organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Chloro-N-[4-(4-chloro­phen­yl)-1,3-thia­zol-2-yl]acetamide

aDrug Discovery Lab, Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: profskabilan@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 2 June 2016; accepted 3 June 2016; online 14 June 2016)

In the title acetamide, C11H8Cl2N2OS, the chloro­phenyl ring is oriented at an angle of 7.1 (1)° with respect to the thia­zole ring. In the crystal, mol­ecules are linked via C—H⋯O inter­molecular inter­actions, forming C(10) chains propagating in a zigzag manner along the b axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a continuation of our work on the crystal structure analysis of acetamide derivatives, we have undertaken a single-crystal X-ray diffraction study for the title compound, and the results are presented here. The mol­ecular structure of the title compound is illus­trated in Fig. 1[link]. The geometry of the present structure, apart from atom Cl2. is comparable with that reported for a similar structure, namely 2-chloro-N-(4-phenyl-1,3-thia­zol-2-yl)acetamide (II) (Saravanan et al., 2016[Saravanan, K., Elancheran, R., Divakar, S., Kabilan, S. & Selvanayagam, S. (2016). IUCrData 1, x160879.]). The superposition of the structures (Fig. 2[link]) using Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-9, 609.]), gives r.m.s. deviations of 0.858 and 0.595 Å, respectively, for mol­ecules A and B in (II). The thia­zole ring is planar with a maximum deviation of 0.005 (3) Å for atom C7. Chlorine atom Cl2 is deviates by 0.033 (1) Å from the best plane through the chloro­phenyl ring. The chloro­phenyl ring is oriented at an angle of 7.1 (1)° to the thia­zole ring. The mol­ecular structure is influenced by an intra­molecular C—H⋯N short contact (Table 1[link]). In the crystal, C—H⋯O inter­actions link the mol­ecules, forming C(10) chains propagating along the b axis in a zigzag manner (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1 0.93 2.47 2.827 (4) 103
C5—H5⋯O1i 0.93 2.58 3.498 (5) 169
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Superposition of the present structure except Cl2 (cyan) with the similar reported structure (mol­ecule A in green and mol­ecule B in brown; Saravanan et al., 2016[Saravanan, K., Elancheran, R., Divakar, S., Kabilan, S. & Selvanayagam, S. (2016). IUCrData 1, x160879.]).
[Figure 3]
Figure 3
Crystal packing of the title compound, viewed down the c axis. The C—H⋯N and C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in these hydrogen bonds have been omitted.

Synthesis and crystallization

To a solution of the 4-(4-chloro­phen­yl) thia­zol-2-amine (1.5 g, 7.14 mmol) in dry toluene (25 ml), K2CO3 (1.97 g, 14.28 mmol) and chloro­acetyl chloride (0.57 ml, 7.14 mmol) was added. The reaction mixture was heated to reflux for 3 h. After completion of the reaction (monitored by pre-coated TLC), the reaction mixture was cooled to RT and diluted with DCM (45 ml). The organic layer was washed with saturated NaHCO3 solution, water (10 ml × 3) and dried over Na2SO4. The filtrate was concentrated and the crude product mass was purified by precipitation using petroleum ether and diethyl ether (3:1) to give a colorless solid. This solid was recrystallized in ethyl acetate to yield a colorless crystal of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H8Cl2N2OS
Mr 287.15
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 5.0940 (12), 14.738 (3), 15.703 (3)
β (°) 96.932 (9)
V3) 1170.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.24 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 6510, 2688, 1679
Rint 0.100
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.178, 0.98
No. of reflections 2688
No. of parameters 160
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.41
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-Chloro-N-[4-(4-chlorophenyl)-1,3-thiazol-2-yl]acetamide top
Crystal data top
C11H8Cl2N2OSF(000) = 584
Mr = 287.15Dx = 1.630 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.0940 (12) ÅCell parameters from 4320 reflections
b = 14.738 (3) Åθ = 3.2–26.9°
c = 15.703 (3) ŵ = 0.72 mm1
β = 96.932 (9)°T = 296 K
V = 1170.3 (4) Å3Block, colourless
Z = 40.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.100
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 3.1°
ω scansh = 66
6510 measured reflectionsk = 1819
2688 independent reflectionsl = 2012
1679 reflections with I > 2σ(I)
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0772P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2688 reflectionsΔρmax = 0.47 e Å3
160 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40270 (17)0.34381 (7)0.21301 (7)0.0471 (3)
O10.3657 (5)0.15655 (18)0.18809 (18)0.0564 (7)
N10.0350 (5)0.39261 (18)0.12588 (19)0.0394 (7)
N20.0005 (6)0.2354 (2)0.1381 (2)0.0438 (7)
Cl10.1848 (3)0.02066 (7)0.11890 (9)0.0789 (5)
Cl20.4015 (2)0.82462 (7)0.03508 (7)0.0614 (4)
C10.2452 (7)0.5616 (2)0.0659 (2)0.0453 (8)
H10.32200.50720.04600.054*
C20.3652 (8)0.6429 (3)0.0384 (2)0.0476 (9)
H2A0.52080.64350.00080.057*
C30.2477 (7)0.7222 (2)0.0683 (2)0.0418 (8)
C40.0174 (8)0.7233 (2)0.1237 (2)0.0476 (9)
H40.05910.77800.14290.057*
C50.0987 (7)0.6419 (2)0.1506 (2)0.0428 (8)
H50.25450.64190.18820.051*
C60.0146 (6)0.5598 (2)0.1221 (2)0.0358 (7)
C70.1045 (6)0.4713 (2)0.1506 (2)0.0371 (7)
C80.3431 (7)0.4571 (2)0.1969 (2)0.0450 (8)
H80.45940.50300.21730.054*
C90.0985 (6)0.3231 (2)0.1550 (2)0.0376 (8)
C100.1383 (7)0.1575 (2)0.1540 (2)0.0417 (8)
C110.0185 (8)0.0745 (2)0.1235 (3)0.0550 (10)
H11A0.11200.08600.06700.066*
H11B0.14900.06220.16220.066*
H20.158 (4)0.237 (3)0.113 (3)0.097 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0321 (5)0.0426 (5)0.0636 (6)0.0025 (4)0.0066 (4)0.0069 (4)
O10.0468 (15)0.0449 (15)0.0721 (18)0.0114 (12)0.0144 (13)0.0022 (12)
N10.0294 (13)0.0330 (14)0.0553 (18)0.0026 (12)0.0035 (12)0.0003 (12)
N20.0324 (15)0.0346 (15)0.063 (2)0.0055 (12)0.0021 (14)0.0005 (13)
Cl10.0867 (9)0.0387 (6)0.1008 (10)0.0226 (6)0.0312 (7)0.0140 (5)
Cl20.0659 (7)0.0399 (5)0.0780 (8)0.0161 (5)0.0067 (5)0.0094 (4)
C10.0434 (19)0.0308 (17)0.059 (2)0.0009 (15)0.0051 (16)0.0019 (15)
C20.046 (2)0.045 (2)0.050 (2)0.0063 (17)0.0031 (16)0.0050 (16)
C30.0453 (19)0.0345 (18)0.047 (2)0.0061 (15)0.0113 (16)0.0048 (14)
C40.051 (2)0.0354 (19)0.057 (2)0.0032 (17)0.0087 (17)0.0020 (16)
C50.0361 (17)0.0380 (18)0.053 (2)0.0023 (15)0.0014 (15)0.0026 (15)
C60.0310 (16)0.0369 (17)0.0398 (18)0.0022 (13)0.0057 (13)0.0013 (14)
C70.0323 (16)0.0348 (17)0.0439 (19)0.0018 (13)0.0041 (14)0.0007 (13)
C80.0373 (18)0.040 (2)0.055 (2)0.0026 (15)0.0048 (15)0.0018 (15)
C90.0258 (15)0.0360 (18)0.051 (2)0.0021 (13)0.0047 (14)0.0000 (14)
C100.0390 (18)0.0384 (19)0.047 (2)0.0102 (15)0.0011 (15)0.0005 (14)
C110.054 (2)0.0349 (19)0.073 (3)0.0117 (17)0.0055 (19)0.0040 (18)
Geometric parameters (Å, º) top
S1—C81.710 (4)C2—C31.369 (5)
S1—C91.727 (3)C2—H2A0.9300
O1—C101.216 (4)C3—C41.374 (5)
N1—C91.283 (4)C4—C51.381 (5)
N1—C71.390 (4)C4—H40.9300
N2—C101.352 (4)C5—C61.391 (5)
N2—C91.401 (4)C5—H50.9300
N2—H20.856 (10)C6—C71.485 (5)
Cl1—C111.750 (4)C7—C81.355 (5)
Cl2—C31.751 (3)C8—H80.9300
C1—C61.382 (5)C10—C111.507 (5)
C1—C21.390 (5)C11—H11A0.9700
C1—H10.9300C11—H11B0.9700
C8—S1—C987.85 (16)C1—C6—C7119.7 (3)
C9—N1—C7109.6 (3)C5—C6—C7121.9 (3)
C10—N2—C9125.7 (3)C8—C7—N1114.6 (3)
C10—N2—H2123 (3)C8—C7—C6127.2 (3)
C9—N2—H2111 (3)N1—C7—C6118.1 (3)
C6—C1—C2121.5 (3)C7—C8—S1111.2 (3)
C6—C1—H1119.2C7—C8—H8124.4
C2—C1—H1119.2S1—C8—H8124.4
C3—C2—C1118.1 (3)N1—C9—N2120.5 (3)
C3—C2—H2A120.9N1—C9—S1116.8 (3)
C1—C2—H2A120.9N2—C9—S1122.7 (2)
C2—C3—C4122.1 (3)O1—C10—N2122.5 (3)
C2—C3—Cl2118.2 (3)O1—C10—C11124.8 (3)
C4—C3—Cl2119.7 (3)N2—C10—C11112.8 (3)
C3—C4—C5119.0 (3)C10—C11—Cl1111.7 (3)
C3—C4—H4120.5C10—C11—H11A109.3
C5—C4—H4120.5Cl1—C11—H11A109.3
C4—C5—C6120.7 (3)C10—C11—H11B109.3
C4—C5—H5119.6Cl1—C11—H11B109.3
C6—C5—H5119.6H11A—C11—H11B107.9
C1—C6—C5118.4 (3)
C6—C1—C2—C30.3 (6)C5—C6—C7—N1173.7 (3)
C1—C2—C3—C40.2 (6)N1—C7—C8—S10.8 (4)
C1—C2—C3—Cl2179.0 (3)C6—C7—C8—S1178.5 (3)
C2—C3—C4—C50.4 (6)C9—S1—C8—C70.3 (3)
Cl2—C3—C4—C5178.8 (3)C7—N1—C9—N2179.5 (3)
C3—C4—C5—C60.1 (5)C7—N1—C9—S10.9 (4)
C2—C1—C6—C50.5 (5)C10—N2—C9—N1169.4 (3)
C2—C1—C6—C7179.1 (3)C10—N2—C9—S19.1 (5)
C4—C5—C6—C10.3 (5)C8—S1—C9—N10.4 (3)
C4—C5—C6—C7179.3 (3)C8—S1—C9—N2178.9 (3)
C9—N1—C7—C81.1 (4)C9—N2—C10—O12.4 (6)
C9—N1—C7—C6179.0 (3)C9—N2—C10—C11176.6 (3)
C1—C6—C7—C8171.7 (4)O1—C10—C11—Cl114.5 (5)
C5—C6—C7—C88.6 (6)N2—C10—C11—Cl1164.5 (3)
C1—C6—C7—N16.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N10.932.472.827 (4)103
C5—H5···O1i0.932.583.498 (5)169
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

Acknowledgements

The authors are thankful for the funding support from the Department of Biotechnology North East Collaboration (DBT NEC) Research Project, Grant No. BT/252/NE/TBP/2011, New Delhi, India.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–9, 609.  Google Scholar
First citationSaravanan, K., Elancheran, R., Divakar, S., Kabilan, S. & Selvanayagam, S. (2016). IUCrData 1, x160879.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds