organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 13-(4-chloro­phen­yl)-11-methyl-6-oxo-5-phenyl-8-thia-3,4,5,10-tetra­aza­tri­cyclo­[7.4.0.02,7]trideca-1(9),2(7),3,10,12-penta­ene-12-carboxyl­ate

aChemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fChemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
*Correspondence e-mail: s.mohamed@mmu.ac.uk

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 15 April 2016; accepted 25 April 2016; online 4 May 2016)

In the title mol­ecule, C24H17ClN4O3S, the central tricyclic moiety is twisted slightly, as indicated by the dihedral angles of 4.86 (5) and 0.97 (6)°, respectively, between the five-membered ring and the C3N3 and pyridyl rings. Additionally, the chloro­benzene ring makes a dihedral angle of 65.80 (5)° with the pyridyl ring. Weak C—H⋯O, C—Cl⋯N [3.0239 (13) Å] and ππ stacking inter­actions [inter-centroid distance between thienyl rings = 3.6994 (8) Å, and between thienyl and pyridyl rings = 3.7074 (8) Å] contribute to the mol­ecular packing. The ethyl group in the ester moiety is disordered over two sets of sites, with the major component having an occupancy of 0.567 (11).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Among heterocyclic systems, thieno­pyridines attract considerable attention due to their various biological activities and pharmaceutical properties (Litvinov et al., 2005[Litvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864-904.]; Mohamed et al., 2007[Mohamed, O. S., Al-Taifi, E. A., El-Emary, T. I. & Bakhite, E. A.-G. (2007). Phosphorus Sulfur Silicon, 182, 1061-1082.]; Bakhite, 2003[Bakhite, E. A. (2003). Phosphorus Sulfur Silicon, 178, 929-992.]). Thieno­pyridines have been reported to be anti-malarial (Görlitzer et al., 2004[Görlitzer, K., Meyer, H., Walter, R. D., Jomaa, H. & Wiesner, J. (2004). Pharmazie, 59, 506-512.]), anti-platelet (Girija et al., 2011[Girija, D., Singh, B. D. & Komal, S. (2011). J. Drug Deliv. Therapeut. 1, 8-16.]) and anti-microbial agents. As part of our studies in this area, we report here the synthesis and the crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
Perspective view of the title mol­ecule with labelling scheme and 50% probability ellipsoids.

The central tricyclic moiety is twisted slightly, as indicated by the dihedral angles of 4.86 (5) and 0.97 (6)°, respectively, between the five-membered ring and the C3N3 and pyridyl rings. Additionally, the 4-chloro­benzene ring makes a dihedral angle of 65.80 (5)° with the pyridyl ring.

In the crystal, weak C8—H8A⋯O1i hydrogen bonds (Table 1[link]) form chains parallel to (100). Inter­calation of adjacent chains is aided by slipped ππ stacking inter­actions between centrosymmetrically related thienyl rings [inter-centroid distance = 3.6994 (8) Å; −x, −y, 1 − z] and the between thienyl and pyridyl rings [inter-centroid distance = 3.7074 (8) Å; −x, 1 − y, 1 − z]. In the latter inter­action, the dihedral angle between the planes is 0.97 (7)°. This inter­calation forms sheets which are associated through Cl1—N1(−1 + x, y, z) inter­actions with Cl⋯N distances of 3.024 (1) Å. This is 0.28 Å less than the sum of the corresponding van der Waals radii and is thus considered to be an attractive inter­action. The ethyl group of the ester is disordered over two sets of sites by a rotation of approximately 13° about the C7—O3 bond.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.99 2.42 3.339 (7) 154
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Synthesis and crystallization

The title compound was synthesized according to our reported method (Mohamed et al., 2007[Mohamed, O. S., Al-Taifi, E. A., El-Emary, T. I. & Bakhite, E. A.-G. (2007). Phosphorus Sulfur Silicon, 182, 1061-1082.]). Single crystals of the title compound were obtained by recrystallization from an ethanol solution to afford colourless plates suitable for X-ray diffraction. Yield (81%); M.p. 453–454 K. IR: 1720 (C=O, ester), 1660 (C=O, triazinone) cm-1. 1H NMR (CDCl3): δ = 7.1–7.6 (m, 9H, ArH), 4.1 (q, 2H, OCH2), 2.7 (s, 3H, CH3 at C-7), 1.1 (t, 3H, CH3 of ester group).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].The ethyl group in the ester moiety is disordered over two sets of sites in approximately equal amounts; major component = 0.567 (11). The two components of the disorder were refined with restraints so that their geometries are comparable.

Table 2
Experimental details

Crystal data
Chemical formula C24H17ClN4O3S
Mr 476.92
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 11.8562 (3), 7.1984 (2), 25.4331 (5)
β (°) 101.045 (1)
V3) 2130.40 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.81
Crystal size (mm) 0.22 × 0.17 × 0.06
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.73, 0.85
No. of measured, independent and observed [I > 2σ(I)] reflections 15584, 4116, 3824
Rint 0.027
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.02
No. of reflections 4116
No. of parameters 309
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Experimental top

The title compound was synthesized according to our reported method (Mohamed et al., 2007). Pure crystals of the title compound were obtained by recrystallization from ethanol to afford colourless plates suitable for X-ray diffraction. Yield (81%); M.p. 453–454 K. IR: 1720 (CO, ester), 1660 (CO, triazinone) cm-1. 1H NMR (CDCl3): δ = 7.1–7.6 (m, 9H, ArH), 4.1 (q, 2H, OCH2), 2.7 (s, 3H, CH3 at C-7), 1.1 (t, 3H, CH3 of ester group).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.The ethyl group in the ester moiety is disordered over two sets of sites in approximately equal amounts; major component = 0.567 (11). The two components of the disorder were refined with restraints so that their geometries are comparable.

Structure description top

Among heterocyclic systems, thienopyridines attract considerable attention due to their various biological activities and pharmaceutical properties (Litvinov et al., 2005; Mohamed et al., 2007; Bakhite, 2003). Thienopyridines have been reported to be anti-malarial (Görlitzer et al., 2004), anti-platelet (Girija et al., 2011) and anti-microbial agents. In this context we report here the synthesis and the crystal structure of the title compound (Fig. 1).

The central tricyclic moiety is twisted slightly, as indicated by the dihedral angles of 4.86 (5) and 0.97 (6)°, respectively, between the five-membered ring and the C3N3 and pyridyl rings. Additionally, the 4-chlorobenzene ring makes a dihedral angle of 65.80 (5)° with the pyridyl ring.

In the crystal, weak C8—H8A···O1i hydrogen bonds (Table 1) form chains approximately parallel to (100). Intercalation of adjacent chains is aided by slipped ππ stacking interactions between centrosymmetrically related thienyl rings [inter-centroid distance = 3.6994 (8) Å; -x, -y, 1 - z] and the between thienyl and pyridyl rings [inter-centroid distance = 3.7074 (8) Å; -x, 1 - y, 1 - z]. In the latter interaction, the dihedral angle between the planes is 0.97 (7)°. This intercalation forms sheets which are associated through Cl1—N1(-1 + x, y, z) interactions with Cl···N distances of 3.024 (1) Å. This is 0.28 Å less than the sum of the corresponding van der Waals radii and is thus considered to be an attractive interaction. The ethyl group of the ester is disordered over two sets of sites by a rotation of approximately 13° about the C7—O3 bond.

