organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Benzyl-2-(4-chloro­benzyl­­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3(4H)-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Iimmouzzer, BP 2202, Fez, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and dLaboratoire d'Ingénierie des Matériaux et d'Environnement: Modélisation et Application (LIMEMA), Ibn Tofail University, Kénitra, Morocco
*Correspondence e-mail: hafid.zouihri@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 6 April 2016; accepted 7 May 2016; online 13 May 2016)

The title compound, C22H16ClNOS, has three aromatic systems, viz. (i) a phenyl ring, (ii) a chloro­benzene ring and (iii) a 1,4-benzo­thia­zine fused-ring system (r.m.s. deviation of the ten fitted atoms = 0.023 Å). The dihedral angle between planes (ii) and (iii) is 1.68 (8)°, indicating a coplanar arrangement, and between plane (i) and each of (ii) and (iii) is 85.61 (8) and 86.74 (8)°, respectively, indicating the phenyl ring is approximately perpendicular to the remaining residue. In the crystal, pairwise methyl­ene-C—H⋯O(carbon­yl) hydrogen bonds form dimers which stack along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Several sulfur- and nitro­gen-containing heterocyclic compounds have been well studied. Various 1,4-benzo­thia­zine derivatives have been synthesized by several methods (Parai & Panda, 2009[Parai, M. K. & Panda, G. A. (2009). Tetrahedron Lett. 50, 4703-4705.]; Barange et al., 2007[Barange, D. K., Batchu, V. R., Gorja, D., Pattabiraman, V. R., Tatini, L. K., Babu, J. M. & Pal, M. (2007). Tetrahedron, 63, 1775-1789.]; Saadouni et al., 2014[Saadouni, M., Gailane, T., Baukhris, S., Hassikou, A., Habbadi, N. & Gailane, T. (2014). Org. Commun, 7, 77-84.]). 1,4-Benzo­thia­zine derivatives are important because of their inter­esting biological properties such as anti-bacterial (Guarda et al., 2003[Guarda, V. L. de M., Perrissin, M., Thomasson, F., Ximenes, E. A., Galdino, S. L., Pitta, I. R., Luu-Duc, C. & Barbe, J. (2003). Eur. J. Med. Chem. 38, 769-773.]; Sabatini et al., 2008[Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321-4330.]), anti-fungal (Schiaffella et al., 2006[Schiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196-5203.]; Gupta & Wagh, 2006[Gupta, G. & Wagh, S. B. (2006). Indian J. Chem. Sect. B, 45, 697-702.]), anti-hypertensive (Cecchetti et al., 2000[Cecchetti, V., Schiaffella, F., Tabarrini, O. & Fravolini, A. (2000). Bioorg. Med. Chem. Lett. 10, 465-468.]) and anti-inflammatory (Kaneko et al., 2002[Kaneko, T., Clark, R. S., Ohi, N., Kawahara, T., Akamatsu, H., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). Chem. Pharm. Bull. 50, 922-929.]) activities. As a continuation of our research devoted to the development of substituted 1,4-benzo­thia­zine derivatives (Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]; Sebbar et al., 2015[Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o999.]), we report here the synthesis of the title compound by reaction of benzyl chloride with 2-(4-chloro­benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one and potassium carbonate in the presence of tetra-n-butyl­ammonium bromide (as catalyst).

In the title compound (Fig. 1[link]), a Cremer–Pople analysis of the conformation of the heterocyclic ring gave puckering parameters Q = 0.095 (15) Å, θ = 69.3 (9)° and φ = 233.6 (9)°. In the crystal, pairwise C16—H16B⋯O1(−x + 1, −y + 2, −z + 1) hydrogen bonds form dimers which stack along the b-axis direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O1i 0.99 2.43 3.271 (2) 142
Symmetry code: (i) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis. Inter­molecular hydrogen bonds (see Table 2[link]) are shown as dashed lines.

Synthesis and crystallization

To a solution of 2-(4-chloro­benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one (0.944 g, 3.29 mmol), benzyl chloride (0.76 ml, 6.58 mmol) and potassium carbonate (0.91 g, 6.58 mmol) in DMF (15 ml) was added a catalytic amount of tetra-n-butyl­ammonium bromide (0.11 g, 0.33 mmol). The mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colourless crystals in 80% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Owing to poor agreement, on reflection, i.e. (1 1 7), was omitted from the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C22H16ClNOS
Mr 377.87
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 11.8931 (11), 6.5358 (6), 22.817 (2)
β (°) 93.239 (1)
V3) 1770.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.33 × 0.18 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 32976, 4771, 3718
Rint 0.047
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.12
No. of reflections 4771
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.47
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]a), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

To a solution of 2-(4-chlorobenzylidene)-3,4-dihydro-2H-1,4-benzothiazin-3-one (0.944 g, 3.29 mmol), benzyl chloride (0.76 ml, 6.58 mmol) and potassium carbonate (0.91 g, 6.58 mmol) in DMF (15 ml) was added a catalytic amount of tetra-n-butylammonium bromide (0.11 g, 0.33 mmol). The mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colourless crystals in 80% yield.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Owing to poor agreement, on reflection, i.e. (1 1 7), was omitted from the final cycles of refinement.

Structure description top

Several sulfur- and nitrogen-containing heterocyclic compounds have been well studied. Various 1,4-benzothiazine derivatives have been synthesized by several methods (Parai & Panda, 2009; Barange et al., 2007; Saadouni et al., 2014). 1,4-Benzothiazine derivatives are important because of their interesting biological properties such as anti-bacterial (Guarda et al., 2003; Sabatini et al., 2008), anti-fungal (Schiaffella et al., 2006; Gupta & Wagh, 2006), anti-hypertensive (Cecchetti et al., 2000) and anti-inflammatory (Kaneko et al., 2002) activities. As a continuation of our research devoted to the development of substituted 1,4-benzothiazine derivatives (Ellouz et al., 2015; Sebbar et al., 2015), we report here the synthesis of the title compound by reaction of benzyl chloride with 2-(4-chlorobenzylidene)-3,4-dihydro-2H-1,4-benzothiazin-3-one and potassium carbonate in the presence of tetra-n-butylammonium bromide (as catalyst).

In the title compound (Fig. 1), a Cremer–Pople analysis of the conformation of the heterocyclic ring gave puckering parameters Q = 0.095 (15) Å, θ = 69.3 (9)° and φ = 233.6 (9)°. In the crystal, pairwise C16—H16B···O1(-x + 1, -y + 2, -z + 1) hydrogen bonds form dimers which stack along the b-axis direction (Table 1 and Fig. 2).

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015a); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Intermolecular hydrogen bonds (see Table 2) are shown as dashed lines.
(2Z)-4-Benzyl-[(4-chlorophenyl)methylidene]-3,4-dihydro-2H-1,4-benzothiazin-3(4H)-one top
Crystal data top
C22H16ClNOSF(000) = 784
Mr = 377.87Dx = 1.417 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.8931 (11) ÅCell parameters from 9932 reflections
b = 6.5358 (6) Åθ = 3.1–29.1°
c = 22.817 (2) ŵ = 0.35 mm1
β = 93.239 (1)°T = 150 K
V = 1770.7 (3) Å3Column, colourless
Z = 40.33 × 0.18 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4771 independent reflections
Radiation source: fine-focus sealed tube3718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 1.8°
φ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 88
Tmin = 0.84, Tmax = 0.96l = 3131
32976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.0974P]
where P = (Fo2 + 2Fc2)/3
4771 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C22H16ClNOSV = 1770.7 (3) Å3
Mr = 377.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8931 (11) ŵ = 0.35 mm1
b = 6.5358 (6) ÅT = 150 K
c = 22.817 (2) Å0.33 × 0.18 × 0.13 mm
β = 93.239 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4771 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
3718 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.96Rint = 0.047
32976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.12Δρmax = 1.01 e Å3
4771 reflectionsΔρmin = 0.47 e Å3
235 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15276 (4)0.28012 (7)0.65534 (2)0.03513 (14)
S10.46828 (4)0.63594 (7)0.70652 (2)0.02992 (13)
O10.53363 (10)0.75024 (19)0.54228 (5)0.0313 (3)
N10.57084 (10)0.9526 (2)0.62091 (5)0.0209 (3)
C10.54418 (13)0.8579 (2)0.72363 (7)0.0224 (3)
C20.56174 (14)0.8979 (3)0.78364 (7)0.0283 (4)
H20.53470.80450.81150.034*
C30.61815 (15)1.0723 (3)0.80268 (8)0.0327 (4)
H30.62951.09950.84350.039*
C40.65809 (14)1.2075 (3)0.76201 (8)0.0321 (4)
H40.69651.32820.77490.039*
C50.64220 (13)1.1672 (3)0.70240 (8)0.0264 (3)
H50.67081.26030.67490.032*
C60.58483 (12)0.9922 (2)0.68203 (7)0.0211 (3)
C70.52600 (13)0.7785 (2)0.59501 (7)0.0218 (3)
C80.46567 (12)0.6241 (2)0.63034 (7)0.0207 (3)
C90.40940 (13)0.4769 (2)0.59899 (7)0.0221 (3)
H90.41210.49240.55770.026*
C100.34533 (12)0.2989 (2)0.61653 (7)0.0218 (3)
C110.33017 (14)0.2371 (3)0.67448 (7)0.0265 (3)
H110.36120.31730.70610.032*
C120.27024 (14)0.0599 (3)0.68625 (7)0.0275 (4)
H120.25980.02050.72560.033*
C130.22615 (13)0.0581 (3)0.64020 (8)0.0255 (3)
C140.24071 (14)0.0036 (3)0.58230 (7)0.0281 (4)
H140.21090.08660.55100.034*
C150.29934 (14)0.1733 (3)0.57106 (7)0.0265 (3)
H150.30890.21150.53150.032*
C160.60272 (13)1.1156 (2)0.58024 (7)0.0246 (3)
H16A0.57191.24660.59400.029*
H16B0.56581.08660.54110.029*
C170.72728 (13)1.1438 (2)0.57301 (7)0.0222 (3)
C180.80536 (14)0.9877 (3)0.58319 (7)0.0292 (4)
H180.78130.85740.59600.035*
C190.91849 (15)1.0220 (3)0.57456 (8)0.0366 (4)
H190.97160.91480.58150.044*
C200.95450 (16)1.2124 (3)0.55586 (9)0.0393 (5)
H201.03211.23630.55050.047*
C210.87698 (16)1.3658 (3)0.54511 (8)0.0363 (4)
H210.90111.49540.53170.044*
C220.76351 (15)1.3329 (3)0.55370 (7)0.0289 (4)
H220.71061.44010.54630.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0349 (2)0.0300 (2)0.0403 (3)0.00950 (18)0.00055 (18)0.00775 (18)
S10.0453 (3)0.0251 (2)0.0193 (2)0.01003 (18)0.00228 (17)0.00034 (15)
O10.0420 (7)0.0318 (7)0.0207 (6)0.0086 (5)0.0057 (5)0.0001 (5)
N10.0222 (6)0.0198 (7)0.0206 (6)0.0004 (5)0.0003 (5)0.0027 (5)
C10.0217 (7)0.0219 (8)0.0236 (7)0.0015 (6)0.0001 (6)0.0010 (6)
C20.0317 (8)0.0307 (9)0.0226 (8)0.0000 (7)0.0014 (6)0.0031 (7)
C30.0338 (9)0.0389 (10)0.0250 (8)0.0011 (8)0.0015 (7)0.0083 (7)
C40.0283 (9)0.0328 (9)0.0350 (9)0.0052 (7)0.0004 (7)0.0106 (8)
C50.0232 (8)0.0251 (8)0.0311 (8)0.0013 (6)0.0031 (6)0.0029 (7)
C60.0171 (7)0.0223 (8)0.0237 (7)0.0027 (6)0.0000 (5)0.0017 (6)
C70.0217 (7)0.0215 (8)0.0222 (7)0.0017 (6)0.0011 (6)0.0012 (6)
C80.0213 (7)0.0198 (7)0.0211 (7)0.0023 (6)0.0030 (5)0.0006 (6)
C90.0239 (7)0.0231 (8)0.0194 (7)0.0015 (6)0.0028 (6)0.0007 (6)
C100.0201 (7)0.0221 (8)0.0235 (7)0.0011 (6)0.0044 (6)0.0003 (6)
C110.0317 (8)0.0248 (8)0.0234 (8)0.0040 (7)0.0061 (6)0.0035 (6)
C120.0297 (8)0.0274 (9)0.0260 (8)0.0014 (7)0.0076 (6)0.0032 (6)
C130.0207 (7)0.0219 (8)0.0342 (9)0.0015 (6)0.0042 (6)0.0020 (6)
C140.0280 (8)0.0295 (9)0.0267 (8)0.0041 (7)0.0000 (6)0.0023 (7)
C150.0285 (8)0.0279 (9)0.0233 (8)0.0026 (7)0.0031 (6)0.0009 (6)
C160.0233 (8)0.0222 (8)0.0279 (8)0.0005 (6)0.0013 (6)0.0065 (6)
C170.0244 (7)0.0235 (8)0.0186 (7)0.0005 (6)0.0015 (5)0.0001 (6)
C180.0299 (8)0.0289 (9)0.0289 (8)0.0026 (7)0.0020 (7)0.0057 (7)
C190.0284 (9)0.0448 (11)0.0367 (10)0.0081 (8)0.0032 (7)0.0048 (8)
C200.0296 (9)0.0526 (12)0.0367 (10)0.0057 (9)0.0114 (8)0.0020 (9)
C210.0409 (10)0.0342 (10)0.0354 (10)0.0091 (8)0.0146 (8)0.0004 (8)
C220.0354 (9)0.0248 (8)0.0272 (8)0.0006 (7)0.0071 (7)0.0006 (6)
Geometric parameters (Å, º) top
Cl1—C131.7383 (17)C11—C121.394 (2)
S1—C81.7384 (15)C11—H110.9500
S1—C11.7409 (16)C12—C131.383 (2)
O1—C71.2256 (19)C12—H120.9500
N1—C71.375 (2)C13—C141.388 (2)
N1—C61.4189 (19)C14—C151.382 (2)
N1—C161.4765 (19)C14—H140.9500
C1—C21.398 (2)C15—H150.9500
C1—C61.399 (2)C16—C171.511 (2)
C2—C31.381 (3)C16—H16A0.9900
C2—H20.9500C16—H16B0.9900
C3—C41.385 (3)C17—C221.389 (2)
C3—H30.9500C17—C181.390 (2)
C4—C51.388 (3)C18—C191.389 (2)
C4—H40.9500C18—H180.9500
C5—C61.398 (2)C19—C201.391 (3)
C5—H50.9500C19—H190.9500
C7—C81.500 (2)C20—C211.375 (3)
C8—C91.353 (2)C20—H200.9500
C9—C101.459 (2)C21—C221.391 (2)
C9—H90.9500C21—H210.9500
C10—C111.404 (2)C22—H220.9500
C10—C151.409 (2)
C8—S1—C1103.94 (7)C13—C12—C11119.55 (15)
C7—N1—C6126.48 (13)C13—C12—H12120.2
C7—N1—C16115.70 (13)C11—C12—H12120.2
C6—N1—C16117.77 (13)C12—C13—C14121.19 (15)
C2—C1—C6120.57 (15)C12—C13—Cl1119.19 (13)
C2—C1—S1114.98 (13)C14—C13—Cl1119.61 (13)
C6—C1—S1124.44 (12)C15—C14—C13118.84 (16)
C3—C2—C1120.39 (16)C15—C14—H14120.6
C3—C2—H2119.8C13—C14—H14120.6
C1—C2—H2119.8C14—C15—C10121.99 (15)
C2—C3—C4119.67 (16)C14—C15—H15119.0
C2—C3—H3120.2C10—C15—H15119.0
C4—C3—H3120.2N1—C16—C17116.41 (13)
C3—C4—C5120.20 (17)N1—C16—H16A108.2
C3—C4—H4119.9C17—C16—H16A108.2
C5—C4—H4119.9N1—C16—H16B108.2
C4—C5—C6121.19 (16)C17—C16—H16B108.2
C4—C5—H5119.4H16A—C16—H16B107.3
C6—C5—H5119.4C22—C17—C18119.32 (15)
C5—C6—C1117.97 (15)C22—C17—C16117.84 (14)
C5—C6—N1120.27 (14)C18—C17—C16122.81 (15)
C1—C6—N1121.75 (14)C19—C18—C17120.08 (17)
O1—C7—N1119.88 (14)C19—C18—H18120.0
O1—C7—C8119.37 (14)C17—C18—H18120.0
N1—C7—C8120.74 (13)C18—C19—C20120.35 (17)
C9—C8—C7115.58 (14)C18—C19—H19119.8
C9—C8—S1122.72 (12)C20—C19—H19119.8
C7—C8—S1121.71 (11)C21—C20—C19119.49 (17)
C8—C9—C10132.25 (15)C21—C20—H20120.3
C8—C9—H9113.9C19—C20—H20120.3
C10—C9—H9113.9C20—C21—C22120.53 (17)
C11—C10—C15117.47 (15)C20—C21—H21119.7
C11—C10—C9125.75 (15)C22—C21—H21119.7
C15—C10—C9116.71 (14)C17—C22—C21120.22 (17)
C12—C11—C10120.96 (16)C17—C22—H22119.9
C12—C11—H11119.5C21—C22—H22119.9
C10—C11—H11119.5
C8—S1—C1—C2177.74 (12)C7—C8—C9—C10177.40 (15)
C8—S1—C1—C63.15 (15)S1—C8—C9—C102.8 (2)
C6—C1—C2—C30.9 (3)C8—C9—C10—C111.7 (3)
S1—C1—C2—C3178.23 (13)C8—C9—C10—C15178.50 (16)
C1—C2—C3—C40.4 (3)C15—C10—C11—C121.0 (2)
C2—C3—C4—C50.4 (3)C9—C10—C11—C12177.82 (15)
C3—C4—C5—C60.8 (3)C10—C11—C12—C130.7 (3)
C4—C5—C6—C10.3 (2)C11—C12—C13—C140.2 (3)
C4—C5—C6—N1179.15 (15)C11—C12—C13—Cl1179.37 (13)
C2—C1—C6—C50.6 (2)C12—C13—C14—C150.8 (3)
S1—C1—C6—C5178.50 (12)Cl1—C13—C14—C15179.96 (13)
C2—C1—C6—N1178.28 (14)C13—C14—C15—C100.5 (3)
S1—C1—C6—N12.7 (2)C11—C10—C15—C140.4 (2)
C7—N1—C6—C5173.47 (15)C9—C10—C15—C14177.50 (15)
C16—N1—C6—C59.2 (2)C7—N1—C16—C17105.82 (16)
C7—N1—C6—C15.4 (2)C6—N1—C16—C1776.60 (17)
C16—N1—C6—C1171.94 (14)N1—C16—C17—C22157.04 (15)
C6—N1—C7—O1169.28 (14)N1—C16—C17—C1824.9 (2)
C16—N1—C7—O113.4 (2)C22—C17—C18—C190.6 (2)
C6—N1—C7—C811.9 (2)C16—C17—C18—C19178.62 (16)
C16—N1—C7—C8165.44 (13)C17—C18—C19—C200.1 (3)
O1—C7—C8—C99.2 (2)C18—C19—C20—C211.0 (3)
N1—C7—C8—C9169.63 (14)C19—C20—C21—C221.0 (3)
O1—C7—C8—S1171.00 (12)C18—C17—C22—C210.5 (2)
N1—C7—C8—S110.2 (2)C16—C17—C22—C21178.64 (15)
C1—S1—C8—C9176.80 (13)C20—C21—C22—C170.3 (3)
C1—S1—C8—C72.99 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O1i0.992.433.271 (2)142
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O1i0.992.433.271 (2)142
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H16ClNOS
Mr377.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.8931 (11), 6.5358 (6), 22.817 (2)
β (°) 93.239 (1)
V3)1770.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.33 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2016)
Tmin, Tmax0.84, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
32976, 4771, 3718
Rint0.047
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.12
No. of reflections4771
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.47

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015a), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBarange, D. K., Batchu, V. R., Gorja, D., Pattabiraman, V. R., Tatini, L. K., Babu, J. M. & Pal, M. (2007). Tetrahedron, 63, 1775–1789.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCecchetti, V., Schiaffella, F., Tabarrini, O. & Fravolini, A. (2000). Bioorg. Med. Chem. Lett. 10, 465–468.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuarda, V. L. de M., Perrissin, M., Thomasson, F., Ximenes, E. A., Galdino, S. L., Pitta, I. R., Luu-Duc, C. & Barbe, J. (2003). Eur. J. Med. Chem. 38, 769–773.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGupta, G. & Wagh, S. B. (2006). Indian J. Chem. Sect. B, 45, 697–702.  Google Scholar
First citationKaneko, T., Clark, R. S., Ohi, N., Kawahara, T., Akamatsu, H., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). Chem. Pharm. Bull. 50, 922–929.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParai, M. K. & Panda, G. A. (2009). Tetrahedron Lett. 50, 4703–4705.  Web of Science CrossRef CAS Google Scholar
First citationSaadouni, M., Gailane, T., Baukhris, S., Hassikou, A., Habbadi, N. & Gailane, T. (2014). Org. Commun, 7, 77–84.  Google Scholar
First citationSabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196–5203.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds