organic compounds
5-Bromo-1-nonylindoline-2,3-dione
aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve d'Ascq Cedex, France, cUSR 3290 Miniaturisation pour l'analyse, la synthèse et la protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille1, France, and dLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kharbachy26@gmail.com
In the title compound, C17H22BrNO2, the indoline ring system, the two ketone O atoms and the Br atom are nearly coplanar, with an r.m.s. deviation of 0.029 Å. The indoline ring system makes a dihedral angle of 70.64 (7)° with the mean plane through the nonyl chain, which has an extended conformation. In the crystal, molecules pack in a herringbone arrangement. They are linked by two strong and two weak C—H⋯O hydrogen bonds, forming slabs parallel to (010).
Keywords: crystal structure; indoline ring; nonyle; hydrogen bonding.
CCDC reference: 1479813
Structure description
1H-Indole-2,3-dione (isatin) is one of the most prevalent heterocyclic scaffolds found in natural products, pharmaceuticals and agrochemicals. Many indole derivatives are under development as drug candidates due to their biological properties, which include antiviral, antitumor, antifungal, anti-angiogenic, anticonvulsant and antiparkinsonian activity (Sridhar, Muniyandy & Ramesh, 2001; Sridhar & Sreenivasulu, 2001; Sarangapani & Reddy, 1994; Varma et al., 2004; Pandeya et al., 1999; Aboul-Fadl et al., 2010). Continuing our work on the synthesis of new 5-bromoisatins and the study of their applications (Qachchachi et al., 2013, 2014; Kharbach et al., 2016), we report herein on the synthesis and of 5-bromo-1-nonylindoline-2,3-dione.
The molecular structure of the title compound is illustrated in Fig. 1. It is composed of an indoline-2,3-dione unit substituted by a Br atom and a nonyl alkyl chain. The indoline ring system and the two ketonic O atoms are virtually coplanar, with an r.m.s. deviation of 0.029 Å; the largest deviation is 0.059 (1) Å for atom C9. The nonyl chain has an extended conformation and its mean plane is nearly perpendicular to the indoline ring system, as indicated by the C10—C9—N1—C8 torsion angle of 89.85 (15)°.
In the crystal, molecules pack in a herringbone arrangement. They are linked by two strong and two weak C—H⋯O hydrogen bonds, forming slabs parallel to the ac plane (Table 1 and Fig. 2).
Synthesis and crystallization
A mixture of 5-bromoisatin (0.4 g, 1.76 mmol) and 1-bromononane (0.37 ml, 1.93 mmol) in DMF (25 ml) in the presence of a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. The reaction was monitored by On completion of the reaction, the mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals (yield 78%; m.p. 338 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1479813
10.1107/S2414314616007914/su4049sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616007914/su4049Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616007914/su4049Isup3.cml
A mixture of 5-bromoisatin (0.4 g, 1.76 mmol) and 1-bromononane (0.37 ml, 1.93 mmol) in DMF (25 ml) in the presence of a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. The reaction was monitored by
On completion of the reaction the mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals (yield 78%; m.p. 338 K).1H-Indole-2,3-dione (isatin) is one of the most prevalent heterocyclic scaffolds found in natural products, pharmaceuticals, and agrochemicals. Many indole derivatives are under development as drug candidates due to their biological properties, which include antiviral, antitumor, antifungal, anti-angiogenic, anticonvulsant and antiparkinsonian activity (Sridhar, Muniyandy & Ramesh, 2001; Sridhar & Sreenivasulu, 2001; Sarangapani & Reddy, 1994; Varma et al., 2004; Pandeya et al., 1999; Aboul-Fadl et al., 2010). Continuing our work on the synthesis of new 5-bromoisatins and the study of their applications (Qachchachi et al., 2013, 2014; Kharbach et al., 2016), we report herein on the synthesis and
of the title compound.The molecular structure of the title compound is illustrated in Fig. 1. It is composed of an indoline-2,3-dione unit substituted by a Br atom and a nonyl alkyl chain. The indoline ring system and the two ketonic atoms are virtually coplanar, with an r.m.s. deviation of 0.029 Å; the largest deviation is 0.059 (1) Å for atom C9. The nonyl chain has an extended conformation and its mean plane is nearly perpendicular to the indoline ring system, as indicated by torsion angle C10—C9—N1—C8 = 89.85 (15)°.
In the crystal, molecules pack in a herringbone arrangement. They are linked by two strong and two weak C—H···O hydrogen bonds, forming slabs parallel to the ac plane (Table 1 and Fig. 2).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A view along the a axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as dashed lines (see Table 1) and, for clarity, only the H atoms (grey balls) involved in these interactions have been included. |
C17H22BrNO2 | F(000) = 728 |
Mr = 352.26 | Dx = 1.449 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8428 (2) Å | Cell parameters from 4532 reflections |
b = 31.7181 (14) Å | θ = 1.3–29.6° |
c = 10.7171 (5) Å | µ = 2.55 mm−1 |
β = 101.206 (2)° | T = 100 K |
V = 1614.81 (12) Å3 | Plate, orange |
Z = 4 | 0.20 × 0.17 × 0.07 mm |
Bruker APEXII CCD diffractometer | 4029 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.030 |
φ and ω scans | θmax = 29.6°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −6→5 |
Tmin = 0.658, Tmax = 0.746 | k = −44→44 |
33463 measured reflections | l = −14→14 |
4532 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.061 | w = 1/[σ2(Fo2) + (0.0246P)2 + 0.8548P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.002 |
4532 reflections | Δρmax = 0.44 e Å−3 |
191 parameters | Δρmin = −0.43 e Å−3 |
C17H22BrNO2 | V = 1614.81 (12) Å3 |
Mr = 352.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.8428 (2) Å | µ = 2.55 mm−1 |
b = 31.7181 (14) Å | T = 100 K |
c = 10.7171 (5) Å | 0.20 × 0.17 × 0.07 mm |
β = 101.206 (2)° |
Bruker APEXII CCD diffractometer | 4532 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4029 reflections with I > 2σ(I) |
Tmin = 0.658, Tmax = 0.746 | Rint = 0.030 |
33463 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.44 e Å−3 |
4532 reflections | Δρmin = −0.43 e Å−3 |
191 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.46011 (3) | 0.37424 (2) | 0.85103 (2) | 0.02240 (5) | |
C1 | 0.5594 (3) | 0.31889 (4) | 0.81017 (12) | 0.0151 (3) | |
C2 | 0.7367 (3) | 0.31325 (4) | 0.72398 (13) | 0.0144 (2) | |
H2 | 0.8106 | 0.3365 | 0.6853 | 0.017* | |
C3 | 0.8006 (3) | 0.27209 (4) | 0.69712 (12) | 0.0130 (2) | |
C4 | 0.6918 (3) | 0.23768 (4) | 0.75382 (12) | 0.0126 (2) | |
C5 | 0.5180 (3) | 0.24367 (4) | 0.84074 (12) | 0.0146 (3) | |
H5 | 0.4456 | 0.2204 | 0.8801 | 0.017* | |
C6 | 0.4529 (3) | 0.28509 (5) | 0.86841 (12) | 0.0157 (3) | |
H6 | 0.3344 | 0.2902 | 0.9278 | 0.019* | |
C7 | 0.9820 (3) | 0.25508 (4) | 0.61420 (12) | 0.0125 (2) | |
C8 | 0.9634 (3) | 0.20624 (4) | 0.62788 (12) | 0.0136 (2) | |
C9 | 0.6994 (3) | 0.15753 (4) | 0.74596 (13) | 0.0151 (3) | |
H9A | 0.6938 | 0.1381 | 0.6732 | 0.018* | |
H9B | 0.5066 | 0.1593 | 0.7637 | 0.018* | |
C10 | 0.8951 (3) | 0.13925 (4) | 0.86226 (13) | 0.0160 (3) | |
H10B | 0.9539 | 0.1619 | 0.9252 | 0.019* | |
H10A | 1.0661 | 0.1279 | 0.8366 | 0.019* | |
C11 | 0.7510 (3) | 0.10416 (4) | 0.92355 (13) | 0.0163 (3) | |
H11B | 0.5986 | 0.1166 | 0.9613 | 0.020* | |
H11A | 0.6637 | 0.0841 | 0.8567 | 0.020* | |
C12 | 0.9512 (3) | 0.08012 (4) | 1.02647 (13) | 0.0164 (3) | |
H12A | 1.0914 | 0.0650 | 0.9871 | 0.020* | |
H12B | 1.0541 | 0.1005 | 1.0885 | 0.020* | |
C13 | 0.8004 (3) | 0.04848 (5) | 1.09660 (13) | 0.0178 (3) | |
H13B | 0.6669 | 0.0639 | 1.1392 | 0.021* | |
H13A | 0.6892 | 0.0292 | 1.0336 | 0.021* | |
C14 | 0.9960 (3) | 0.02245 (4) | 1.19543 (13) | 0.0178 (3) | |
H14B | 1.1101 | 0.0417 | 1.2577 | 0.021* | |
H14A | 1.1266 | 0.0064 | 1.1528 | 0.021* | |
C15 | 0.8397 (3) | −0.00833 (5) | 1.26640 (14) | 0.0186 (3) | |
H15B | 0.7163 | 0.0079 | 1.3124 | 0.022* | |
H15A | 0.7176 | −0.0265 | 1.2035 | 0.022* | |
C16 | 1.0312 (3) | −0.03633 (5) | 1.36108 (14) | 0.0200 (3) | |
H16A | 1.1499 | −0.0184 | 1.4257 | 0.024* | |
H16B | 1.1576 | −0.0523 | 1.3159 | 0.024* | |
C17 | 0.8684 (4) | −0.06729 (5) | 1.42776 (16) | 0.0252 (3) | |
H17B | 0.7418 | −0.0517 | 1.4722 | 0.038* | |
H17C | 1.0007 | −0.0839 | 1.4893 | 0.038* | |
H17A | 0.7579 | −0.0861 | 1.3647 | 0.038* | |
N1 | 0.7852 (2) | 0.19929 (4) | 0.71043 (11) | 0.0134 (2) | |
O1 | 1.1213 (2) | 0.27258 (3) | 0.54746 (9) | 0.01603 (19) | |
O2 | 1.0843 (2) | 0.18008 (3) | 0.57614 (10) | 0.0181 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02663 (9) | 0.01885 (8) | 0.02210 (8) | 0.00614 (6) | 0.00564 (6) | −0.00365 (5) |
C1 | 0.0154 (6) | 0.0157 (6) | 0.0134 (6) | 0.0036 (5) | 0.0008 (5) | −0.0017 (5) |
C2 | 0.0131 (6) | 0.0156 (6) | 0.0141 (6) | 0.0004 (5) | 0.0018 (5) | 0.0022 (5) |
C3 | 0.0107 (6) | 0.0165 (6) | 0.0119 (5) | 0.0007 (5) | 0.0023 (5) | 0.0020 (5) |
C4 | 0.0103 (6) | 0.0153 (6) | 0.0112 (5) | 0.0008 (5) | −0.0003 (4) | 0.0018 (4) |
C5 | 0.0114 (6) | 0.0198 (6) | 0.0124 (6) | −0.0004 (5) | 0.0020 (5) | 0.0032 (5) |
C6 | 0.0124 (6) | 0.0239 (7) | 0.0110 (6) | 0.0021 (5) | 0.0022 (5) | −0.0008 (5) |
C7 | 0.0104 (6) | 0.0154 (6) | 0.0110 (5) | 0.0011 (5) | −0.0001 (4) | 0.0023 (4) |
C8 | 0.0125 (6) | 0.0158 (6) | 0.0121 (6) | 0.0004 (5) | 0.0011 (5) | 0.0029 (5) |
C9 | 0.0153 (6) | 0.0134 (6) | 0.0161 (6) | −0.0028 (5) | 0.0021 (5) | 0.0029 (5) |
C10 | 0.0157 (6) | 0.0150 (6) | 0.0163 (6) | −0.0017 (5) | 0.0008 (5) | 0.0031 (5) |
C11 | 0.0159 (6) | 0.0176 (6) | 0.0149 (6) | −0.0025 (5) | 0.0018 (5) | 0.0038 (5) |
C12 | 0.0171 (7) | 0.0157 (6) | 0.0159 (6) | −0.0018 (5) | 0.0015 (5) | 0.0028 (5) |
C13 | 0.0181 (7) | 0.0182 (6) | 0.0170 (6) | −0.0009 (5) | 0.0029 (5) | 0.0053 (5) |
C14 | 0.0186 (7) | 0.0172 (6) | 0.0169 (6) | −0.0012 (5) | 0.0019 (5) | 0.0039 (5) |
C15 | 0.0198 (7) | 0.0178 (6) | 0.0177 (6) | −0.0018 (5) | 0.0023 (5) | 0.0046 (5) |
C16 | 0.0213 (7) | 0.0171 (7) | 0.0214 (7) | 0.0016 (5) | 0.0036 (6) | 0.0050 (5) |
C17 | 0.0296 (8) | 0.0197 (7) | 0.0260 (8) | −0.0007 (6) | 0.0049 (6) | 0.0089 (6) |
N1 | 0.0137 (5) | 0.0131 (5) | 0.0139 (5) | 0.0005 (4) | 0.0042 (4) | 0.0028 (4) |
O1 | 0.0152 (5) | 0.0199 (5) | 0.0140 (4) | 0.0007 (4) | 0.0053 (4) | 0.0039 (4) |
O2 | 0.0194 (5) | 0.0179 (5) | 0.0180 (5) | 0.0034 (4) | 0.0062 (4) | 0.0000 (4) |
Br1—C1 | 1.8936 (13) | C10—H10A | 0.9900 |
C1—C6 | 1.389 (2) | C11—C12 | 1.5238 (19) |
C1—C2 | 1.3898 (19) | C11—H11B | 0.9900 |
C2—C3 | 1.3847 (18) | C11—H11A | 0.9900 |
C2—H2 | 0.9500 | C12—C13 | 1.5229 (19) |
C3—C4 | 1.4009 (18) | C12—H12A | 0.9900 |
C3—C7 | 1.4684 (18) | C12—H12B | 0.9900 |
C4—C5 | 1.3845 (19) | C13—C14 | 1.5204 (19) |
C4—N1 | 1.4092 (17) | C13—H13B | 0.9900 |
C5—C6 | 1.396 (2) | C13—H13A | 0.9900 |
C5—H5 | 0.9500 | C14—C15 | 1.526 (2) |
C6—H6 | 0.9500 | C14—H14B | 0.9900 |
C7—O1 | 1.2093 (16) | C14—H14A | 0.9900 |
C7—C8 | 1.5602 (19) | C15—C16 | 1.5209 (19) |
C8—O2 | 1.2102 (17) | C15—H15B | 0.9900 |
C8—N1 | 1.3687 (17) | C15—H15A | 0.9900 |
C9—N1 | 1.4606 (17) | C16—C17 | 1.522 (2) |
C9—C10 | 1.5261 (18) | C16—H16A | 0.9900 |
C9—H9A | 0.9900 | C16—H16B | 0.9900 |
C9—H9B | 0.9900 | C17—H17B | 0.9800 |
C10—C11 | 1.5281 (19) | C17—H17C | 0.9800 |
C10—H10B | 0.9900 | C17—H17A | 0.9800 |
C6—C1—C2 | 122.04 (13) | H11B—C11—H11A | 107.7 |
C6—C1—Br1 | 118.59 (10) | C13—C12—C11 | 112.84 (12) |
C2—C1—Br1 | 119.37 (10) | C13—C12—H12A | 109.0 |
C3—C2—C1 | 116.84 (12) | C11—C12—H12A | 109.0 |
C3—C2—H2 | 121.6 | C13—C12—H12B | 109.0 |
C1—C2—H2 | 121.6 | C11—C12—H12B | 109.0 |
C2—C3—C4 | 121.75 (12) | H12A—C12—H12B | 107.8 |
C2—C3—C7 | 131.03 (12) | C14—C13—C12 | 114.08 (12) |
C4—C3—C7 | 107.21 (11) | C14—C13—H13B | 108.7 |
C5—C4—C3 | 120.93 (13) | C12—C13—H13B | 108.7 |
C5—C4—N1 | 128.07 (12) | C14—C13—H13A | 108.7 |
C3—C4—N1 | 110.99 (11) | C12—C13—H13A | 108.7 |
C4—C5—C6 | 117.64 (12) | H13B—C13—H13A | 107.6 |
C4—C5—H5 | 121.2 | C13—C14—C15 | 113.10 (12) |
C6—C5—H5 | 121.2 | C13—C14—H14B | 109.0 |
C1—C6—C5 | 120.79 (12) | C15—C14—H14B | 109.0 |
C1—C6—H6 | 119.6 | C13—C14—H14A | 109.0 |
C5—C6—H6 | 119.6 | C15—C14—H14A | 109.0 |
O1—C7—C3 | 131.11 (13) | H14B—C14—H14A | 107.8 |
O1—C7—C8 | 124.07 (12) | C16—C15—C14 | 114.14 (12) |
C3—C7—C8 | 104.82 (11) | C16—C15—H15B | 108.7 |
O2—C8—N1 | 127.40 (13) | C14—C15—H15B | 108.7 |
O2—C8—C7 | 126.58 (12) | C16—C15—H15A | 108.7 |
N1—C8—C7 | 106.02 (11) | C14—C15—H15A | 108.7 |
N1—C9—C10 | 113.23 (11) | H15B—C15—H15A | 107.6 |
N1—C9—H9A | 108.9 | C15—C16—C17 | 112.69 (13) |
C10—C9—H9A | 108.9 | C15—C16—H16A | 109.1 |
N1—C9—H9B | 108.9 | C17—C16—H16A | 109.1 |
C10—C9—H9B | 108.9 | C15—C16—H16B | 109.1 |
H9A—C9—H9B | 107.7 | C17—C16—H16B | 109.1 |
C9—C10—C11 | 111.40 (11) | H16A—C16—H16B | 107.8 |
C9—C10—H10B | 109.3 | C16—C17—H17B | 109.5 |
C11—C10—H10B | 109.3 | C16—C17—H17C | 109.5 |
C9—C10—H10A | 109.3 | H17B—C17—H17C | 109.5 |
C11—C10—H10A | 109.3 | C16—C17—H17A | 109.5 |
H10B—C10—H10A | 108.0 | H17B—C17—H17A | 109.5 |
C12—C11—C10 | 113.34 (11) | H17C—C17—H17A | 109.5 |
C12—C11—H11B | 108.9 | C8—N1—C4 | 110.93 (11) |
C10—C11—H11B | 108.9 | C8—N1—C9 | 124.18 (11) |
C12—C11—H11A | 108.9 | C4—N1—C9 | 124.88 (11) |
C10—C11—H11A | 108.9 | ||
C6—C1—C2—C3 | 0.8 (2) | O1—C7—C8—N1 | −179.64 (12) |
Br1—C1—C2—C3 | −179.59 (10) | C3—C7—C8—N1 | 0.39 (13) |
C1—C2—C3—C4 | 0.07 (19) | N1—C9—C10—C11 | 160.28 (12) |
C1—C2—C3—C7 | −178.64 (13) | C9—C10—C11—C12 | 170.64 (12) |
C2—C3—C4—C5 | −0.9 (2) | C10—C11—C12—C13 | 173.80 (12) |
C7—C3—C4—C5 | 178.12 (12) | C11—C12—C13—C14 | 177.11 (12) |
C2—C3—C4—N1 | 179.48 (12) | C12—C13—C14—C15 | 178.74 (12) |
C7—C3—C4—N1 | −1.54 (14) | C13—C14—C15—C16 | 177.04 (12) |
C3—C4—C5—C6 | 0.75 (19) | C14—C15—C16—C17 | −178.65 (13) |
N1—C4—C5—C6 | −179.65 (12) | O2—C8—N1—C4 | 178.27 (13) |
C2—C1—C6—C5 | −0.9 (2) | C7—C8—N1—C4 | −1.34 (14) |
Br1—C1—C6—C5 | 179.48 (10) | O2—C8—N1—C9 | −3.0 (2) |
C4—C5—C6—C1 | 0.10 (19) | C7—C8—N1—C9 | 177.35 (11) |
C2—C3—C7—O1 | −0.4 (2) | C5—C4—N1—C8 | −177.75 (13) |
C4—C3—C7—O1 | −179.28 (14) | C3—C4—N1—C8 | 1.88 (15) |
C2—C3—C7—C8 | 179.53 (13) | C5—C4—N1—C9 | 3.6 (2) |
C4—C3—C7—C8 | 0.68 (13) | C3—C4—N1—C9 | −176.80 (12) |
O1—C7—C8—O2 | 0.7 (2) | C10—C9—N1—C8 | 89.85 (15) |
C3—C7—C8—O2 | −179.23 (13) | C10—C9—N1—C4 | −91.64 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O2i | 0.95 | 2.37 | 3.3028 (17) | 166 |
C10—H10B···O1ii | 0.99 | 2.50 | 3.4809 (17) | 169 |
C5—H5···O1i | 0.95 | 2.61 | 3.2431 (17) | 124 |
C9—H9B···O2iii | 0.99 | 2.66 | 3.2544 (17) | 120 |
Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O2i | 0.95 | 2.37 | 3.3028 (17) | 166 |
C10—H10B···O1ii | 0.99 | 2.50 | 3.4809 (17) | 169 |
C5—H5···O1i | 0.95 | 2.61 | 3.2431 (17) | 124 |
C9—H9B···O2iii | 0.99 | 2.66 | 3.2544 (17) | 120 |
Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C17H22BrNO2 |
Mr | 352.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 4.8428 (2), 31.7181 (14), 10.7171 (5) |
β (°) | 101.206 (2) |
V (Å3) | 1614.81 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.55 |
Crystal size (mm) | 0.20 × 0.17 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.658, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33463, 4532, 4029 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.694 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.061, 1.10 |
No. of reflections | 4532 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.43 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
References
Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586. Web of Science CAS PubMed Google Scholar
Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160559. Google Scholar
Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25–31. CAS Google Scholar
Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o588. CSD CrossRef IUCr Journals Google Scholar
Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801. CSD CrossRef IUCr Journals Google Scholar
Sarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257–260. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridhar, S. K., Muniyandy, S. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615–625. CrossRef PubMed CAS Google Scholar
Sridhar, S. K. & Sreenivasulu, M. (2001). Indian Drugs, 38, 531–534. CAS Google Scholar
Varma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56. PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.