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with labelling scheme and 50% probability ellipsoids.
Ethyl 13-(4-chlorophenyl)-11-methyl-6-oxo-5-phenyl-8-thia-3,4,5,10-tetraazatricyclo[7.4.0.02,7]trideca-1(9),2(7),3,10,12-pentaene-12-carboxylate top
Crystal data top
C24H17ClN4O3SF(000) = 984
Mr = 476.92Dx = 1.487 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 11.8562 (3) ÅCell parameters from 9972 reflections
b = 7.1984 (2) Åθ = 3.5–72.3°
c = 25.4331 (5) ŵ = 2.81 mm1
β = 101.045 (1)°T = 150 K
V = 2130.40 (9) Å3Tablet, colourless
Z = 40.22 × 0.17 × 0.06 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4116 independent reflections
Radiation source: INCOATEC IµS micro–focus source3824 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.5°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 88
Tmin = 0.73, Tmax = 0.85l = 3031
15584 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0445P)2 + 1.0088P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
4116 reflectionsΔρmax = 0.27 e Å3
309 parametersΔρmin = 0.25 e Å3
2 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00183 (15)
Crystal data top
C24H17ClN4O3SV = 2130.40 (9) Å3
Mr = 476.92Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.8562 (3) ŵ = 2.81 mm1
b = 7.1984 (2) ÅT = 150 K
c = 25.4331 (5) Å0.22 × 0.17 × 0.06 mm
β = 101.045 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4116 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
3824 reflections with I > 2σ(I)
Tmin = 0.73, Tmax = 0.85Rint = 0.027
15584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
4116 reflectionsΔρmin = 0.25 e Å3
309 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The ethyl group in the ester moiety is disordered over two sites in approximately equal amounts. The two components of the disorder were refined with restraints that their geometries be comparable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.71998 (3)0.29217 (6)0.56218 (2)0.02941 (11)
S10.07638 (3)0.19406 (5)0.46290 (2)0.02105 (11)
O10.05465 (9)0.03663 (16)0.34942 (4)0.0281 (2)
O20.29995 (10)0.35512 (17)0.69010 (5)0.0377 (3)
O30.25376 (10)0.63799 (16)0.65508 (4)0.0341 (3)
N10.02471 (10)0.31809 (17)0.56408 (5)0.0214 (3)
N20.24293 (10)0.21959 (17)0.44231 (5)0.0218 (3)
N30.23889 (10)0.17642 (18)0.39328 (5)0.0233 (3)
N40.13775 (10)0.11843 (17)0.36123 (5)0.0215 (3)
C10.05229 (12)0.3755 (2)0.60634 (5)0.0212 (3)
C20.17099 (11)0.3855 (2)0.60556 (5)0.0201 (3)
C30.21389 (11)0.33098 (19)0.56076 (5)0.0189 (3)
C40.13238 (11)0.27512 (19)0.51566 (5)0.0185 (3)
C50.01653 (11)0.27172 (19)0.52070 (5)0.0194 (3)
C60.00673 (13)0.4217 (2)0.65600 (6)0.0275 (3)
H6A0.07650.44080.64660.041*
H6B0.04360.53540.67210.041*
H6C0.02340.31920.68160.041*
C70.24994 (11)0.4536 (2)0.65525 (5)0.0227 (3)
C80.3101 (7)0.7424 (11)0.70277 (19)0.0316 (14)0.567 (11)
H8A0.25400.76840.72610.038*0.567 (11)
H8B0.37360.66800.72340.038*0.567 (11)
C90.3541 (7)0.9138 (10)0.6860 (3)0.0541 (14)0.567 (11)
H9A0.40330.88780.66000.081*0.567 (11)
H9B0.39900.97750.71710.081*0.567 (11)
H9C0.28990.99320.66930.081*0.567 (11)
C8A0.3320 (9)0.7159 (15)0.7019 (3)0.0316 (14)0.433 (11)
H8C0.28720.76120.72840.038*0.433 (11)
H8D0.38540.61840.71920.038*0.433 (11)
C9A0.3961 (9)0.8666 (14)0.6850 (4)0.0541 (14)0.433 (11)
H9D0.46120.81700.67080.081*0.433 (11)
H9E0.42450.94780.71560.081*0.433 (11)
H9F0.34610.93800.65700.081*0.433 (11)
C100.33982 (11)0.3247 (2)0.56127 (5)0.0197 (3)
C110.40585 (12)0.4854 (2)0.56597 (5)0.0215 (3)
H110.37070.60240.56910.026*
C120.52335 (12)0.4761 (2)0.56616 (6)0.0242 (3)
H120.56840.58600.56890.029*
C130.57320 (12)0.3046 (2)0.56232 (5)0.0231 (3)
C140.50944 (12)0.1421 (2)0.55833 (6)0.0259 (3)
H140.54540.02500.55640.031*
C150.39210 (12)0.1534 (2)0.55720 (6)0.0245 (3)
H150.34710.04340.55360.029*
C160.14303 (11)0.21819 (19)0.46256 (5)0.0190 (3)
C170.03916 (12)0.1688 (2)0.43152 (5)0.0200 (3)
C180.03111 (12)0.1005 (2)0.37788 (5)0.0214 (3)
C190.15161 (13)0.0795 (2)0.30702 (6)0.0241 (3)
C200.06189 (13)0.1114 (2)0.26393 (6)0.0286 (3)
H200.01130.15000.26980.034*
C210.08119 (15)0.0859 (3)0.21222 (6)0.0343 (4)
H210.02030.10590.18260.041*
C220.18800 (15)0.0317 (2)0.20337 (6)0.0359 (4)
H220.20070.01600.16790.043*
C230.27619 (15)0.0005 (3)0.24668 (6)0.0352 (4)
H230.34970.03590.24070.042*
C240.25848 (14)0.0218 (2)0.29868 (6)0.0303 (3)
H240.31880.00280.32830.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01424 (17)0.0434 (2)0.0316 (2)0.00137 (14)0.00669 (13)0.00109 (15)
S10.01390 (17)0.02804 (19)0.02085 (18)0.00149 (12)0.00243 (12)0.00103 (13)
O10.0230 (5)0.0360 (6)0.0239 (5)0.0074 (4)0.0006 (4)0.0033 (4)
O20.0383 (6)0.0409 (7)0.0284 (6)0.0021 (5)0.0077 (5)0.0051 (5)
O30.0440 (7)0.0310 (6)0.0232 (5)0.0001 (5)0.0040 (5)0.0060 (5)
N10.0167 (5)0.0269 (6)0.0214 (6)0.0013 (5)0.0058 (4)0.0016 (5)
N20.0185 (6)0.0290 (6)0.0186 (6)0.0021 (5)0.0055 (4)0.0012 (5)
N30.0188 (6)0.0308 (6)0.0204 (6)0.0025 (5)0.0037 (4)0.0014 (5)
N40.0193 (6)0.0267 (6)0.0184 (6)0.0013 (5)0.0032 (4)0.0008 (5)
C10.0190 (6)0.0244 (7)0.0213 (7)0.0021 (5)0.0062 (5)0.0022 (6)
C20.0181 (6)0.0237 (7)0.0187 (6)0.0019 (5)0.0040 (5)0.0014 (5)
C30.0169 (6)0.0214 (7)0.0186 (6)0.0004 (5)0.0040 (5)0.0024 (5)
C40.0155 (6)0.0206 (7)0.0196 (6)0.0006 (5)0.0042 (5)0.0027 (5)
C50.0160 (6)0.0213 (7)0.0205 (6)0.0003 (5)0.0025 (5)0.0024 (5)
C60.0227 (7)0.0383 (8)0.0235 (7)0.0017 (6)0.0094 (6)0.0028 (6)
C70.0182 (6)0.0325 (8)0.0185 (6)0.0001 (6)0.0062 (5)0.0006 (6)
C80.034 (3)0.034 (2)0.0244 (8)0.006 (2)0.0007 (11)0.0152 (9)
C90.057 (4)0.047 (3)0.0479 (14)0.013 (2)0.016 (3)0.001 (2)
C8A0.034 (3)0.034 (2)0.0244 (8)0.006 (2)0.0007 (11)0.0152 (9)
C9A0.057 (4)0.047 (3)0.0479 (14)0.013 (2)0.016 (3)0.001 (2)
C100.0157 (6)0.0288 (7)0.0149 (6)0.0001 (5)0.0037 (5)0.0001 (5)
C110.0190 (6)0.0261 (7)0.0198 (6)0.0005 (5)0.0046 (5)0.0000 (5)
C120.0190 (7)0.0310 (8)0.0228 (7)0.0046 (6)0.0040 (5)0.0004 (6)
C130.0149 (6)0.0368 (8)0.0179 (6)0.0001 (6)0.0038 (5)0.0009 (6)
C140.0204 (7)0.0296 (8)0.0276 (7)0.0037 (6)0.0042 (5)0.0022 (6)
C150.0191 (7)0.0265 (7)0.0277 (7)0.0015 (6)0.0041 (5)0.0026 (6)
C160.0171 (6)0.0205 (7)0.0194 (6)0.0012 (5)0.0035 (5)0.0018 (5)
C170.0181 (6)0.0218 (7)0.0200 (7)0.0016 (5)0.0032 (5)0.0020 (5)
C180.0210 (7)0.0222 (7)0.0207 (7)0.0012 (6)0.0029 (5)0.0019 (5)
C190.0287 (7)0.0246 (7)0.0194 (7)0.0010 (6)0.0057 (5)0.0013 (6)
C200.0269 (7)0.0347 (8)0.0237 (7)0.0028 (6)0.0036 (6)0.0027 (6)
C210.0357 (8)0.0444 (10)0.0213 (7)0.0037 (8)0.0019 (6)0.0030 (7)
C220.0452 (9)0.0420 (10)0.0214 (7)0.0009 (8)0.0091 (7)0.0058 (7)
C230.0385 (9)0.0406 (9)0.0287 (8)0.0103 (7)0.0115 (7)0.0035 (7)
C240.0333 (8)0.0337 (8)0.0240 (7)0.0079 (7)0.0059 (6)0.0004 (6)
Geometric parameters (Å, º) top
Cl1—C131.7433 (14)C9—H9C0.9800
S1—C171.7222 (14)C8A—C9A1.436 (4)
S1—C51.7511 (14)C8A—H8C0.9900
O1—C181.2196 (17)C8A—H8D0.9900
O2—C71.1989 (18)C9A—H9D0.9800
O3—C71.3284 (19)C9A—H9E0.9800
O3—C8A1.473 (3)C9A—H9F0.9800
O3—C81.473 (3)C10—C111.389 (2)
N1—C51.3320 (18)C10—C151.393 (2)
N1—C11.3355 (18)C11—C121.3939 (19)
N2—N31.2771 (17)C11—H110.9500
N2—C161.3792 (17)C12—C131.380 (2)
N3—N41.3792 (16)C12—H120.9500
N4—C181.4140 (18)C13—C141.386 (2)
N4—C191.4470 (17)C14—C151.388 (2)
C1—C21.4131 (18)C14—H140.9500
C1—C61.5028 (18)C15—H150.9500
C2—C31.3902 (18)C16—C171.3760 (19)
C2—C71.5035 (19)C17—C181.4360 (19)
C3—C41.4094 (19)C19—C241.388 (2)
C3—C101.4914 (18)C19—C201.392 (2)
C4—C51.4040 (18)C20—C211.389 (2)
C4—C161.4399 (18)C20—H200.9500
C6—H6A0.9800C21—C221.384 (2)
C6—H6B0.9800C21—H210.9500
C6—H6C0.9800C22—C231.384 (2)
C8—C91.436 (3)C22—H220.9500
C8—H8A0.9900C23—C241.387 (2)
C8—H8B0.9900C23—H230.9500
C9—H9A0.9800C24—H240.9500
C9—H9B0.9800
C17—S1—C589.68 (7)C8A—C9A—H9D109.5
C7—O3—C8A113.2 (5)C8A—C9A—H9E109.5
C7—O3—C8121.2 (3)H9D—C9A—H9E109.5
C5—N1—C1116.19 (12)C8A—C9A—H9F109.5
N3—N2—C16119.25 (12)H9D—C9A—H9F109.5
N2—N3—N4121.09 (11)H9E—C9A—H9F109.5
N3—N4—C18125.22 (11)C11—C10—C15119.49 (12)
N3—N4—C19112.15 (11)C11—C10—C3121.48 (13)
C18—N4—C19122.62 (11)C15—C10—C3119.03 (13)
N1—C1—C2122.24 (12)C10—C11—C12120.44 (13)
N1—C1—C6116.39 (12)C10—C11—H11119.8
C2—C1—C6121.32 (13)C12—C11—H11119.8
C3—C2—C1121.26 (13)C13—C12—C11118.95 (13)
C3—C2—C7120.95 (12)C13—C12—H12120.5
C1—C2—C7117.78 (12)C11—C12—H12120.5
C2—C3—C4116.48 (12)C12—C13—C14121.68 (13)
C2—C3—C10121.63 (12)C12—C13—Cl1119.16 (11)
C4—C3—C10121.84 (12)C14—C13—Cl1119.16 (11)
C5—C4—C3117.45 (12)C13—C14—C15118.82 (14)
C5—C4—C16110.11 (12)C13—C14—H14120.6
C3—C4—C16132.44 (12)C15—C14—H14120.6
N1—C5—C4126.30 (13)C14—C15—C10120.60 (14)
N1—C5—S1120.24 (10)C14—C15—H15119.7
C4—C5—S1113.45 (10)C10—C15—H15119.7
C1—C6—H6A109.5C17—C16—N2121.72 (13)
C1—C6—H6B109.5C17—C16—C4112.46 (12)
H6A—C6—H6B109.5N2—C16—C4125.74 (12)
C1—C6—H6C109.5C16—C17—C18121.52 (12)
H6A—C6—H6C109.5C16—C17—S1114.25 (11)
H6B—C6—H6C109.5C18—C17—S1124.22 (10)
O2—C7—O3125.50 (14)O1—C18—N4123.25 (13)
O2—C7—C2124.66 (14)O1—C18—C17126.09 (13)
O3—C7—C2109.83 (12)N4—C18—C17110.66 (12)
C9—C8—O3109.1 (5)C24—C19—C20120.75 (13)
C9—C8—H8A109.9C24—C19—N4118.50 (13)
O3—C8—H8A109.9C20—C19—N4120.60 (13)
C9—C8—H8B109.9C21—C20—C19118.92 (14)
O3—C8—H8B109.9C21—C20—H20120.5
H8A—C8—H8B108.3C19—C20—H20120.5
C8—C9—H9A109.5C22—C21—C20120.86 (15)
C8—C9—H9B109.5C22—C21—H21119.6
H9A—C9—H9B109.5C20—C21—H21119.6
C8—C9—H9C109.5C23—C22—C21119.44 (15)
H9A—C9—H9C109.5C23—C22—H22120.3
H9B—C9—H9C109.5C21—C22—H22120.3
C9A—C8A—O3109.4 (7)C22—C23—C24120.78 (15)
C9A—C8A—H8C109.8C22—C23—H23119.6
O3—C8A—H8C109.8C24—C23—H23119.6
C9A—C8A—H8D109.8C23—C24—C19119.23 (15)
O3—C8A—H8D109.8C23—C24—H24120.4
H8C—C8A—H8D108.2C19—C24—H24120.4
C16—N2—N3—N43.7 (2)C10—C11—C12—C130.9 (2)
N2—N3—N4—C180.0 (2)C11—C12—C13—C140.0 (2)
N2—N3—N4—C19179.04 (13)C11—C12—C13—Cl1179.67 (10)
C5—N1—C1—C20.5 (2)C12—C13—C14—C151.2 (2)
C5—N1—C1—C6177.96 (13)Cl1—C13—C14—C15178.50 (11)
N1—C1—C2—C31.6 (2)C13—C14—C15—C101.5 (2)
C6—C1—C2—C3175.69 (14)C11—C10—C15—C140.6 (2)
N1—C1—C2—C7179.53 (13)C3—C10—C15—C14179.04 (13)
C6—C1—C2—C73.1 (2)N3—N2—C16—C171.0 (2)
C1—C2—C3—C43.2 (2)N3—N2—C16—C4175.58 (13)
C7—C2—C3—C4178.00 (13)C5—C4—C16—C172.35 (17)
C1—C2—C3—C10174.38 (13)C3—C4—C16—C17177.86 (15)
C7—C2—C3—C104.4 (2)C5—C4—C16—N2174.47 (13)
C2—C3—C4—C52.70 (19)C3—C4—C16—N25.3 (2)
C10—C3—C4—C5174.87 (12)N2—C16—C17—C185.6 (2)
C2—C3—C4—C16177.08 (14)C4—C16—C17—C18177.44 (13)
C10—C3—C4—C165.3 (2)N2—C16—C17—S1175.10 (11)
C1—N1—C5—C41.0 (2)C4—C16—C17—S11.87 (16)
C1—N1—C5—S1179.90 (10)C5—S1—C17—C160.66 (12)
C3—C4—C5—N10.7 (2)C5—S1—C17—C18178.62 (13)
C16—C4—C5—N1179.14 (13)N3—N4—C18—O1174.77 (14)
C3—C4—C5—S1178.30 (10)C19—N4—C18—O16.3 (2)
C16—C4—C5—S11.87 (15)N3—N4—C18—C175.79 (19)
C17—S1—C5—N1179.80 (12)C19—N4—C18—C17173.12 (13)
C17—S1—C5—C40.75 (11)C16—C17—C18—O1172.31 (14)
C8A—O3—C7—O22.9 (6)S1—C17—C18—O16.9 (2)
C8—O3—C7—O28.4 (4)C16—C17—C18—N48.27 (19)
C8A—O3—C7—C2178.4 (5)S1—C17—C18—N4172.50 (10)
C8—O3—C7—C2170.3 (4)N3—N4—C19—C2428.53 (19)
C3—C2—C7—O285.10 (19)C18—N4—C19—C24152.44 (14)
C1—C2—C7—O293.74 (18)N3—N4—C19—C20147.19 (14)
C3—C2—C7—O396.17 (16)C18—N4—C19—C2031.8 (2)
C1—C2—C7—O384.98 (16)C24—C19—C20—C210.5 (2)
C7—O3—C8—C9150.7 (4)N4—C19—C20—C21175.14 (15)
C7—O3—C8A—C9A138.1 (7)C19—C20—C21—C220.7 (3)
C2—C3—C10—C1166.39 (18)C20—C21—C22—C230.8 (3)
C4—C3—C10—C11116.16 (15)C21—C22—C23—C240.4 (3)
C2—C3—C10—C15113.26 (16)C22—C23—C24—C191.6 (3)
C4—C3—C10—C1564.19 (18)C20—C19—C24—C231.6 (2)
C15—C10—C11—C120.6 (2)N4—C19—C24—C23174.09 (15)
C3—C10—C11—C12179.78 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.992.423.339 (7)154
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.992.423.339 (7)154
Symmetry code: (i) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC24H17ClN4O3S
Mr476.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.8562 (3), 7.1984 (2), 25.4331 (5)
β (°) 101.045 (1)
V3)2130.40 (9)
Z4
Radiation typeCu Kα
µ (mm1)2.81
Crystal size (mm)0.22 × 0.17 × 0.06
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2016)
Tmin, Tmax0.73, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
15584, 4116, 3824
Rint0.027
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.02
No. of reflections4116
No. of parameters309
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBakhite, E. A. (2003). Phosphorus Sulfur Silicon, 178, 929–992.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGirija, D., Singh, B. D. & Komal, S. (2011). J. Drug Deliv. Therapeut. 1, 8–16.  Google Scholar
First citationGörlitzer, K., Meyer, H., Walter, R. D., Jomaa, H. & Wiesner, J. (2004). Pharmazie, 59, 506–512.  Web of Science PubMed Google Scholar
First citationLitvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864–904.  Web of Science CrossRef CAS Google Scholar
First citationMohamed, O. S., Al-Taifi, E. A., El-Emary, T. I. & Bakhite, E. A.-G. (2007). Phosphorus Sulfur Silicon, 182, 1061–1082.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds