organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Oxo-1,2-di­hydro­quinoline-4-carb­­oxy­lic acid monohydrate

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, and dDépartement de Chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: youssef_kandri_rodi@yahoo.fr

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 31 May 2016; accepted 19 June 2016; online 24 June 2016)

In the title compound, C10H7NO3·H2O, O—H⋯O hydrogen bonds involving the carboxyl groups, the keto groups and the lattice water mol­ecules form stepped sheets approximately parallel to {010} which are tied together by pairwise N—H⋯O inter­actions. The asymmetric unit contains two independent quinolone derivatives and two water mol­ecules, one of which is disordered over two positions, of equal occupancy.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinolone derivatives are a classical division of organic chemistry; many of these mol­ecules have shown remarkable biological properties, including exceptional anti­bacterial activity (Beena & Rawat, 2013[Beena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693-764.]; Chai et al., 2011[Chai, Y., Liu, M.-L., Lv, K., Feng, L.-S., Li, S.-J., Sun, L.-Y., Wang, S. & Guo, H.-Y. (2011). Eur. J. Med. Chem. 46, 4267-4273.]; Hoshino et al., 2008[Hoshino, K., Inoue, K., Murakami, Y., Kurosaka, Y., Namba, K., Kashimoto, Y., Uoyama, S., Okumura, R., Higuchi, S. & Otani, T. (2008). Antimicrob. Agents Chemother. 52, 65-76.]). Quinolone derivatives are frequently associated with medicinal applications, such as anti-fungal (Musiol et al., 2010[Musiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960-1973.]), anti-tumoral (Bergh et al., 1997[Bergh, J. C. S., Tötterman, T. H., Termander, B. C., Strandgarden, K. A.-M. P., Gunnarsson, P. O. G. & Nilsson, B. I. (1997). Cancer Invest. 15, 204-211.]) and anti-cancer drugs (Elderfield & LeVon, 1960[Elderfield, R. C. & LeVon, E. F. (1960). J. Org. Chem. 25, 1576-1583.]).

The asymmetric unit contains two independent mol­ecules, which differ primarily in the orientation of the carboxyl group. O—H⋯O hydrogen bonds involving the carboxyl groups, the keto groups and the lattice water mol­ecules (Table 1[link] and Fig. 1[link]) form stepped sheets approximately parallel to {010} in the crystal. These layers are tied together by pairwise N—H⋯O inter­actions (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4 0.87 1.73 2.5734 (15) 162
N1—H1⋯O1i 0.91 1.91 2.8100 (17) 169
O6—H6A⋯O7 0.87 1.68 2.5423 (17) 172
N2—H2B⋯O4ii 0.91 1.92 2.8229 (16) 171
O7—H7A⋯O1iii 0.87 1.88 2.7336 (16) 165
O7—H7B⋯O8 0.87 2.01 2.841 (5) 159
O7—H7B⋯O8A 0.87 1.85 2.713 (4) 172
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound with 50% probability ellipsoids. Only one site for the disordered water mol­ecule (O8) is shown, and O—H⋯O hydrogen bonds are depicted as dotted lines.
[Figure 2]
Figure 2
Packing structure viewed along the b axis, with O—H⋯O and N—H⋯O hydrogen bonds shown as red and blue dotted lines, respectively.

Synthesis and crystallization

To a solution of isatin (2 g, 13.6 mmol) and malonic acid (1.4 g, 13.6 mmol) in 30 ml of acetic acid was added sodium acetate (0.11 g, 1.36 mmol). The reaction mixture was refluxed for 24 h. and after cooling, 100 ml of water–ice was added. The precipitate obtained was recrystallized from water to afford colourless crystals of the title hydrate in 90% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H7NO3·H2O
Mr 207.18
Crystal system, space group Monoclinic, P2/n
Temperature (K) 150
a, b, c (Å) 20.7884 (8), 3.7215 (1), 23.8849 (9)
β (°) 98.582 (2)
V3) 1827.14 (11)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.00
Crystal size (mm) 0.18 × 0.15 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.85, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 12922, 3541, 2964
Rint 0.035
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.04
No. of reflections 3541
No. of parameters 281
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Oxo-1,2-dihydroquinoline-4-carboxylic acid monohydrate top
Crystal data top
C10H7NO3·H2OF(000) = 864
Mr = 207.18Dx = 1.506 Mg m3
Monoclinic, P2/nCu Kα radiation, λ = 1.54178 Å
a = 20.7884 (8) ÅCell parameters from 8389 reflections
b = 3.7215 (1) Åθ = 2.6–72.2°
c = 23.8849 (9) ŵ = 1.00 mm1
β = 98.582 (2)°T = 150 K
V = 1827.14 (11) Å3Plate, colourless
Z = 80.18 × 0.15 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3541 independent reflections
Radiation source: INCOATEC IµS micro–focus source2964 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 3.1°
ω scansh = 2420
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 44
Tmin = 0.85, Tmax = 0.96l = 2928
12922 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.7256P]
where P = (Fo2 + 2Fc2)/3
3541 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.25 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.05828 (5)0.4566 (3)0.55972 (4)0.0263 (3)
O20.30022 (5)0.0876 (3)0.48988 (4)0.0271 (3)
H20.34000.06240.50690.032*
O30.28157 (6)0.1782 (4)0.57018 (5)0.0341 (3)
N10.06261 (6)0.2096 (4)0.47364 (5)0.0203 (3)
H10.02130.28750.46200.024*
C10.09018 (7)0.2917 (4)0.52711 (6)0.0208 (3)
C20.15720 (7)0.1848 (4)0.54320 (6)0.0216 (3)
H2A0.17770.22050.58110.026*
C30.19130 (7)0.0348 (4)0.50521 (6)0.0199 (3)
C40.16090 (7)0.0446 (4)0.44812 (6)0.0195 (3)
C50.19256 (8)0.2098 (4)0.40645 (6)0.0226 (3)
H50.23730.27210.41500.027*
C60.15898 (8)0.2811 (4)0.35347 (6)0.0244 (3)
H60.18090.38760.32550.029*
C70.09275 (8)0.1973 (4)0.34063 (6)0.0241 (3)
H70.06990.25170.30410.029*
C80.06040 (8)0.0374 (4)0.38018 (6)0.0221 (3)
H80.01540.01800.37130.027*
C90.09468 (7)0.0431 (4)0.43393 (6)0.0197 (3)
C100.26237 (7)0.0371 (4)0.52540 (6)0.0217 (3)
O40.42412 (5)0.0548 (3)0.52056 (4)0.0251 (3)
O50.37123 (6)0.7177 (4)0.69734 (5)0.0375 (3)
O60.45531 (6)0.4850 (4)0.75528 (5)0.0347 (3)
H6A0.43270.54720.78160.042*
N20.51852 (6)0.2797 (4)0.56588 (5)0.0197 (3)
H2B0.53740.19580.53650.024*
C110.45441 (7)0.2135 (4)0.56345 (6)0.0203 (3)
C120.42424 (7)0.3275 (4)0.61097 (6)0.0221 (3)
H120.37870.29590.61000.026*
C130.46007 (8)0.4797 (4)0.65710 (6)0.0209 (3)
C140.52881 (7)0.5455 (4)0.65896 (6)0.0197 (3)
C150.56950 (8)0.7117 (4)0.70415 (6)0.0231 (3)
H150.55190.78500.73680.028*
C160.63443 (8)0.7692 (4)0.70153 (7)0.0260 (4)
H160.66130.87800.73260.031*
C170.66096 (8)0.6681 (5)0.65332 (7)0.0254 (3)
H170.70570.71050.65180.030*
C180.62274 (8)0.5076 (4)0.60813 (6)0.0226 (3)
H180.64080.44130.57530.027*
C190.55683 (7)0.4432 (4)0.61111 (6)0.0196 (3)
C200.42396 (8)0.5753 (5)0.70562 (6)0.0245 (3)
O70.39711 (6)0.7156 (4)0.83450 (5)0.0389 (3)
H7A0.40430.61440.86770.058*
H7B0.35490.72520.82680.058*
O80.26582 (17)0.934 (2)0.80246 (18)0.0619 (19)0.494 (12)
H8A0.26091.14970.81520.093*0.494 (12)
H8B0.24070.78590.81730.093*0.494 (12)
O8A0.26537 (17)0.681 (3)0.8129 (2)0.071 (2)0.506 (12)
H8AA0.24880.79140.78190.107*0.506 (12)
H8AB0.24660.75750.84080.107*0.506 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0222 (6)0.0375 (7)0.0196 (5)0.0065 (5)0.0043 (4)0.0006 (5)
O20.0149 (5)0.0434 (7)0.0228 (5)0.0000 (5)0.0028 (4)0.0026 (5)
O30.0236 (6)0.0495 (8)0.0279 (6)0.0038 (5)0.0003 (5)0.0117 (6)
N10.0154 (6)0.0263 (7)0.0192 (6)0.0016 (5)0.0024 (5)0.0018 (5)
C10.0197 (8)0.0250 (8)0.0182 (7)0.0008 (6)0.0044 (6)0.0030 (6)
C20.0193 (7)0.0271 (8)0.0178 (7)0.0001 (6)0.0012 (5)0.0024 (6)
C30.0185 (7)0.0211 (7)0.0195 (7)0.0003 (6)0.0014 (5)0.0033 (6)
C40.0187 (7)0.0204 (7)0.0192 (7)0.0005 (6)0.0025 (5)0.0023 (6)
C50.0215 (8)0.0239 (8)0.0230 (7)0.0014 (6)0.0047 (6)0.0010 (6)
C60.0285 (8)0.0245 (8)0.0209 (7)0.0011 (6)0.0059 (6)0.0002 (6)
C70.0286 (8)0.0238 (8)0.0186 (7)0.0021 (6)0.0007 (6)0.0010 (6)
C80.0205 (7)0.0240 (8)0.0210 (7)0.0012 (6)0.0002 (6)0.0038 (6)
C90.0204 (7)0.0205 (7)0.0182 (7)0.0004 (6)0.0032 (5)0.0031 (6)
C100.0195 (8)0.0256 (8)0.0196 (7)0.0010 (6)0.0021 (6)0.0015 (6)
O40.0184 (5)0.0376 (7)0.0188 (5)0.0002 (5)0.0016 (4)0.0062 (5)
O50.0298 (7)0.0586 (9)0.0247 (6)0.0155 (6)0.0066 (5)0.0015 (6)
O60.0305 (7)0.0586 (9)0.0157 (5)0.0077 (6)0.0056 (5)0.0029 (5)
N20.0184 (6)0.0263 (7)0.0150 (6)0.0017 (5)0.0039 (5)0.0008 (5)
C110.0196 (7)0.0243 (8)0.0166 (7)0.0015 (6)0.0017 (5)0.0008 (6)
C120.0192 (7)0.0285 (8)0.0189 (7)0.0024 (6)0.0040 (6)0.0009 (6)
C130.0232 (8)0.0227 (8)0.0169 (7)0.0038 (6)0.0033 (6)0.0024 (6)
C140.0222 (8)0.0192 (7)0.0173 (7)0.0027 (6)0.0021 (5)0.0020 (5)
C150.0281 (8)0.0228 (8)0.0183 (7)0.0002 (6)0.0031 (6)0.0003 (6)
C160.0284 (9)0.0239 (8)0.0241 (8)0.0028 (6)0.0020 (6)0.0012 (6)
C170.0200 (8)0.0272 (8)0.0283 (8)0.0016 (6)0.0013 (6)0.0032 (7)
C180.0204 (8)0.0257 (8)0.0220 (7)0.0019 (6)0.0045 (6)0.0012 (6)
C190.0213 (8)0.0196 (7)0.0173 (7)0.0020 (6)0.0014 (5)0.0021 (6)
C200.0240 (8)0.0309 (9)0.0189 (7)0.0007 (6)0.0039 (6)0.0015 (6)
O70.0332 (7)0.0630 (9)0.0212 (6)0.0031 (6)0.0064 (5)0.0029 (6)
O80.0327 (18)0.080 (5)0.075 (3)0.0015 (19)0.0131 (15)0.007 (2)
O8A0.0355 (19)0.098 (6)0.080 (3)0.009 (2)0.0097 (17)0.006 (3)
Geometric parameters (Å, º) top
O1—C11.2558 (19)O6—H6A0.8703
O2—C101.3242 (19)N2—C111.348 (2)
O2—H20.8700N2—C191.3836 (19)
O3—C101.2047 (19)N2—H2B0.9098
N1—C11.3545 (19)C11—C121.440 (2)
N1—C91.3844 (19)C12—C131.358 (2)
N1—H10.9101C12—H120.9500
C1—C21.445 (2)C13—C141.444 (2)
C2—C31.353 (2)C13—C201.514 (2)
C2—H2A0.9500C14—C191.410 (2)
C3—C41.445 (2)C14—C151.411 (2)
C3—C101.508 (2)C15—C161.377 (2)
C4—C91.406 (2)C15—H150.9500
C4—C51.413 (2)C16—C171.400 (2)
C5—C61.377 (2)C16—H160.9500
C5—H50.9500C17—C181.377 (2)
C6—C71.400 (2)C17—H170.9500
C6—H60.9500C18—C191.403 (2)
C7—C81.374 (2)C18—H180.9500
C7—H70.9500O7—H7A0.8700
C8—C91.405 (2)O7—H7B0.8701
C8—H80.9500O8—H8A0.8700
O4—C111.2661 (18)O8—H8B0.8702
O5—C201.207 (2)O8A—H8AA0.8699
O6—C201.3091 (19)O8A—H8AB0.8700
C10—O2—H2106.1C11—N2—H2B116.2
C1—N1—C9124.59 (13)C19—N2—H2B119.3
C1—N1—H1117.5O4—C11—N2119.30 (14)
C9—N1—H1117.6O4—C11—C12123.55 (14)
O1—C1—N1120.45 (13)N2—C11—C12117.15 (13)
O1—C1—C2123.16 (13)C13—C12—C11120.77 (14)
N1—C1—C2116.37 (13)C13—C12—H12119.6
C3—C2—C1121.09 (13)C11—C12—H12119.6
C3—C2—H2A119.5C12—C13—C14121.06 (14)
C1—C2—H2A119.5C12—C13—C20116.39 (14)
C2—C3—C4121.21 (14)C14—C13—C20122.55 (13)
C2—C3—C10116.44 (13)C19—C14—C15117.74 (14)
C4—C3—C10122.35 (14)C19—C14—C13117.11 (13)
C9—C4—C5118.25 (13)C15—C14—C13125.13 (14)
C9—C4—C3117.03 (14)C16—C15—C14120.87 (15)
C5—C4—C3124.70 (14)C16—C15—H15119.6
C6—C5—C4120.36 (15)C14—C15—H15119.6
C6—C5—H5119.8C15—C16—C17120.29 (14)
C4—C5—H5119.8C15—C16—H16119.9
C5—C6—C7120.38 (15)C17—C16—H16119.9
C5—C6—H6119.8C18—C17—C16120.60 (15)
C7—C6—H6119.8C18—C17—H17119.7
C8—C7—C6120.79 (14)C16—C17—H17119.7
C8—C7—H7119.6C17—C18—C19119.20 (15)
C6—C7—H7119.6C17—C18—H18120.4
C7—C8—C9119.15 (14)C19—C18—H18120.4
C7—C8—H8120.4N2—C19—C18119.21 (13)
C9—C8—H8120.4N2—C19—C14119.49 (14)
N1—C9—C8119.41 (14)C18—C19—C14121.29 (14)
N1—C9—C4119.54 (13)O5—C20—O6125.33 (15)
C8—C9—C4121.05 (14)O5—C20—C13121.30 (14)
O3—C10—O2124.87 (14)O6—C20—C13113.37 (14)
O3—C10—C3122.70 (14)H7A—O7—H7B104.1
O2—C10—C3112.36 (12)H8A—O8—H8B109.5
C20—O6—H6A109.7H8AA—O8A—H8AB109.5
C11—N2—C19124.34 (13)
C9—N1—C1—O1177.00 (14)C19—N2—C11—O4178.38 (14)
C9—N1—C1—C22.0 (2)C19—N2—C11—C121.1 (2)
O1—C1—C2—C3174.35 (15)O4—C11—C12—C13176.50 (15)
N1—C1—C2—C34.6 (2)N2—C11—C12—C133.0 (2)
C1—C2—C3—C43.9 (2)C11—C12—C13—C142.6 (2)
C1—C2—C3—C10174.98 (14)C11—C12—C13—C20177.53 (14)
C2—C3—C4—C90.4 (2)C12—C13—C14—C190.4 (2)
C10—C3—C4—C9178.41 (14)C20—C13—C14—C19179.79 (14)
C2—C3—C4—C5178.18 (15)C12—C13—C14—C15177.96 (15)
C10—C3—C4—C53.0 (2)C20—C13—C14—C151.9 (2)
C9—C4—C5—C60.1 (2)C19—C14—C15—C160.4 (2)
C3—C4—C5—C6178.66 (15)C13—C14—C15—C16178.72 (15)
C4—C5—C6—C71.3 (2)C14—C15—C16—C171.0 (2)
C5—C6—C7—C81.1 (2)C15—C16—C17—C180.5 (2)
C6—C7—C8—C90.2 (2)C16—C17—C18—C190.6 (2)
C1—N1—C9—C8178.27 (15)C11—N2—C19—C18178.15 (14)
C1—N1—C9—C41.4 (2)C11—N2—C19—C141.1 (2)
C7—C8—C9—N1178.94 (14)C17—C18—C19—N2179.57 (14)
C7—C8—C9—C41.4 (2)C17—C18—C19—C141.2 (2)
C5—C4—C9—N1179.12 (14)C15—C14—C19—N2179.93 (13)
C3—C4—C9—N12.2 (2)C13—C14—C19—N21.5 (2)
C5—C4—C9—C81.2 (2)C15—C14—C19—C180.7 (2)
C3—C4—C9—C8177.40 (14)C13—C14—C19—C18177.75 (14)
C2—C3—C10—O346.5 (2)C12—C13—C20—O543.5 (2)
C4—C3—C10—O3134.67 (17)C14—C13—C20—O5136.39 (18)
C2—C3—C10—O2130.40 (15)C12—C13—C20—O6135.88 (16)
C4—C3—C10—O248.4 (2)C14—C13—C20—O644.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.871.732.5734 (15)162
N1—H1···O1i0.911.912.8100 (17)169
O6—H6A···O70.871.682.5423 (17)172
N2—H2B···O4ii0.911.922.8229 (16)171
O7—H7A···O1iii0.871.882.7336 (16)165
O7—H7B···O80.872.012.841 (5)159
O7—H7B···O8A0.871.852.713 (4)172
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y, z+3/2.
 

References

First citationBeena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693–764.  Google Scholar
First citationBergh, J. C. S., Tötterman, T. H., Termander, B. C., Strandgarden, K. A.-M. P., Gunnarsson, P. O. G. & Nilsson, B. I. (1997). Cancer Invest. 15, 204–211.  CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, Y., Liu, M.-L., Lv, K., Feng, L.-S., Li, S.-J., Sun, L.-Y., Wang, S. & Guo, H.-Y. (2011). Eur. J. Med. Chem. 46, 4267–4273.  CrossRef CAS PubMed Google Scholar
First citationElderfield, R. C. & LeVon, E. F. (1960). J. Org. Chem. 25, 1576–1583.  CrossRef CAS Google Scholar
First citationHoshino, K., Inoue, K., Murakami, Y., Kurosaka, Y., Namba, K., Kashimoto, Y., Uoyama, S., Okumura, R., Higuchi, S. & Otani, T. (2008). Antimicrob. Agents Chemother. 52, 65–76.  CrossRef PubMed CAS Google Scholar
First citationMusiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960–1973.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds