organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6b-Hy­dr­oxy-17-methyl-15-(3-nitro­phen­yl)-6b,7,16,17-tetra­hydro-7,14a-methanona­phtho[1′,8′:1,2,3]pyrrolo­[3′,2′:8,8a]azuleno[5,6-b]quinolin-14(15H)-one di­chloro­methane hemisolvate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 May 2016; accepted 20 May 2016; online 27 May 2016)

In the title compound, C34H25N3O4·0.5CH2Cl2, which crystallized as a di­chloro­methane hemisolvate, the central 1-methyl­pyrrolidine ring adopts an envelope conformation with the N atom as the flap. The cyclo­pentane ring adopts a twist conformation on the CH—CH2 bond and the cyclo­hexane ring has an envelope conformation with the CH2 atom as the flap. The pyrrolidine ring mean plane makes dihedral angles of 40.09 (11), 69.21 (10) and 80.88 (8)° with the mean planes of the cyclo­pentane, cyclo­hexane and ace­naphthyl­ene rings, respectively. The 3-nitro­benzene ring is inclined to the ace­naphthyl­ene and quinoline ring systems by 69.32 (8) and 82.07 (7)°, respectively. There is an intra­molecular O—H⋯N hydrogen bond present forming an S(5) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming sheets lying parallel to the ab plane, which enclose R22(18), R22(14), R22(12) and R22(16) ring motifs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Highly functionalized pyrrolidines have gained much inter­est in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995[Waldmann, H. (1995). Synlett, pp. 133-141.]). Pyrrolidine derivatives are widely used as organic catalysts and serve as important structural units in biologically active mol­ecules (Pinna et al., 2002[Pinna, G. A., Pirisi, M. A., Chelucci, G., Mussinu, J. M., Murineddu, G., Loriga, G., D'Aquila, P. S. & Serra, G. (2002). Bioorg. Med. Chem. 10, 2485-2496.]). Optically active pyrrolidines have been used as inter­mediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Savithri et al., 2014[Savithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94-97.]). The spiro-pyrrolidine ring system is associated with anti­tumor activity (Araki et al., 2002[Araki, K., Suenaga, K., Sengoku, T. & Uemura, D. (2002). Tetrahedron, 58, 1983-1995.]). Pyrrolidine compounds are reported to exhibit anti­microbial, anti­fungal, anti-influenza virus A, anti-inflammatory (Mathusalini et al., 2015[Mathusalini, S., Viswanathan, V., Mohan, P. S., Lin, C.-H. & Velmurugan, D. (2015). Acta Cryst. E71, o1038-o1039.]), anti­tumor, anti­depressant, anti­biotic and anti­convulsant (Joseph et al., 2015[Joseph, J. M., Viswanathan, V. & Velmurugan, D. (2015). Acta Cryst. E71, o1091-o1092.]) activity and to act as sphingosine-1-phosphate (S1P) receptor agonists, malic enzyme inhibitors, keto­amide-based cathepsin K inhibitors and human melanocortin-4 receptor agonists (Babu et al., 2012[Babu, M. N., Sharma, L. & Madhavan, V. (2012). Int. J. ChemTech Res. 4, 903-909.]).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. There is an intra­molecular O—H⋯N hydrogen bond present forming an S(5) ring motif (Table 1[link] and Fig. 1[link]). The central 1-methyl pyrrolidine ring (N2/C1/C24/C27/C26) adopts an envelope conformation with atom N2 as the flap; it is displaced by 0.561 (1) Å from the mean plane through the other four atoms. The cyclo­hexane (C13/C14/C22–C25) ring adopts an envelope conformation with atom C25 as the flap, displaced by 0.863 (1) Å from the mean plane through the other five atoms. The cyclo­pentane ring (C1/C12/C13/C25/C24) adopts a twist conformation on the C13—C25 bond. The quinoline ring system (C14/N2/C15–C22) and the ace­naphthyl­ene ring system (C1–C12) adopt almost planar conformations, with the maximum deviation being 0.041 (1) Å for atom C14 in the quinoline ring system and 0.143 (1) Å for atom C1 in the ace­naphthyl­ene ring system. The mean plane of the pyrrolidine ring makes dihedral angles of 40.09 (11), 69.21 (10), 80.88 (8) and 62.38 (10)° with the mean planes of the cyclo­pentane, cyclo­hexane, ace­naphthyl­ene and the 3-nitro­benzene rings, respectively. The methyl group atom C34 is displaced by 0.238 (1) Å from the pyrrolidine ring to which it is attached and atom O2 is displaced from the cyclo­hexane ring mean plane by 0.332 (1) Å. The nitro group lies almost in the plane of the attached benzene ring (C28–C33), making a dihedral angle of 11.8 (3)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 2.12 2.669 (2) 124
C25—H25A⋯O3i 0.97 2.57 3.289 (3) 131
C27—H27⋯O4ii 0.98 2.54 3.384 (3) 145
C29—H29⋯O1iii 0.93 2.58 3.502 (2) 174
C34—H34C⋯O1iii 0.96 2.56 3.274 (2) 131
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y+2, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line.

In the crystal, hydrogen bonds C29—H29⋯O1 and C34—H34C⋯O1 involving the same acceptor atom link mol­ecules into inversion dimers enclosing R22(12) and R22(16) ring motifs (Table 1[link] and Fig. 2[link]). The dimers are linked by C25—H25A⋯O3 and C27—H27⋯O4 hydrogen bonds, enclosing R22(18) and R22(14) ring motifs (Table 1[link] and Fig. 3[link]), forming sheets lying parallel to the ab plane (Table 1[link] and Fig. 4[link]).

[Figure 2]
Figure 2
A partial crystal packing diagram of the title compound, viewed approximately along the b axis, showing the R22(12) and R22(16) ring motifs formed by C29—H29⋯O1 and C34—H34C⋯O1 hydrogen bonds (dashed lines; see Table 1[link]). H atoms not involved in the hydrogen bonds have been excluded for clarity.
[Figure 3]
Figure 3
A partial crystal packing diagram of the title compound, illustrating the formation of the hydrogen bonded chains (dashed lines; see Table 1[link]) running along [100], and enclosing R22(18) and R22(14) ring motifs. H atoms not involved in the hydrogen bonds have been omitted for clarity.
[Figure 4]
Figure 4
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and H atoms not involved in the hydrogen bonds have been omitted for clarity.

Synthesis and crystallization

A mixture of (E)-2-(3-nitro­benzyl­idene)-3,4-di­hydro­acridin-1(2H)-one (1 mmol), ace­naphtho­quinone (1 mmol) and sarcosine (1.5 mmol) was heated to reflux in toluene (3 ml) for 10 h. After completion of the reaction as evident from TLC, the reaction mixture was extracted with ethyl acetate (2 × 20 ml), washed with water (2 × 10 ml), dried over anhydrous Na2SO4. It was then concentrated under reduced pressure, and subjected to column chromatography using petroleum ether–AcOEt (5:1 v/v) as eluent to obtain the title compound as a pure product. Slow evaporation of a solution of the title compound in di­chloro­methane at room temperature gave colourless block-like crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C34H25N3O4·0.5CH2Cl2
Mr 582.03
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.3566 (3), 12.1189 (4), 12.7055 (4)
α, β, γ (°) 94.490 (2), 93.300 (2), 107.554 (1)
V3) 1364.39 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.24 × 0.18 × 0.11
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.746, 0.845
No. of measured, independent and observed [I > 2σ(I)] reflections 20602, 5597, 4781
Rint 0.022
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 1.03
No. of reflections 5597
No. of parameters 391
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.71, −0.81
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Experimental top

A mixture of (E)-2-(3-nitrobenzylidene)-3,4-dihydroacridin-1(2H)-one (1 mmol), acenaphthoquinone (1 mmol) and sarcosine (1.5 mmol) was heated to reflux in toluene (3 ml) for 10 h. After completion of the reaction as evident from TLC, the reaction mixture was extracted with ethyl acetate (2 × 20 ml), washed with water (2 × 10 ml), dried over anhydrous Na2SO4. It was then concentrated under reduced pressure, and subjected to column chromatography using petroleum ether–AcOEt (5:1 v/v) as eluent to obtain the title compound as a pure product. Slow evaporation of a solution of the title compound in dichloromethane at room temperature gave colourless block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Pyrrolidine derivatives are widely used as organic catalysts and serve as important structural units in biologically active molecules (Pinna et al., 2002). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Savithri et al., 2014). The spiro-pyrrolidine ring system is associated with antitumor activity (Araki et al., 2002). Pyrrolidine compounds are reported to exhibit antimicrobial, antifungal, anti-influenza virus A, anti-inflammatory (Mathusalini et al., 2015), antitumor, antidepressant, antibiotic and anticonvulsant (Joseph et al., 2015) activity and to act as sphingosine-1-phosphate (S1P) receptor agonists, malic enzyme inhibitors, ketoamide-based cathepsin K inhibitors and human melanocortin-4 receptor agonists (Babu et al., 2012).

The molecular structure of the title compound is shown in Fig. 1. There is an intramolecular O—H···N hydrogen bond present forming an S(5) ring motif (Table 1 and Fig. 1). The central 1-methyl pyrrolidine ring (N2/C1/C24/C27/C26) adopts an envelope conformation with atom N2 as the flap; it is displaced by 0.561 (1) Å from the mean plane through the other four atoms. The cyclohexane (C13/C14/C22–C25) ring adopts an envelope conformation with atom C25 as the flap, displaced by 0.863 (1) Å from the mean plane through the other five atoms. The cyclopentane ring (C1/C12/C13/C25/C24) adopts a twist conformation on the C13—C25 bond. The quinoline ring system (C14/N2/C15–C22) and the acenaphthylene ring system (C1–C12) adopt almost planar conformations, with the maximum deviation being 0.041 (1) Å for atom C14 in the quinoline ring system and 0.143 (1) Å for atom C1 in the acenaphthylene ring system. The mean plane of the pyrrolidine ring makes dihedral angles of 40.09 (11), 69.21 (10), 80.88 (8) and 62.38 (10)° with the mean planes of the cyclopentane, cyclohexane, acenaphthylene and the 3-nitrobenzene rings, respectively. The methyl group atom C34 is displaced by 0.238 (1) Å from the pyrrolidine ring to which it is attached and atom O2 is displaced from the cyclohexane ring mean plane by 0.332 (1) Å. The nitro group lies almost in the plane of the attached benzene ring (C28–C33), making a dihedral angle of 11.8 (3)°.

In the crystal, hydrogen bonds C29—H29···O1 and C34—H34C···O1 involving the same acceptor atom link molecules into inversion dimers enclosing R22(12) and R22(16) ring motifs (Table 1 and Fig. 2). The dimers are linked by C25—H25A···O3 and C27—H27···O4 hydrogen bonds, enclosing R22(18) and R22(14) ring motifs (Table 1 and Fig. 3), forming sheets lying parallel to the ab plane (Table 1 and Fig. 4).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level. The intramolecular O—H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A partial crystal packing diagram of the title compound, viewed approximately along the b axis, showing the R22(12) and R22(16) ring motifs formed by C29—H29···O1 and C34—H34C···O1 hydrogen bonds (dashed lines; see Table 1). H atoms not involved in the hydrogen bonds have been excluded for clarity.
[Figure 3] Fig. 3. A partial crystal packing diagram of the title compound, illustrating the formation of the hydrogen bonded chains (dashed lines; see Table 1) running along [100], and enclosing R22(18) and R22(14) ring motifs. H atoms not involved in the hydrogen bonds have been omitted for clarity.
[Figure 4] Fig. 4. A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1), and H atoms not involved in the hydrogen bonds have been omitted for clarity.
6b-Hydroxy-17-methyl-15-(3-nitrophenyl)-6b,7,16,17-tetrahydro-7,14a-methanonaphtho[1',8':1,2,3]pyrrolo[3',2':8,8a]azuleno[5,6-b]quinolin-14(15H)-one dichloromethane hemisolvate top
Crystal data top
C34H25N3O4·0.5CH2Cl2Z = 2
Mr = 582.03F(000) = 606
Triclinic, P1Dx = 1.417 Mg m3
a = 9.3566 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1189 (4) ÅCell parameters from 5597 reflections
c = 12.7055 (4) Åθ = 1.6–26.5°
α = 94.490 (2)°µ = 0.19 mm1
β = 93.300 (2)°T = 293 K
γ = 107.554 (1)°Block, colourless
V = 1364.39 (8) Å30.24 × 0.18 × 0.11 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4781 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
ω and φ scansθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.746, Tmax = 0.845k = 1515
20602 measured reflectionsl = 1515
5597 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.7773P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5597 reflectionsΔρmax = 0.71 e Å3
391 parametersΔρmin = 0.81 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C34H25N3O4·0.5CH2Cl2γ = 107.554 (1)°
Mr = 582.03V = 1364.39 (8) Å3
Triclinic, P1Z = 2
a = 9.3566 (3) ÅMo Kα radiation
b = 12.1189 (4) ŵ = 0.19 mm1
c = 12.7055 (4) ÅT = 293 K
α = 94.490 (2)°0.24 × 0.18 × 0.11 mm
β = 93.300 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4781 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.845Rint = 0.022
20602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.03Δρmax = 0.71 e Å3
5597 reflectionsΔρmin = 0.81 e Å3
391 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C350.9773 (8)0.5614 (7)0.4596 (8)0.122 (3)0.5
H35A0.88200.57790.45430.146*0.5
H35B1.04860.61820.42330.146*0.5
Cl11.04569 (14)0.57364 (13)0.59887 (11)0.1339 (5)
C10.72811 (18)0.87889 (14)0.84196 (13)0.0306 (4)
C20.6091 (2)0.91913 (14)0.78307 (14)0.0343 (4)
C30.4613 (2)0.90609 (18)0.79707 (16)0.0445 (4)
H30.41190.85910.84660.053*
C40.3853 (3)0.9663 (2)0.73399 (19)0.0588 (6)
H40.28470.95780.74300.071*
C50.4541 (3)1.0362 (2)0.66084 (19)0.0638 (7)
H50.40071.07530.62230.077*
C60.6059 (3)1.04980 (18)0.64289 (16)0.0516 (5)
C70.6941 (4)1.1164 (2)0.56918 (18)0.0675 (7)
H70.65211.15940.52630.081*
C80.8393 (4)1.1184 (2)0.56030 (19)0.0658 (7)
H80.89441.16340.51160.079*
C90.9087 (3)1.05452 (18)0.62237 (16)0.0514 (5)
H91.00731.05580.61410.062*
C100.8275 (2)0.99051 (15)0.69512 (14)0.0379 (4)
C110.6784 (2)0.98855 (15)0.70502 (14)0.0386 (4)
C120.86515 (19)0.91164 (15)0.77043 (13)0.0330 (4)
C130.86429 (19)0.79050 (15)0.71955 (14)0.0339 (4)
H130.96190.79400.69330.041*
C140.73823 (19)0.73871 (14)0.63388 (13)0.0329 (4)
C150.6529 (2)0.69894 (16)0.45693 (14)0.0393 (4)
C160.6839 (3)0.7051 (2)0.34972 (16)0.0538 (5)
H160.78250.73630.33290.065*
C170.5707 (3)0.6658 (2)0.27066 (17)0.0618 (6)
H170.59300.67130.20050.074*
C180.4214 (3)0.6173 (2)0.29334 (17)0.0591 (6)
H180.34510.59220.23860.071*
C190.3883 (3)0.6071 (2)0.39542 (17)0.0544 (5)
H190.28920.57310.41000.065*
C200.5024 (2)0.64736 (16)0.47987 (15)0.0408 (4)
C210.4750 (2)0.63939 (17)0.58695 (15)0.0416 (4)
H210.37830.60380.60540.050*
C220.5905 (2)0.68392 (15)0.66374 (14)0.0345 (4)
C230.5629 (2)0.67639 (14)0.77782 (14)0.0345 (4)
C240.69506 (19)0.74606 (14)0.85484 (13)0.0312 (4)
C250.8359 (2)0.71954 (16)0.81484 (14)0.0361 (4)
H25A0.92050.74550.86830.043*
H25B0.81540.63720.79390.043*
C260.6759 (2)0.85428 (16)1.01904 (14)0.0395 (4)
H26A0.57680.86431.01710.047*
H26B0.71940.86891.09190.047*
C270.6661 (2)0.73169 (15)0.97300 (13)0.0351 (4)
H270.56200.68240.97500.042*
C280.7674 (2)0.67420 (15)1.02952 (13)0.0342 (4)
C290.8895 (2)0.73465 (17)1.10098 (15)0.0432 (4)
H290.91350.81501.11410.052*
C300.9760 (2)0.67755 (19)1.15298 (17)0.0501 (5)
H301.05700.71991.20040.060*
C310.9431 (2)0.55854 (18)1.13504 (17)0.0466 (5)
H311.00020.51951.17010.056*
C320.8232 (2)0.49940 (16)1.06359 (15)0.0393 (4)
C330.7352 (2)0.55443 (16)1.01075 (14)0.0362 (4)
H330.65500.51150.96300.043*
C340.7644 (2)1.05220 (16)0.97148 (15)0.0410 (4)
H34A0.66161.05120.96100.061*
H34B0.82321.10040.92310.061*
H34C0.80311.08281.04300.061*
N10.76883 (18)0.74405 (13)0.53420 (12)0.0388 (4)
N20.77263 (16)0.93343 (12)0.95215 (11)0.0339 (3)
N30.7856 (2)0.37245 (15)1.04308 (16)0.0505 (4)
O11.00338 (14)0.96413 (12)0.83179 (10)0.0437 (3)
H10.98860.96750.89480.066*
O20.44393 (16)0.61858 (13)0.80500 (11)0.0509 (4)
O30.8470 (2)0.32270 (15)1.10228 (18)0.0773 (6)
O40.6955 (2)0.32303 (14)0.96856 (16)0.0652 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C350.079 (4)0.094 (5)0.231 (10)0.058 (4)0.071 (6)0.085 (6)
Cl10.1021 (8)0.1563 (11)0.1467 (11)0.0483 (7)0.0245 (7)0.0078 (8)
C10.0313 (8)0.0289 (8)0.0325 (8)0.0101 (6)0.0049 (6)0.0028 (6)
C20.0379 (9)0.0295 (8)0.0364 (9)0.0132 (7)0.0003 (7)0.0008 (7)
C30.0410 (10)0.0481 (11)0.0466 (10)0.0195 (9)0.0019 (8)0.0041 (8)
C40.0514 (13)0.0725 (15)0.0597 (13)0.0374 (12)0.0102 (10)0.0127 (12)
C50.0824 (17)0.0676 (15)0.0548 (13)0.0494 (14)0.0160 (12)0.0021 (11)
C60.0748 (15)0.0421 (11)0.0428 (11)0.0284 (10)0.0076 (10)0.0006 (8)
C70.117 (2)0.0481 (13)0.0448 (12)0.0355 (14)0.0031 (13)0.0144 (10)
C80.103 (2)0.0458 (12)0.0481 (12)0.0167 (13)0.0157 (13)0.0187 (10)
C90.0654 (14)0.0391 (10)0.0430 (10)0.0039 (9)0.0114 (9)0.0077 (8)
C100.0469 (10)0.0282 (8)0.0350 (9)0.0066 (7)0.0036 (7)0.0023 (7)
C110.0509 (11)0.0301 (8)0.0344 (9)0.0136 (8)0.0026 (8)0.0004 (7)
C120.0301 (8)0.0334 (9)0.0333 (8)0.0061 (7)0.0050 (6)0.0030 (7)
C130.0293 (8)0.0372 (9)0.0377 (9)0.0123 (7)0.0103 (7)0.0053 (7)
C140.0366 (9)0.0279 (8)0.0359 (9)0.0117 (7)0.0098 (7)0.0023 (6)
C150.0474 (10)0.0335 (9)0.0372 (9)0.0125 (8)0.0090 (8)0.0006 (7)
C160.0609 (13)0.0550 (12)0.0408 (11)0.0097 (10)0.0136 (9)0.0015 (9)
C170.0798 (17)0.0641 (14)0.0339 (10)0.0114 (12)0.0096 (10)0.0011 (9)
C180.0681 (15)0.0605 (14)0.0413 (11)0.0133 (11)0.0053 (10)0.0062 (10)
C190.0505 (12)0.0597 (13)0.0463 (11)0.0096 (10)0.0011 (9)0.0034 (10)
C200.0452 (10)0.0367 (9)0.0393 (9)0.0118 (8)0.0046 (8)0.0012 (7)
C210.0374 (10)0.0408 (10)0.0433 (10)0.0068 (8)0.0090 (8)0.0014 (8)
C220.0366 (9)0.0310 (8)0.0362 (9)0.0101 (7)0.0087 (7)0.0017 (7)
C230.0367 (9)0.0289 (8)0.0385 (9)0.0095 (7)0.0104 (7)0.0037 (7)
C240.0337 (9)0.0295 (8)0.0334 (8)0.0123 (7)0.0087 (7)0.0066 (6)
C250.0366 (9)0.0381 (9)0.0392 (9)0.0178 (7)0.0096 (7)0.0071 (7)
C260.0464 (10)0.0428 (10)0.0353 (9)0.0198 (8)0.0130 (8)0.0069 (7)
C270.0359 (9)0.0370 (9)0.0344 (9)0.0121 (7)0.0095 (7)0.0075 (7)
C280.0362 (9)0.0352 (9)0.0326 (8)0.0099 (7)0.0110 (7)0.0097 (7)
C290.0455 (11)0.0356 (9)0.0452 (10)0.0072 (8)0.0045 (8)0.0060 (8)
C300.0440 (11)0.0522 (12)0.0493 (11)0.0088 (9)0.0045 (9)0.0062 (9)
C310.0426 (10)0.0509 (11)0.0509 (11)0.0180 (9)0.0057 (8)0.0176 (9)
C320.0393 (10)0.0355 (9)0.0460 (10)0.0123 (8)0.0148 (8)0.0113 (7)
C330.0354 (9)0.0368 (9)0.0366 (9)0.0099 (7)0.0081 (7)0.0057 (7)
C340.0466 (10)0.0339 (9)0.0429 (10)0.0148 (8)0.0029 (8)0.0023 (7)
N10.0408 (8)0.0384 (8)0.0373 (8)0.0111 (7)0.0114 (6)0.0027 (6)
N20.0375 (8)0.0333 (7)0.0324 (7)0.0132 (6)0.0053 (6)0.0017 (6)
N30.0443 (10)0.0383 (9)0.0751 (12)0.0181 (8)0.0178 (9)0.0116 (9)
O10.0322 (7)0.0524 (8)0.0392 (7)0.0035 (6)0.0020 (5)0.0007 (6)
O20.0443 (8)0.0517 (8)0.0447 (8)0.0044 (6)0.0149 (6)0.0014 (6)
O30.0733 (12)0.0513 (10)0.1195 (16)0.0335 (9)0.0046 (11)0.0263 (10)
O40.0596 (10)0.0418 (8)0.0909 (13)0.0135 (7)0.0067 (9)0.0051 (8)
Geometric parameters (Å, º) top
C35—Cl1i1.690 (9)C17—H170.9300
C35—Cl11.825 (11)C18—C191.357 (3)
C35—H35A0.9700C18—H180.9300
C35—H35B0.9700C19—C201.415 (3)
Cl1—C35i1.690 (9)C19—H190.9300
C1—N21.481 (2)C20—C211.404 (3)
C1—C21.525 (2)C21—C221.362 (3)
C1—C241.569 (2)C21—H210.9300
C1—C121.585 (2)C22—C231.492 (2)
C2—C31.367 (3)C23—O21.209 (2)
C2—C111.410 (3)C23—C241.517 (2)
C3—C41.422 (3)C24—C251.551 (2)
C3—H30.9300C24—C271.555 (2)
C4—C51.363 (4)C25—H25A0.9700
C4—H40.9300C25—H25B0.9700
C5—C61.413 (4)C26—N21.468 (2)
C5—H50.9300C26—C271.527 (2)
C6—C111.403 (3)C26—H26A0.9700
C6—C71.420 (4)C26—H26B0.9700
C7—C81.363 (4)C27—C281.516 (2)
C7—H70.9300C27—H270.9800
C8—C91.408 (3)C28—C331.389 (2)
C8—H80.9300C28—C291.392 (3)
C9—C101.368 (3)C29—C301.385 (3)
C9—H90.9300C29—H290.9300
C10—C111.402 (3)C30—C311.378 (3)
C10—C121.503 (2)C30—H300.9300
C12—O11.413 (2)C31—C321.376 (3)
C12—C131.555 (2)C31—H310.9300
C13—C141.506 (2)C32—C331.382 (3)
C13—C251.529 (2)C32—N31.469 (2)
C13—H130.9800C33—H330.9300
C14—N11.317 (2)C34—N21.467 (2)
C14—C221.429 (2)C34—H34A0.9600
C15—N11.369 (2)C34—H34B0.9600
C15—C161.412 (3)C34—H34C0.9600
C15—C201.416 (3)N3—O41.217 (3)
C16—C171.362 (3)N3—O31.221 (2)
C16—H160.9300O1—H10.8200
C17—C181.398 (4)
Cl1i—C35—Cl1110.6 (4)C18—C19—H19119.6
Cl1i—C35—H35A109.5C20—C19—H19119.6
Cl1—C35—H35A109.5C21—C20—C19123.51 (19)
Cl1i—C35—H35B109.5C21—C20—C15117.29 (17)
Cl1—C35—H35B109.5C19—C20—C15119.20 (18)
H35A—C35—H35B108.1C22—C21—C20119.85 (17)
C35i—Cl1—C3569.4 (4)C22—C21—H21120.1
N2—C1—C2114.47 (13)C20—C21—H21120.1
N2—C1—C24102.71 (13)C21—C22—C14119.27 (16)
C2—C1—C24119.05 (14)C21—C22—C23120.40 (16)
N2—C1—C12111.49 (13)C14—C22—C23120.33 (16)
C2—C1—C12103.26 (13)O2—C23—C22121.66 (17)
C24—C1—C12105.70 (12)O2—C23—C24123.66 (16)
C3—C2—C11118.97 (17)C22—C23—C24114.67 (14)
C3—C2—C1132.75 (17)C23—C24—C25106.43 (13)
C11—C2—C1108.13 (15)C23—C24—C27113.57 (14)
C2—C3—C4118.2 (2)C25—C24—C27117.49 (14)
C2—C3—H3120.9C23—C24—C1109.24 (13)
C4—C3—H3120.9C25—C24—C1103.19 (13)
C5—C4—C3122.5 (2)C27—C24—C1106.26 (13)
C5—C4—H4118.7C13—C25—C24101.59 (13)
C3—C4—H4118.7C13—C25—H25A111.5
C4—C5—C6120.7 (2)C24—C25—H25A111.5
C4—C5—H5119.7C13—C25—H25B111.5
C6—C5—H5119.7C24—C25—H25B111.5
C11—C6—C5115.9 (2)H25A—C25—H25B109.3
C11—C6—C7115.7 (2)N2—C26—C27105.75 (13)
C5—C6—C7128.4 (2)N2—C26—H26A110.6
C8—C7—C6121.0 (2)C27—C26—H26A110.6
C8—C7—H7119.5N2—C26—H26B110.6
C6—C7—H7119.5C27—C26—H26B110.6
C7—C8—C9122.2 (2)H26A—C26—H26B108.7
C7—C8—H8118.9C28—C27—C26116.14 (15)
C9—C8—H8118.9C28—C27—C24113.91 (14)
C10—C9—C8118.4 (2)C26—C27—C24103.52 (13)
C10—C9—H9120.8C28—C27—H27107.6
C8—C9—H9120.8C26—C27—H27107.6
C9—C10—C11119.77 (19)C24—C27—H27107.6
C9—C10—C12131.86 (19)C33—C28—C29118.07 (17)
C11—C10—C12108.32 (15)C33—C28—C27118.35 (16)
C10—C11—C6122.96 (19)C29—C28—C27123.57 (16)
C10—C11—C2113.41 (16)C30—C29—C28121.33 (18)
C6—C11—C2123.63 (19)C30—C29—H29119.3
O1—C12—C10112.78 (14)C28—C29—H29119.3
O1—C12—C13108.69 (14)C31—C30—C29120.57 (19)
C10—C12—C13115.62 (14)C31—C30—H30119.7
O1—C12—C1111.83 (13)C29—C30—H30119.7
C10—C12—C1105.09 (14)C32—C31—C30117.83 (18)
C13—C12—C1102.33 (13)C32—C31—H31121.1
C14—C13—C25109.51 (14)C30—C31—H31121.1
C14—C13—C12112.85 (14)C31—C32—C33122.66 (18)
C25—C13—C12100.88 (13)C31—C32—N3118.94 (17)
C14—C13—H13111.1C33—C32—N3118.40 (18)
C25—C13—H13111.1C32—C33—C28119.54 (17)
C12—C13—H13111.1C32—C33—H33120.2
N1—C14—C22122.45 (16)C28—C33—H33120.2
N1—C14—C13118.71 (15)N2—C34—H34A109.5
C22—C14—C13118.83 (15)N2—C34—H34B109.5
N1—C15—C16118.87 (18)H34A—C34—H34B109.5
N1—C15—C20122.78 (16)N2—C34—H34C109.5
C16—C15—C20118.35 (18)H34A—C34—H34C109.5
C17—C16—C15120.6 (2)H34B—C34—H34C109.5
C17—C16—H16119.7C14—N1—C15118.27 (16)
C15—C16—H16119.7C34—N2—C26111.60 (14)
C16—C17—C18121.0 (2)C34—N2—C1115.28 (14)
C16—C17—H17119.5C26—N2—C1105.85 (13)
C18—C17—H17119.5O4—N3—O3123.81 (19)
C19—C18—C17119.8 (2)O4—N3—C32118.46 (17)
C19—C18—H18120.1O3—N3—C32117.7 (2)
C17—C18—H18120.1C12—O1—H1109.5
C18—C19—C20120.9 (2)
Cl1i—C35—Cl1—C35i0.001 (1)C20—C21—C22—C140.2 (3)
N2—C1—C2—C366.1 (2)C20—C21—C22—C23179.79 (17)
C24—C1—C2—C355.9 (3)N1—C14—C22—C212.7 (3)
C12—C1—C2—C3172.54 (19)C13—C14—C22—C21178.38 (16)
N2—C1—C2—C11109.33 (16)N1—C14—C22—C23177.75 (16)
C24—C1—C2—C11128.72 (15)C13—C14—C22—C231.2 (2)
C12—C1—C2—C1112.05 (17)C21—C22—C23—O29.6 (3)
C11—C2—C3—C41.8 (3)C14—C22—C23—O2170.85 (17)
C1—C2—C3—C4173.16 (18)C21—C22—C23—C24170.58 (16)
C2—C3—C4—C50.1 (3)C14—C22—C23—C249.0 (2)
C3—C4—C5—C61.4 (4)O2—C23—C24—C25133.54 (18)
C4—C5—C6—C110.6 (3)C22—C23—C24—C2546.27 (18)
C4—C5—C6—C7178.6 (2)O2—C23—C24—C272.7 (2)
C11—C6—C7—C80.6 (3)C22—C23—C24—C27177.08 (14)
C5—C6—C7—C8178.6 (2)O2—C23—C24—C1115.68 (19)
C6—C7—C8—C90.5 (4)C22—C23—C24—C164.51 (18)
C7—C8—C9—C101.3 (4)N2—C1—C24—C23143.44 (13)
C8—C9—C10—C110.9 (3)C2—C1—C24—C2315.78 (19)
C8—C9—C10—C12178.13 (19)C12—C1—C24—C2399.60 (15)
C9—C10—C11—C60.1 (3)N2—C1—C24—C25103.65 (14)
C12—C10—C11—C6177.66 (17)C2—C1—C24—C25128.70 (15)
C9—C10—C11—C2179.95 (17)C12—C1—C24—C2513.31 (16)
C12—C10—C11—C22.3 (2)N2—C1—C24—C2720.56 (16)
C5—C6—C11—C10178.40 (18)C2—C1—C24—C27107.10 (16)
C7—C6—C11—C100.9 (3)C12—C1—C24—C27137.52 (14)
C5—C6—C11—C21.5 (3)C14—C13—C25—C2467.50 (16)
C7—C6—C11—C2179.21 (18)C12—C13—C25—C2451.69 (16)
C3—C2—C11—C10177.16 (16)C23—C24—C25—C1374.97 (16)
C1—C2—C11—C106.7 (2)C27—C24—C25—C13156.47 (15)
C3—C2—C11—C62.7 (3)C1—C24—C25—C1339.98 (16)
C1—C2—C11—C6173.40 (17)N2—C26—C27—C2899.87 (17)
C9—C10—C12—O150.7 (3)N2—C26—C27—C2425.75 (18)
C11—C10—C12—O1131.82 (15)C23—C24—C27—C28115.65 (16)
C9—C10—C12—C1375.2 (3)C25—C24—C27—C289.4 (2)
C11—C10—C12—C13102.24 (17)C1—C24—C27—C28124.24 (15)
C9—C10—C12—C1172.82 (19)C23—C24—C27—C26117.31 (15)
C11—C10—C12—C19.75 (18)C25—C24—C27—C26117.61 (16)
N2—C1—C12—O112.32 (19)C1—C24—C27—C262.80 (17)
C2—C1—C12—O1135.70 (14)C26—C27—C28—C33162.61 (15)
C24—C1—C12—O198.54 (15)C24—C27—C28—C3377.2 (2)
N2—C1—C12—C10110.37 (15)C26—C27—C28—C2916.1 (2)
C2—C1—C12—C1013.01 (16)C24—C27—C28—C29104.12 (19)
C24—C1—C12—C10138.77 (14)C33—C28—C29—C300.6 (3)
N2—C1—C12—C13128.48 (14)C27—C28—C29—C30178.04 (18)
C2—C1—C12—C13108.14 (14)C28—C29—C30—C310.0 (3)
C24—C1—C12—C1317.62 (16)C29—C30—C31—C320.5 (3)
O1—C12—C13—C14167.20 (13)C30—C31—C32—C330.6 (3)
C10—C12—C13—C1439.2 (2)C30—C31—C32—N3179.94 (18)
C1—C12—C13—C1474.39 (16)C31—C32—C33—C280.0 (3)
O1—C12—C13—C2576.05 (15)N3—C32—C33—C28179.36 (15)
C10—C12—C13—C25155.96 (15)C29—C28—C33—C320.6 (2)
C1—C12—C13—C2542.37 (15)C27—C28—C33—C32178.12 (15)
C25—C13—C14—N1146.84 (15)C22—C14—N1—C152.4 (2)
C12—C13—C14—N1101.65 (17)C13—C14—N1—C15178.63 (15)
C25—C13—C14—C2232.1 (2)C16—C15—N1—C14179.40 (18)
C12—C13—C14—C2279.39 (19)C20—C15—N1—C140.2 (3)
N1—C15—C16—C17177.1 (2)C27—C26—N2—C34166.85 (15)
C20—C15—C16—C172.2 (3)C27—C26—N2—C140.71 (17)
C15—C16—C17—C180.7 (4)C2—C1—N2—C3430.8 (2)
C16—C17—C18—C191.2 (4)C24—C1—N2—C34161.30 (14)
C17—C18—C19—C201.5 (4)C12—C1—N2—C3485.94 (17)
C18—C19—C20—C21179.9 (2)C2—C1—N2—C2693.07 (16)
C18—C19—C20—C150.0 (3)C24—C1—N2—C2637.43 (16)
N1—C15—C20—C212.4 (3)C12—C1—N2—C26150.18 (14)
C16—C15—C20—C21178.30 (18)C31—C32—N3—O4168.67 (18)
N1—C15—C20—C19177.45 (18)C33—C32—N3—O411.9 (3)
C16—C15—C20—C191.8 (3)C31—C32—N3—O311.4 (3)
C19—C20—C21—C22177.75 (19)C33—C32—N3—O3168.04 (19)
C15—C20—C21—C222.1 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.822.122.669 (2)124
C25—H25A···O3ii0.972.573.289 (3)131
C27—H27···O4iii0.982.543.384 (3)145
C29—H29···O1iv0.932.583.502 (2)174
C34—H34C···O1iv0.962.563.274 (2)131
Symmetry codes: (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2; (iv) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.822.122.669 (2)124
C25—H25A···O3i0.972.573.289 (3)131
C27—H27···O4ii0.982.543.384 (3)145
C29—H29···O1iii0.932.583.502 (2)174
C34—H34C···O1iii0.962.563.274 (2)131
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC34H25N3O4·0.5CH2Cl2
Mr582.03
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3566 (3), 12.1189 (4), 12.7055 (4)
α, β, γ (°)94.490 (2), 93.300 (2), 107.554 (1)
V3)1364.39 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.24 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.746, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
20602, 5597, 4781
Rint0.022
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 1.03
No. of reflections5597
No. of parameters391
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.81

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationAraki, K., Suenaga, K., Sengoku, T. & Uemura, D. (2002). Tetrahedron, 58, 1983–1995.  CrossRef CAS Google Scholar
First citationBabu, M. N., Sharma, L. & Madhavan, V. (2012). Int. J. ChemTech Res. 4, 903–909.  CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJoseph, J. M., Viswanathan, V. & Velmurugan, D. (2015). Acta Cryst. E71, o1091–o1092.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMathusalini, S., Viswanathan, V., Mohan, P. S., Lin, C.-H. & Velmurugan, D. (2015). Acta Cryst. E71, o1038–o1039.  CrossRef IUCr Journals Google Scholar
First citationPinna, G. A., Pirisi, M. A., Chelucci, G., Mussinu, J. M., Murineddu, G., Loriga, G., D'Aquila, P. S. & Serra, G. (2002). Bioorg. Med. Chem. 10, 2485–2496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSavithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94–97.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds