthesis of indole derivatives from the mixture of the two tautomers of phenyl­hydrazone without separation (Parmerter et al., 1958[Parmerter, S. M., Cook, A. G. & Dixon, W. B. (1958). J. Am. Chem. Soc. 80, 4621-4622.]; Murakami et al., 1999[Murakami, Y., Yokoo, H., Yokoyama, Y. & Watanabe, T. (1999). Chem. Pharm. Bull. 47, 791-797.]; Narayana et al., 2005[Narayana, B., Ashalatha, B. V., Vijaya Raj, K. K., Fernandes, J. & Sarojini, B. K. (2005). Bioorg. Med. Chem. 13, 4638-4644.]; El Kihel et al., 2013[El Kihel, A., Lagnaoui, A., Harjane, T., Kattir, Y., Guesmi, S. & Bauchat, P. (2013). Arabian J. Chem. 6, 173-176.]). Among these, Murakami et al. (1999[Murakami, Y., Yokoo, H., Yokoyama, Y. & Watanabe, T. (1999). Chem. Pharm. Bull. 47, 791-797.]) reported the separation of the mixture of indole normal and indole abnormal. However, the synthesis of phenyl­hydrazone by the condensation of phenyl­hydrazine with carbonyl compounds or by condensation of o-nitro­aniline diazo­nium with ethyl α-methyl­aceto­acetate in basic medium (Japp–Klingemann reaction) lead to two tautomeric products (Murakami et al., 1993[Murakami, Y., Watanabe, T., Yokoyama, Y., Naomachi, J., Iwase, H., Watanabe, N., Morihata, M., Okuyama, N., Kamakura, H., Takahashi, T., Atoda, H., Tojo, T., Morita, K. & Ishii, H. (1993). Chem. Pharm. Bull. 41, 1910-1919.]; Wagaw et al., 1999[Wagaw, S., Yang, B. H. & Buchwald, S. L. (1999). J. Am. Chem. Soc. 121, 10251-10263.]; Lipinska et al., 1999[Lipińska, T., Guibé-jampel, E., Petit, A. & Loupy, A. (1999). Synth. Commun. 29, 1349-1354.]). Based on our indole synthesis program (El Kihel et al., 2013[El Kihel, A., Lagnaoui, A., Harjane, T., Kattir, Y., Guesmi, S. & Bauchat, P. (2013). Arabian J. Chem. 6, 173-176.], 2007[El Kihel, A., Ahbala, M., Harjane, T., Essassi, E. M. & Bauchat, P. (2007). Phys. Chem. News, 34, 85-88.]; El Ouar et al., 1995[El Ouar, M., Knouzi, N., El Kihel, A., Essassi, E. M., Benchidmi, M., Hamelin, J., Carrié, R. & Danion-Bougot, R. (1995). Synth. Commun. 25, 1601-1604.]), we report in this work the isolation of the majority product of the mixture of the two tautomers.

The title compound is built up from a 2-nitro­phenyl ring linked to an ethyl hydrazono propano­ate group, as shown in Fig. 1[link]. Apart from the methyl H atoms, all atoms of the mol­ecule are almost coplanar with a maximum deviation of 0.152 (2) Å for C11. The conformation of the mol­ecule is stabilized by a strong intra­molecular N—H⋯O hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.88 1.94 2.6085 (17) 132
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

In the crystal, mol­ecules are linked by ππ inter­actions [inter-centroid distance = 3.724 (2) Å], forming stacks parallel to the c axis (Fig. 2[link]).

[Figure 2]
Figure 2
Mol­ecules linked by ππ inter­actions, forming a three-dimensional network.

Synthesis and crystallization

The title compound was synthesized by mixing 2-nitro­phenyhydrazine and ethyl pyruvate in stoichiometric qu­antity, in ethanol and heated over a steam bath. The crude product was filtered and crystallized from ethanol. Yellow single crystals appeared after two weeks. The crystals were washed with cold ethanol and dried in air at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflection (100) affected by the beam-stop was removed during refinement.

Table 2
Experimental details

Crystal data
Chemical formula C11H13N3O4
Mr 251.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.8614 (4), 15.8834 (6), 6.7495 (2)
β (°) 102.411 (2)
V3) 1241.89 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.42 × 0.33 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2015)
Tmin, Tmax 0.452, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 37344, 3487, 1892
Rint 0.058
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.146, 1.02
No. of reflections 3487
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.22
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Ethyl 2-[(Z)-2-(2-nitrophenyl)hydrazinylidene]propanoate top
Crystal data top
C11H13N3O4F(000) = 528
Mr = 251.24Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.8614 (4) ÅCell parameters from 3487 reflections
b = 15.8834 (6) Åθ = 2.2–29.6°
c = 6.7495 (2) ŵ = 0.10 mm1
β = 102.411 (2)°T = 296 K
V = 1241.89 (7) Å3Plate, yellow
Z = 40.42 × 0.33 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
1892 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.058
φ and ω scansθmax = 29.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2015)
h = 1616
Tmin = 0.452, Tmax = 0.746k = 2222
37344 measured reflectionsl = 96
3487 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.2115P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.146(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.22 e Å3
3487 reflectionsΔρmin = 0.22 e Å3
164 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0117 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65861 (13)0.28676 (10)0.4729 (2)0.0471 (4)
C20.75897 (14)0.23883 (12)0.5128 (3)0.0589 (4)
H20.83040.26550.54100.071*
C30.75360 (16)0.15360 (12)0.5110 (3)0.0653 (5)
H30.82090.12170.53830.078*
C40.64643 (16)0.11452 (11)0.4679 (3)0.0637 (5)
H40.64250.05600.46610.076*
C50.54619 (14)0.16054 (10)0.4280 (3)0.0534 (4)
H50.47550.13280.39930.064*
C60.54875 (12)0.24845 (9)0.4298 (2)0.0438 (3)
C70.25524 (13)0.30082 (10)0.3148 (2)0.0480 (4)
C80.25598 (16)0.39424 (11)0.3224 (4)0.0789 (6)
H8A0.17800.41470.29180.118*
H8B0.29380.41260.45570.118*
H8C0.29660.41580.22460.118*
C90.14199 (13)0.25757 (11)0.2633 (2)0.0516 (4)
C100.04194 (14)0.12833 (12)0.2233 (3)0.0683 (5)
H10A0.00620.13560.08090.082*
H10B0.01090.14880.30390.082*
C110.06936 (18)0.03794 (13)0.2684 (4)0.0847 (6)
H11A0.00050.00540.23710.127*
H11B0.12160.01850.18760.127*
H11C0.10460.03160.40950.127*
N10.67284 (12)0.37725 (9)0.4780 (2)0.0566 (4)
N20.44815 (10)0.29405 (8)0.3914 (2)0.0483 (3)
H2N0.45420.34920.38800.058*
N30.34528 (10)0.25358 (8)0.34835 (19)0.0453 (3)
O10.58726 (11)0.42318 (7)0.4422 (2)0.0711 (4)
O20.77058 (11)0.40635 (9)0.5191 (2)0.0821 (4)
O30.05164 (10)0.29500 (8)0.2177 (2)0.0730 (4)
O40.15006 (9)0.17423 (7)0.27317 (19)0.0618 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0443 (8)0.0505 (9)0.0472 (9)0.0012 (7)0.0111 (7)0.0009 (7)
C20.0433 (8)0.0718 (12)0.0616 (11)0.0028 (8)0.0112 (7)0.0023 (9)
C30.0551 (10)0.0688 (12)0.0737 (12)0.0187 (9)0.0177 (9)0.0083 (9)
C40.0738 (12)0.0490 (9)0.0716 (12)0.0105 (9)0.0229 (9)0.0052 (9)
C50.0533 (9)0.0480 (9)0.0602 (10)0.0013 (7)0.0153 (8)0.0002 (8)
C60.0433 (8)0.0473 (8)0.0415 (8)0.0013 (6)0.0106 (6)0.0004 (6)
C70.0435 (8)0.0507 (9)0.0489 (9)0.0016 (6)0.0081 (7)0.0014 (7)
C80.0584 (11)0.0524 (10)0.1209 (18)0.0058 (9)0.0080 (11)0.0006 (11)
C90.0435 (8)0.0579 (10)0.0530 (10)0.0030 (7)0.0095 (7)0.0016 (8)
C100.0437 (9)0.0739 (12)0.0857 (14)0.0127 (8)0.0106 (9)0.0092 (10)
C110.0770 (13)0.0692 (13)0.1053 (18)0.0216 (11)0.0139 (12)0.0040 (12)
N10.0490 (8)0.0564 (8)0.0653 (9)0.0086 (6)0.0142 (7)0.0056 (7)
N20.0406 (7)0.0434 (7)0.0601 (8)0.0015 (5)0.0089 (6)0.0003 (6)
N30.0397 (6)0.0499 (7)0.0461 (7)0.0037 (5)0.0089 (5)0.0017 (6)
O10.0567 (7)0.0492 (7)0.1059 (10)0.0022 (6)0.0143 (7)0.0023 (7)
O20.0521 (7)0.0716 (9)0.1210 (12)0.0189 (6)0.0154 (7)0.0065 (8)
O30.0443 (7)0.0746 (9)0.0952 (10)0.0100 (6)0.0041 (6)0.0009 (7)
O40.0386 (6)0.0560 (7)0.0885 (9)0.0046 (5)0.0084 (5)0.0047 (6)
Geometric parameters (Å, º) top
C1—C21.390 (2)C8—H8B0.9600
C1—C61.411 (2)C8—H8C0.9600
C1—N11.447 (2)C9—O31.2062 (18)
C2—C31.355 (3)C9—O41.328 (2)
C2—H20.9300C10—O41.4505 (19)
C3—C41.388 (3)C10—C111.489 (3)
C3—H30.9300C10—H10A0.9700
C4—C51.372 (2)C10—H10B0.9700
C4—H40.9300C11—H11A0.9600
C5—C61.397 (2)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—N21.3722 (18)N1—O21.2233 (17)
C7—N31.2849 (18)N1—O11.2311 (17)
C7—C91.482 (2)N2—N31.3542 (16)
C7—C81.485 (2)N2—H2N0.8796
C8—H8A0.9600
C2—C1—C6121.23 (15)H8A—C8—H8C109.5
C2—C1—N1116.67 (14)H8B—C8—H8C109.5
C6—C1—N1122.10 (13)O3—C9—O4123.69 (15)
C3—C2—C1120.59 (16)O3—C9—C7122.84 (16)
C3—C2—H2119.7O4—C9—C7113.48 (13)
C1—C2—H2119.7O4—C10—C11107.09 (15)
C2—C3—C4119.19 (16)O4—C10—H10A110.3
C2—C3—H3120.4C11—C10—H10A110.3
C4—C3—H3120.4O4—C10—H10B110.3
C5—C4—C3121.25 (16)C11—C10—H10B110.3
C5—C4—H4119.4H10A—C10—H10B108.6
C3—C4—H4119.4C10—C11—H11A109.5
C4—C5—C6120.96 (16)C10—C11—H11B109.5
C4—C5—H5119.5H11A—C11—H11B109.5
C6—C5—H5119.5C10—C11—H11C109.5
N2—C6—C5120.64 (14)H11A—C11—H11C109.5
N2—C6—C1122.58 (14)H11B—C11—H11C109.5
C5—C6—C1116.78 (14)O2—N1—O1121.46 (15)
N3—C7—C9116.60 (14)O2—N1—C1118.74 (14)
N3—C7—C8125.38 (15)O1—N1—C1119.80 (13)
C9—C7—C8118.01 (14)N3—N2—C6119.79 (13)
C7—C8—H8A109.5N3—N2—H2N122.8
C7—C8—H8B109.5C6—N2—H2N117.2
H8A—C8—H8B109.5C7—N3—N2115.92 (13)
C7—C8—H8C109.5C9—O4—C10116.03 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.881.942.6085 (17)132
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Chouaib Doukkali University, El Jadida, Morocco, for financial support.

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEl Kihel, A., Ahbala, M., Harjane, T., Essassi, E. M. & Bauchat, P. (2007). Phys. Chem. News, 34, 85–88.  CAS Google Scholar
First citationEl Kihel, A., Lagnaoui, A., Harjane, T., Kattir, Y., Guesmi, S. & Bauchat, P. (2013). Arabian J. Chem. 6, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationEl Ouar, M., Knouzi, N., El Kihel, A., Essassi, E. M., Benchidmi, M., Hamelin, J., Carrié, R. & Danion-Bougot, R. (1995). Synth. Commun. 25, 1601–1604.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKuethe, J. T., Wong, A., Qu, C., Smitrovich, J., Davies, I. W. & Hughes, D. L. (2005). J. Org. Chem. 70, 2555–2567.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLipińska, T., Guibé-jampel, E., Petit, A. & Loupy, A. (1999). Synth. Commun. 29, 1349–1354.  Google Scholar
First citationMurakami, Y., Watanabe, T., Yokoyama, Y., Naomachi, J., Iwase, H., Watanabe, N., Morihata, M., Okuyama, N., Kamakura, H., Takahashi, T., Atoda, H., Tojo, T., Morita, K. & Ishii, H. (1993). Chem. Pharm. Bull. 41, 1910–1919.  CrossRef CAS Google Scholar
First citationMurakami, Y., Yokoo, H., Yokoyama, Y. & Watanabe, T. (1999). Chem. Pharm. Bull. 47, 791–797.  CrossRef CAS Google Scholar
First citationNarayana, B., Ashalatha, B. V., Vijaya Raj, K. K., Fernandes, J. & Sarojini, B. K. (2005). Bioorg. Med. Chem. 13, 4638–4644.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParmerter, S. M., Cook, A. G. & Dixon, W. B. (1958). J. Am. Chem. Soc. 80, 4621–4622.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagaw, S., Yang, B. H. & Buchwald, S. L. (1999). J. Am. Chem. Soc. 121, 10251–10263.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds