metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(μ-di­ethyl sulfide-κ2S:S)bis­­[(bi­phenyl-2,2′-di­yl)platinum(ll)]

aDepartment of Chemistry, Wichita State University, Wichita, KS 67260, USA, and bCrystallographic Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
*Correspondence e-mail: paul.rillema@wichita.edu

Edited by M. Zeller, Purdue University, USA (Received 11 May 2016; accepted 13 May 2016; online 20 May 2016)

The C4S2 donor set in the title compound, [Pt(C12H8){(C2H5)2S}]2, defines a distorted square-planar geometry about the two PtII atoms, with very small deviations from planarity. The bidentate nature of the biphenyl dianionic ligand results in C—Pt—C bond angles of 80.9 (2) and 81.2 (2)°; the S—Pt—S bond angles are 78.08 (5) and 78.09 (5)°. The average Pt—C bond length is 2.023 Å [range 2.016 (5)–2.028 (6) Å] and the average of Pt—S bond length is 2.3790 Å [range 2.3742 (14)–2.3837 (14) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We are inter­ested in preparing PtII complexes containing the biphenyl dianion with di­imine ligands due to their excited state emission properties (Rillema et al., 2015[Rillema, D. P., Stoyanov, S., Cruz, A., Huag, W., Moore, C., Siam, K., Jehan, A. & Nguyen, T. (2015). Dalton Trans. 44, 17075-17090.]). [Pt(C12H8){(C2H5)2S}]2 (Fig. 1[link]) is a synthetic inter­mediate. The bidentate nature of the 2,2′-biphenyl ligand gave C—Pt—C bite angles of 80.9 (2) and 81.2 (2)°, as expected from previous studies (Rillema et al., 2013[Rillema, D. P., Cruz, A. J., Tasset, B. J., Moore, C., Siam, K. & Huang, W. (2013). J. Mol. Struct. 1041, 82-91.]), but the S—Pt—S angles of 78.08 (5) and 78.09 (5)° for the square-planar biphen­yl–PtII units bridged by sulfur ligands was ∼2° less than what had been found for a similar diethyl sulfide-bridged platinum(II) complex with four 4-fluoro­phenyl groups in place of the two bidentate biphenyl ligands (Escola et al., 2014[Escola, A., Crespo, M., Quirante, J., Cortes, R., Jayaraman, A., Badia, J., Calvet, T., Font-Bardia, M. & Cascante, M. (2014). Organo­metallics, 33, 1740-1750.]). Substitution of the bridging sulfur ligands with Br gave Br—Pt—Br angles of 83.0 (1)° and Pt—C bond lengths of 2.01 (2) and 2.01 (2) Å for the bis­{(μ2-bromido)[(2,2′-η2)-4,4′-bis­(tri­fluoro­meth­yl)biphen­yl]platinum(II)} anion (Brune et al., 1991[Brune, H.-A., Roth, H., Debaerdemaeker, T. & Schible, H.-M. (1991). J. Organomet. Chem. 402, 435-442.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized according to previously published procedures (Gilman & Gaj, 1957[Gilman, H. & Gaj, H. J. (1957). J. Org. Chem. 22, 447-449.]; Gardner et al., 1973[Gardner, S. A., Gordon, H. B. & Rausch, M. P. (1973). J. Organomet. Chem. 60, 179-188.]). X-ray quality crystals were obtained by recrystallization from benzene.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Pt2(C12H8)2(C4H10S)2]
Mr 874.91
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 19.2938 (15), 7.8839 (6), 19.6969 (17)
β (°) 109.639 (5)
V3) 2821.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.07
Crystal size (mm) 0.05 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker APEXII Ultra
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.018, 0.048
No. of measured, independent and observed [I > 2σ(I)] reflections 39433, 6763, 5668
Rint 0.052
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.066, 1.10
No. of reflections 6763
No. of parameters 329
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.93, −1.80
Computer programs: APEX2 (Bruker, 2012[Bruker (2013). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Experimental top

The title compound was synthesized according to previously published procedures (Gilman & Gaj, 1957; Gardner et al., 1973). X-ray quality crystals were obtained by recrystallization from benzene.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms attached to C atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H bond lengths of 0.95 Å for aromatic C—H, and 0.99 and 0.98 Å for aliphatic CH2 and CH3 moieties, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3 and 1.2 for C—H and CH2 units, respectively.

Structure description top

We are interested in preparing PtII complexes containing the biphenyl dianion with diimine ligands due to their excited state emission properties (Rillema et al., 2015). [Pt(C12H10)((C2H5)2S)]2 is a synthetic intermediate. The bidentate nature of the 2,2'-biphenyl ligand gave C—Pt—C bite angles of 81.9 (2) and 81.2 (2)°, as expected from previous studies (Rillema et al., 2013), but the S—Pt—S angles of 78.08 (5) and 78.09 (5)° for the square-planar biphenyl–PtII units bridged by sulfur ligands was ~2° less than what had been found for a similarly diethyl sulfide-bridged platinum(II) complex with four 4-fluorophenyl groups in place of the two bidentate biphenyl ligands (Escola et al., 2014). Substitution of the bridging sulfur ligands with Br gave Br—Pt—Br angles of 83.0 (1)° and Pt—C bond lenghts of 2.01 (2) and 2.01 (2) Å for the bis{(µ2-bromo)2,2'-η2-[4,4'-bis(trifluoromethyl)biphenyl]platinum(II)} anion (Brune et al., 1991).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
Bis(µ-diethyl sulfide-κ2S:S)bis[(biphenyl-2,2'-diyl)platinum(ll)] top
Crystal data top
[Pt2(C12H10)2(C4H8S)2]F(000) = 1664
Mr = 874.91Dx = 2.059 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 19.2938 (15) ÅCell parameters from 9904 reflections
b = 7.8839 (6) Åθ = 2.2–28.3°
c = 19.6969 (17) ŵ = 10.07 mm1
β = 109.639 (5)°T = 100 K
V = 2821.8 (4) Å3Rod, yellow
Z = 40.05 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII Ultra
diffractometer
6763 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker TXS5668 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.052
Detector resolution: 7.9 pixels mm-1θmax = 28.3°, θmin = 2.8°
ω and φ scansh = 2325
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1010
Tmin = 0.018, Tmax = 0.048l = 2626
39433 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0141P)2 + 15.5401P]
where P = (Fo2 + 2Fc2)/3
6763 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 1.93 e Å3
0 restraintsΔρmin = 1.80 e Å3
Crystal data top
[Pt2(C12H10)2(C4H8S)2]V = 2821.8 (4) Å3
Mr = 874.91Z = 4
Monoclinic, P21/nMo Kα radiation
a = 19.2938 (15) ŵ = 10.07 mm1
b = 7.8839 (6) ÅT = 100 K
c = 19.6969 (17) Å0.05 × 0.02 × 0.01 mm
β = 109.639 (5)°
Data collection top
Bruker APEXII Ultra
diffractometer
6763 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
5668 reflections with I > 2σ(I)
Tmin = 0.018, Tmax = 0.048Rint = 0.052
39433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0141P)2 + 15.5401P]
where P = (Fo2 + 2Fc2)/3
6763 reflectionsΔρmax = 1.93 e Å3
329 parametersΔρmin = 1.80 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt11.06321 (2)0.28426 (3)0.22858 (2)0.01920 (6)
Pt20.92032 (2)0.59665 (3)0.22827 (2)0.01973 (6)
S10.96358 (8)0.43818 (17)0.14799 (7)0.0201 (3)
S21.02012 (8)0.44260 (17)0.30952 (7)0.0209 (3)
C11.1019 (3)0.1619 (7)0.1581 (3)0.0205 (11)
C21.1493 (3)0.1631 (7)0.2996 (3)0.0198 (11)
C30.8333 (3)0.7156 (7)0.1570 (3)0.0216 (12)
C40.8827 (3)0.7209 (7)0.2990 (3)0.0210 (11)
C51.0705 (3)0.1585 (7)0.0830 (3)0.0230 (12)
H51.02500.21500.06070.028*
C61.1040 (3)0.0741 (7)0.0399 (3)0.0234 (12)
H61.08180.07460.01100.028*
C71.1697 (3)0.0101 (7)0.0720 (3)0.0250 (13)
H71.19320.06670.04310.030*
C81.2013 (3)0.0117 (7)0.1466 (3)0.0248 (12)
H81.24620.07080.16860.030*
C91.1680 (3)0.0720 (7)0.1893 (3)0.0204 (11)
C101.1955 (3)0.0738 (7)0.2690 (3)0.0207 (12)
C111.2586 (3)0.0065 (7)0.3120 (3)0.0244 (12)
H111.28900.06430.29030.029*
C121.2781 (3)0.0034 (7)0.3867 (3)0.0263 (13)
H121.32200.05680.41630.032*
C131.2327 (3)0.0781 (7)0.4172 (3)0.0264 (13)
H131.24450.07760.46810.032*
C141.1696 (3)0.1612 (7)0.3741 (3)0.0249 (12)
H141.13950.21820.39640.030*
C150.8112 (3)0.7139 (7)0.0820 (3)0.0227 (12)
H150.84050.65530.05930.027*
C160.7473 (3)0.7956 (7)0.0391 (3)0.0241 (12)
H160.73380.79150.01200.029*
C170.7035 (3)0.8824 (7)0.0704 (3)0.0259 (13)
H170.65940.93560.04120.031*
C180.7250 (3)0.8909 (7)0.1456 (3)0.0257 (13)
H180.69630.95380.16760.031*
C190.7881 (3)0.8078 (7)0.1883 (3)0.0221 (12)
C200.8163 (3)0.8089 (7)0.2682 (3)0.0231 (12)
C210.7823 (3)0.8892 (7)0.3106 (3)0.0259 (13)
H210.73660.94520.28850.031*
C220.8140 (3)0.8894 (8)0.3854 (3)0.0280 (13)
H220.79000.94330.41460.034*
C230.8807 (4)0.8101 (7)0.4164 (3)0.0284 (13)
H230.90360.81220.46720.034*
C240.9149 (3)0.7269 (7)0.3742 (3)0.0257 (13)
H240.96100.67310.39680.031*
C250.9924 (3)0.5681 (7)0.0864 (3)0.0239 (12)
H25A1.02080.49800.06330.029*
H25B0.94850.61250.04810.029*
C261.0396 (4)0.7150 (8)0.1260 (3)0.0321 (14)
H26A1.01110.78570.14800.048*
H26B1.05480.78330.09190.048*
H26C1.08320.67100.16370.048*
C270.8930 (3)0.3033 (7)0.0872 (3)0.0252 (13)
H27A0.84840.37150.06310.030*
H27B0.91110.25650.04960.030*
C280.8738 (4)0.1596 (9)0.1285 (4)0.0356 (15)
H28A0.91750.08930.15050.053*
H28B0.83480.09030.09540.053*
H28C0.85670.20600.16620.053*
C291.0927 (3)0.5749 (7)0.3692 (3)0.0246 (12)
H29A1.07470.63060.40520.030*
H29B1.13560.50360.39530.030*
C301.1156 (4)0.7083 (8)0.3256 (4)0.0370 (16)
H30A1.13250.65270.28950.055*
H30B1.15550.77700.35770.055*
H30C1.07340.78140.30130.055*
C310.9904 (3)0.3146 (8)0.3714 (3)0.0266 (13)
H31A1.03380.26400.40840.032*
H31B0.96420.38650.39600.032*
C320.9399 (4)0.1756 (9)0.3296 (4)0.0429 (18)
H32A0.89640.22640.29400.064*
H32B0.92470.10450.36280.064*
H32C0.96600.10590.30470.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02093 (11)0.01524 (10)0.02032 (11)0.00053 (8)0.00548 (8)0.00055 (8)
Pt20.02191 (11)0.01607 (10)0.02061 (11)0.00074 (8)0.00635 (8)0.00018 (8)
S10.0227 (7)0.0160 (7)0.0206 (7)0.0007 (5)0.0059 (6)0.0004 (5)
S20.0231 (7)0.0184 (7)0.0206 (7)0.0011 (5)0.0066 (6)0.0007 (5)
C10.025 (3)0.016 (3)0.021 (3)0.002 (2)0.007 (2)0.002 (2)
C20.021 (3)0.018 (3)0.020 (3)0.003 (2)0.006 (2)0.001 (2)
C30.026 (3)0.016 (3)0.022 (3)0.004 (2)0.007 (2)0.001 (2)
C40.023 (3)0.016 (3)0.024 (3)0.001 (2)0.008 (2)0.002 (2)
C50.028 (3)0.015 (3)0.025 (3)0.002 (2)0.008 (2)0.002 (2)
C60.030 (3)0.017 (3)0.023 (3)0.002 (2)0.009 (2)0.000 (2)
C70.031 (3)0.019 (3)0.029 (3)0.001 (2)0.014 (3)0.003 (2)
C80.026 (3)0.018 (3)0.030 (3)0.004 (2)0.010 (3)0.001 (2)
C90.023 (3)0.013 (3)0.026 (3)0.003 (2)0.009 (2)0.001 (2)
C100.030 (3)0.013 (3)0.021 (3)0.005 (2)0.010 (2)0.000 (2)
C110.023 (3)0.017 (3)0.033 (3)0.002 (2)0.009 (3)0.002 (2)
C120.027 (3)0.018 (3)0.029 (3)0.003 (2)0.003 (3)0.006 (2)
C130.033 (3)0.018 (3)0.024 (3)0.002 (2)0.005 (3)0.001 (2)
C140.026 (3)0.018 (3)0.030 (3)0.001 (2)0.009 (3)0.000 (2)
C150.027 (3)0.016 (3)0.026 (3)0.000 (2)0.009 (2)0.001 (2)
C160.026 (3)0.020 (3)0.024 (3)0.003 (2)0.006 (2)0.000 (2)
C170.023 (3)0.020 (3)0.031 (3)0.003 (2)0.004 (3)0.003 (2)
C180.027 (3)0.021 (3)0.028 (3)0.005 (2)0.007 (3)0.002 (2)
C190.022 (3)0.015 (3)0.028 (3)0.002 (2)0.006 (2)0.003 (2)
C200.024 (3)0.017 (3)0.029 (3)0.000 (2)0.011 (2)0.000 (2)
C210.024 (3)0.021 (3)0.035 (3)0.003 (2)0.013 (3)0.001 (3)
C220.034 (3)0.025 (3)0.029 (3)0.002 (3)0.016 (3)0.004 (3)
C230.040 (4)0.022 (3)0.024 (3)0.001 (3)0.012 (3)0.001 (2)
C240.030 (3)0.020 (3)0.026 (3)0.005 (2)0.009 (3)0.001 (2)
C250.033 (3)0.018 (3)0.023 (3)0.001 (2)0.012 (3)0.000 (2)
C260.040 (4)0.027 (3)0.031 (3)0.011 (3)0.014 (3)0.000 (3)
C270.025 (3)0.020 (3)0.027 (3)0.005 (2)0.005 (2)0.005 (2)
C280.037 (4)0.033 (4)0.034 (4)0.010 (3)0.009 (3)0.000 (3)
C290.024 (3)0.022 (3)0.021 (3)0.001 (2)0.001 (2)0.005 (2)
C300.039 (4)0.028 (3)0.037 (4)0.006 (3)0.003 (3)0.004 (3)
C310.028 (3)0.027 (3)0.026 (3)0.002 (2)0.010 (3)0.004 (2)
C320.060 (5)0.029 (4)0.045 (4)0.013 (3)0.026 (4)0.006 (3)
Geometric parameters (Å, º) top
Pt1—S12.3742 (14)C16—H160.9500
Pt1—S22.3837 (14)C16—C171.383 (8)
Pt1—C12.028 (6)C17—H170.9500
Pt1—C22.016 (5)C17—C181.400 (8)
Pt2—S12.3759 (14)C18—H180.9500
Pt2—S22.3816 (14)C18—C191.390 (8)
Pt2—C32.021 (6)C19—C201.482 (8)
Pt2—C42.027 (6)C20—C211.378 (8)
S1—C251.812 (6)C21—H210.9500
S1—C271.823 (6)C21—C221.394 (8)
S2—C291.823 (6)C22—H220.9500
S2—C311.816 (6)C22—C231.374 (9)
C1—C51.396 (8)C23—H230.9500
C1—C91.407 (8)C23—C241.387 (8)
C2—C101.419 (8)C24—H240.9500
C2—C141.386 (8)C25—H25A0.9900
C3—C151.394 (8)C25—H25B0.9900
C3—C191.425 (8)C25—C261.517 (8)
C4—C201.403 (8)C26—H26A0.9800
C4—C241.401 (8)C26—H26B0.9800
C5—H50.9500C26—H26C0.9800
C5—C61.397 (8)C27—H27A0.9900
C6—H60.9500C27—H27B0.9900
C6—C71.381 (8)C27—C281.510 (8)
C7—H70.9500C28—H28A0.9800
C7—C81.390 (8)C28—H28B0.9800
C8—H80.9500C28—H28C0.9800
C8—C91.386 (8)C29—H29A0.9900
C9—C101.478 (7)C29—H29B0.9900
C10—C111.381 (8)C29—C301.514 (8)
C11—H110.9500C30—H30A0.9800
C11—C121.393 (8)C30—H30B0.9800
C12—H120.9500C30—H30C0.9800
C12—C131.376 (8)C31—H31A0.9900
C13—H130.9500C31—H31B0.9900
C13—C141.392 (8)C31—C321.512 (9)
C14—H140.9500C32—H32A0.9800
C15—H150.9500C32—H32B0.9800
C15—C161.396 (8)C32—H32C0.9800
S1—Pt1—S278.08 (5)C16—C17—H17120.4
C1—Pt1—S1100.76 (16)C16—C17—C18119.2 (5)
C1—Pt1—S2176.78 (16)C18—C17—H17120.4
C2—Pt1—S1177.46 (16)C17—C18—H18119.8
C2—Pt1—S2100.11 (16)C19—C18—C17120.4 (5)
C2—Pt1—C180.9 (2)C19—C18—H18119.8
S1—Pt2—S278.09 (5)C3—C19—C20113.7 (5)
C3—Pt2—S1100.21 (16)C18—C19—C3121.2 (5)
C3—Pt2—S2176.99 (16)C18—C19—C20125.1 (5)
C3—Pt2—C481.2 (2)C4—C20—C19114.4 (5)
C4—Pt2—S1177.17 (16)C21—C20—C4121.1 (6)
C4—Pt2—S2100.35 (16)C21—C20—C19124.4 (5)
Pt1—S1—Pt2102.14 (5)C20—C21—H21119.6
C25—S1—Pt1112.0 (2)C20—C21—C22120.8 (6)
C25—S1—Pt2113.82 (19)C22—C21—H21119.6
C25—S1—C27102.7 (3)C21—C22—H22120.6
C27—S1—Pt1113.5 (2)C23—C22—C21118.8 (6)
C27—S1—Pt2113.1 (2)C23—C22—H22120.6
Pt2—S2—Pt1101.69 (5)C22—C23—H23119.6
C29—S2—Pt1111.5 (2)C22—C23—C24120.9 (6)
C29—S2—Pt2114.43 (19)C24—C23—H23119.6
C31—S2—Pt1114.6 (2)C4—C24—H24119.4
C31—S2—Pt2111.6 (2)C23—C24—C4121.1 (6)
C31—S2—C29103.5 (3)C23—C24—H24119.4
C5—C1—Pt1127.2 (4)S1—C25—H25A109.5
C5—C1—C9117.4 (5)S1—C25—H25B109.5
C9—C1—Pt1115.3 (4)H25A—C25—H25B108.1
C10—C2—Pt1115.4 (4)C26—C25—S1110.7 (4)
C14—C2—Pt1127.8 (4)C26—C25—H25A109.5
C14—C2—C10116.7 (5)C26—C25—H25B109.5
C15—C3—Pt2128.2 (4)C25—C26—H26A109.5
C15—C3—C19116.7 (5)C25—C26—H26B109.5
C19—C3—Pt2115.0 (4)C25—C26—H26C109.5
C20—C4—Pt2115.3 (4)H26A—C26—H26B109.5
C24—C4—Pt2127.5 (4)H26A—C26—H26C109.5
C24—C4—C20117.2 (5)H26B—C26—H26C109.5
C1—C5—H5119.1S1—C27—H27A109.6
C1—C5—C6121.8 (5)S1—C27—H27B109.6
C6—C5—H5119.1H27A—C27—H27B108.1
C5—C6—H6120.2C28—C27—S1110.4 (4)
C7—C6—C5119.5 (5)C28—C27—H27A109.6
C7—C6—H6120.2C28—C27—H27B109.6
C6—C7—H7120.1C27—C28—H28A109.5
C6—C7—C8119.8 (5)C27—C28—H28B109.5
C8—C7—H7120.1C27—C28—H28C109.5
C7—C8—H8119.7H28A—C28—H28B109.5
C9—C8—C7120.7 (5)H28A—C28—H28C109.5
C9—C8—H8119.7H28B—C28—H28C109.5
C1—C9—C10114.2 (5)S2—C29—H29A109.7
C8—C9—C1120.7 (5)S2—C29—H29B109.7
C8—C9—C10125.1 (5)H29A—C29—H29B108.2
C2—C10—C9113.7 (5)C30—C29—S2109.8 (4)
C11—C10—C2121.1 (5)C30—C29—H29A109.7
C11—C10—C9125.1 (5)C30—C29—H29B109.7
C10—C11—H11119.7C29—C30—H30A109.5
C10—C11—C12120.6 (5)C29—C30—H30B109.5
C12—C11—H11119.7C29—C30—H30C109.5
C11—C12—H12120.5H30A—C30—H30B109.5
C13—C12—C11119.0 (5)H30A—C30—H30C109.5
C13—C12—H12120.5H30B—C30—H30C109.5
C12—C13—H13119.7S2—C31—H31A109.9
C12—C13—C14120.5 (6)S2—C31—H31B109.9
C14—C13—H13119.7H31A—C31—H31B108.3
C2—C14—C13121.9 (6)C32—C31—S2109.1 (4)
C2—C14—H14119.0C32—C31—H31A109.9
C13—C14—H14119.0C32—C31—H31B109.9
C3—C15—H15119.0C31—C32—H32A109.5
C3—C15—C16122.1 (5)C31—C32—H32B109.5
C16—C15—H15119.0C31—C32—H32C109.5
C15—C16—H16119.8H32A—C32—H32B109.5
C17—C16—C15120.4 (5)H32A—C32—H32C109.5
C17—C16—H16119.8H32B—C32—H32C109.5

Experimental details

Crystal data
Chemical formula[Pt2(C12H10)2(C4H8S)2]
Mr874.91
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)19.2938 (15), 7.8839 (6), 19.6969 (17)
β (°) 109.639 (5)
V3)2821.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)10.07
Crystal size (mm)0.05 × 0.02 × 0.01
Data collection
DiffractometerBruker APEXII Ultra
Absorption correctionMulti-scan
(SADABS; Bruker, 2015)
Tmin, Tmax0.018, 0.048
No. of measured, independent and
observed [I > 2σ(I)] reflections
39433, 6763, 5668
Rint0.052
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.066, 1.10
No. of reflections6763
No. of parameters329
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0141P)2 + 15.5401P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.93, 1.80

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL2015 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We are grateful for support from the National Science Foundation (EPSCoR), the Wichita State University Office of Research Administration, and the Department of Energy.

References

First citationBruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrune, H.-A., Roth, H., Debaerdemaeker, T. & Schible, H.-M. (1991). J. Organomet. Chem. 402, 435–442.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEscola, A., Crespo, M., Quirante, J., Cortes, R., Jayaraman, A., Badia, J., Calvet, T., Font-Bardia, M. & Cascante, M. (2014). Organo­metallics, 33, 1740–1750.  CAS Google Scholar
First citationGardner, S. A., Gordon, H. B. & Rausch, M. P. (1973). J. Organomet. Chem. 60, 179–188.  CrossRef CAS Google Scholar
First citationGilman, H. & Gaj, H. J. (1957). J. Org. Chem. 22, 447–449.  CrossRef CAS Google Scholar
First citationRillema, D. P., Cruz, A. J., Tasset, B. J., Moore, C., Siam, K. & Huang, W. (2013). J. Mol. Struct. 1041, 82–91.  CSD CrossRef CAS Google Scholar
First citationRillema, D. P., Stoyanov, S., Cruz, A., Huag, W., Moore, C., Siam, K., Jehan, A. & Nguyen, T. (2015). Dalton Trans. 44, 17075–17090.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds