organic compounds
(1S,3R,8R,11S)-2,2,11-Tribromo-10-bromomethyl-3,7,7-trimethyltricyclo[6.4.0.01,3]dodec-9-ene
aLaboratoire de Physico-Chimie Moléculaire et Synthèse Organique, Département de Chimie, Faculté des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco, and bLaboratoire de Chimie de Coordination, CNRS UPR8241, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: a.auhmani@uca.ac.ma
The title compound, C16H22Br4, was synthesized in two steps from β-himachalene, which was isolated from essential oil of the Atlas cedar (cedrus atlantica). It is built up from three fused rings, a seven-membered heptane ring, a six-membered cyclohexyl ring bearing both a bromine and a bromomethyl substituent, and a three-membered propane ring bearing two Br atoms. In the crystal, molecules are linked by C—H⋯Br hydrogen bonds, forming chains propagating along [001]. The was deduced from the chemical pathway and confirmed by [Flack parameter = 0.012 (10)].
Keywords: crystal structure; absolute configuration; sesquiterpene; asymmetric synthesis; natural products.
CCDC reference: 1480892
Structure description
Sesquiterpenes have been reported to possess several pharmacological activities such as cytotoxic (David et al., 1999; Kim et al., 2010), antimicrobial (Sotanaphun et al., 1999; Ait-Ouazzou et al., 2012) and anti-inflammatory (Wong et al., 1999; Lyss et al., 1998). The essential cedar oil is mainly composed of sesquiterpene hydrocarbons with notable olfactory and important biological properties. In fact, many different methods for functionalization of this essential oil have been developed in order to prepare new products having olfactory properties suitable for the perfume, cosmetics or insecticides industries (Auhmani et al., 2002; Eljamili et al., 2002). In order to prepare new products with added value using sesquitertpene hydrocarbons isolated from essential cedar oil, we synthesized the title compound in two steps from β-himachalene. Its structure has been established by spectroscopic analysis 1H and 13C NMR. The of the molecule in the crystal, (1S,3R,8R,11S), has been determined by [Flack parameter = 0.012 (10)].
The title compound, Fig. 1, contains three fused rings. These include a seven-membered heptane ring, which has a chair conformation, a six-membered cyclohexyl ring bearing a bromine and a bromomethyl substituents, which has a half-chair conformation, and a three-membered propane ring bearing two bromine atoms. The conformation and the geometrical parameters are very similar to those of the closely related compound, (1S,3R,8R,11S)-11-bromo-10-bromomethyl-2,2-dichloro-3,7,7-trimethyltricyclo [6.4.0.01,3]dodec-9-ene (Benharref et al., 2013), which has the same (1S,3R,8R,11S) absolute configuration.
In the crystal, molecules are linked via C—H⋯Br hydrogen bonds, forming chains propagating along the c axis direction (Table 1 and Fig. 2)
Synthesis and crystallization
In a 100 ml flask, Br2 (0.216 g 1.333 mmol) was added drop wise to a solution of (1S,3R,8R)-2,2-dibromo-3,7,7,10-tetramethyltricyclo[6,4,0,01,3]dodec-9-ene (0.25 g, 0.665 mmol) in 8 ml of CCl4 cooled to 273 K in an ice bath. The reaction mixture was left under magnetic stirring at 273 K for 15 min (the progress of the reaction was monitored by TLC). After completion of the reaction and evaporation of the solvent, the crude product obtained was purified by silica gel flash using hexane as to give the title compound (yield 30%). Colourless block-like crystals were grown by slow evaporation of a petroleum ether solution of the title compound.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1480892
10.1107/S2414314616008208/su4046sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616008208/su4046Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616008208/su4046Isup3.cml
In a 100 ml flask, Br2 (0.216 g 1.333 mmol) was added drop wise to a solution of (1S,3R,8R)-2,2-dibromo-3,7,7,10-tetramethyltricyclo[6,4,0,01,3]dodec-9-ene (0.25 g, 0.665 mmol) in 8 ml of CCl4 cooled to 273 K in an ice bath. The reaction mixture was left under magnetic stirring at 273 K for 15 min (the progress of the reaction was monitored by TLC). After completion of the reaction and evaporation of the solvent, the crude product obtained was purified by silica gel flash
using hexane as to give the title compound (yield 30%). Colourless block-like crystals were grown by slow evaporation of a petroleum ether solution of the title compound.Sesquiterpenes have been reported to possess several pharmacological activities such as cytotoxic (David et al., 1999; Kim et al., 2010), antimicrobial (Sotanaphun et al., 1999; Ait-Ouazzou et al., 2012) and anti-inflammatory (Wong et al., 1999; Lyss et al., 1998). The essential cedar oil is mainly composed of sesquiterpene hydrocarbons with notable olfactory and important biological properties. In fact, many different methods for functionalization of this essential oil have been developed in order to prepare new products having olfactory properties suitable for the perfume, cosmetics or insecticides industries (Auhmani et al., 2002; Eljamili et al., 2002). In order to prepare new products with added value using sesquitertpene hydrocarbons isolated from essential cedar oil, we synthesized the title compound in two steps from β-himachalene. Its structure has been established by spectroscopic analysis 1H and 13C NMR. The of the molecule in the crystal, (1S,3R,8R,11S), has been determined by [Flack parameter = 0.012 (10)].
The title compound, Fig. 1, contains three fused rings. These include a seven-membered heptane ring, which has a chair conformation, a six-membered cyclohexyl ring bearing a bromine and a bromomethyl substituents, which has a half-chair conformation, and a three-membered propane ring bearing two bromine atoms. The conformation and the geometrical parameters are very similar to those of the closely related compound, (1S,3R,8R,11S)-11-bromo-10-bromomethyl-2,2-dichloro-3,7,7-trimethyltricyclo [6.4.0.01,3]dodec-9-ene (Benharref et al., 2013), which has the same (1S,3R,8R,11S) absolute configuration.
In the crystal, molecules are linked via C—H···Br hydrogen bonds, forming chains propagating along the c axis direction (Table 1 and Fig. 2)
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015b).Fig. 1. A view of the molecular structure of the title compound, showing the atom labelling. Displacement ellipsoid are drawn at the 50% probability level. | |
Fig. 2. A partial view along the a axis of the crystal packing of the title compound. C—H···Br hydrogen bonds (see Table 1) are shown as dashed lines. |
C16H22Br4 | Dx = 2.004 Mg m−3 |
Mr = 533.97 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 3346 reflections |
a = 8.2323 (3) Å | θ = 4.0–27.6° |
b = 12.9269 (6) Å | µ = 9.09 mm−1 |
c = 16.6298 (8) Å | T = 173 K |
V = 1769.71 (13) Å3 | Block, colourless |
Z = 4 | 0.43 × 0.40 × 0.30 mm |
F(000) = 1032 |
Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 3613 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3134 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 16.1978 pixels mm-1 | θmax = 26.4°, θmin = 3.2° |
ω scans | h = −10→9 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −16→15 |
Tmin = 0.419, Tmax = 1.000 | l = −20→20 |
11268 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.0234P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3613 reflections | Δρmax = 0.64 e Å−3 |
184 parameters | Δρmin = −0.51 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 1187 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.012 (10) |
C16H22Br4 | V = 1769.71 (13) Å3 |
Mr = 533.97 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.2323 (3) Å | µ = 9.09 mm−1 |
b = 12.9269 (6) Å | T = 173 K |
c = 16.6298 (8) Å | 0.43 × 0.40 × 0.30 mm |
Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 3613 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 3134 reflections with I > 2σ(I) |
Tmin = 0.419, Tmax = 1.000 | Rint = 0.040 |
11268 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.059 | Δρmax = 0.64 e Å−3 |
S = 1.03 | Δρmin = −0.51 e Å−3 |
3613 reflections | Absolute structure: Flack x determined using 1187 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
184 parameters | Absolute structure parameter: 0.012 (10) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.05260 (8) | 0.56106 (5) | 0.67535 (4) | 0.03128 (18) | |
Br2 | 0.13902 (7) | 0.76812 (5) | 0.76212 (4) | 0.02943 (18) | |
Br3 | 0.60458 (8) | 0.43670 (5) | 0.58816 (4) | 0.02900 (17) | |
Br4 | 0.55545 (9) | 0.74212 (6) | 0.50995 (4) | 0.0406 (2) | |
C1 | 0.3528 (6) | 0.5794 (4) | 0.7786 (3) | 0.0139 (12) | |
C2 | 0.1822 (6) | 0.6206 (4) | 0.7604 (4) | 0.0195 (14) | |
C3 | 0.2090 (7) | 0.5603 (4) | 0.8355 (4) | 0.0174 (13) | |
C4 | 0.2083 (8) | 0.6157 (5) | 0.9159 (4) | 0.0241 (15) | |
H4A | 0.1019 | 0.6042 | 0.9422 | 0.029* | |
H4B | 0.2200 | 0.6909 | 0.9064 | 0.029* | |
C5 | 0.3426 (7) | 0.5802 (4) | 0.9728 (4) | 0.0237 (15) | |
H5A | 0.3073 | 0.5919 | 1.0290 | 0.028* | |
H5B | 0.3601 | 0.5050 | 0.9656 | 0.028* | |
C6 | 0.5019 (7) | 0.6364 (5) | 0.9588 (4) | 0.0274 (16) | |
H6A | 0.5769 | 0.6171 | 1.0029 | 0.033* | |
H6B | 0.4808 | 0.7115 | 0.9638 | 0.033* | |
C7 | 0.5918 (7) | 0.6184 (4) | 0.8781 (4) | 0.0177 (13) | |
C8 | 0.4870 (7) | 0.6539 (4) | 0.8038 (4) | 0.0142 (13) | |
H8 | 0.4307 | 0.7187 | 0.8212 | 0.017* | |
C9 | 0.5864 (6) | 0.6831 (4) | 0.7325 (4) | 0.0160 (13) | |
H9 | 0.6568 | 0.7408 | 0.7387 | 0.019* | |
C10 | 0.5871 (7) | 0.6373 (4) | 0.6616 (3) | 0.0169 (13) | |
C11 | 0.4812 (7) | 0.5458 (4) | 0.6459 (4) | 0.0155 (13) | |
H11 | 0.3883 | 0.5681 | 0.6113 | 0.019* | |
C12 | 0.4136 (7) | 0.4963 (4) | 0.7215 (3) | 0.0161 (13) | |
H12A | 0.4994 | 0.4550 | 0.7481 | 0.019* | |
H12B | 0.3232 | 0.4492 | 0.7072 | 0.019* | |
C13 | 0.1367 (7) | 0.4518 (4) | 0.8427 (4) | 0.0279 (16) | |
H13A | 0.0227 | 0.4568 | 0.8591 | 0.042* | |
H13B | 0.1975 | 0.4122 | 0.8830 | 0.042* | |
H13C | 0.1437 | 0.4166 | 0.7906 | 0.042* | |
C14 | 0.6506 (8) | 0.5080 (5) | 0.8732 (4) | 0.0337 (18) | |
H14A | 0.7130 | 0.4912 | 0.9216 | 0.051* | |
H14B | 0.7199 | 0.4998 | 0.8257 | 0.051* | |
H14C | 0.5571 | 0.4614 | 0.8690 | 0.051* | |
C15 | 0.7424 (10) | 0.6898 (5) | 0.8830 (5) | 0.0389 (19) | |
H15A | 0.8011 | 0.6762 | 0.9332 | 0.058* | |
H15B | 0.7074 | 0.7622 | 0.8818 | 0.058* | |
H15C | 0.8140 | 0.6761 | 0.8372 | 0.058* | |
C16 | 0.6895 (8) | 0.6788 (5) | 0.5946 (4) | 0.0235 (15) | |
H16A | 0.7546 | 0.6219 | 0.5712 | 0.028* | |
H16B | 0.7657 | 0.7311 | 0.6163 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0204 (3) | 0.0462 (4) | 0.0273 (4) | −0.0028 (3) | −0.0094 (3) | −0.0014 (4) |
Br2 | 0.0272 (3) | 0.0255 (3) | 0.0356 (4) | 0.0109 (3) | −0.0029 (3) | 0.0066 (3) |
Br3 | 0.0374 (4) | 0.0256 (3) | 0.0240 (4) | 0.0037 (3) | 0.0084 (3) | −0.0079 (3) |
Br4 | 0.0426 (4) | 0.0494 (4) | 0.0297 (4) | 0.0010 (4) | −0.0092 (4) | 0.0182 (4) |
C1 | 0.011 (3) | 0.019 (3) | 0.012 (3) | 0.000 (2) | 0.001 (2) | 0.000 (3) |
C2 | 0.015 (3) | 0.019 (3) | 0.024 (4) | 0.004 (2) | −0.006 (3) | −0.003 (3) |
C3 | 0.013 (3) | 0.023 (3) | 0.016 (3) | 0.000 (3) | 0.003 (3) | 0.000 (3) |
C4 | 0.026 (3) | 0.026 (3) | 0.020 (4) | 0.006 (3) | 0.005 (3) | 0.004 (3) |
C5 | 0.030 (4) | 0.030 (4) | 0.012 (3) | 0.005 (3) | 0.002 (3) | 0.003 (3) |
C6 | 0.028 (4) | 0.037 (4) | 0.017 (4) | 0.007 (3) | −0.003 (3) | 0.002 (3) |
C7 | 0.017 (3) | 0.024 (3) | 0.013 (3) | 0.001 (3) | −0.005 (3) | −0.002 (3) |
C8 | 0.015 (3) | 0.015 (3) | 0.013 (3) | 0.002 (2) | −0.003 (3) | −0.002 (3) |
C9 | 0.011 (3) | 0.012 (3) | 0.025 (3) | −0.003 (2) | −0.003 (3) | 0.003 (3) |
C10 | 0.018 (3) | 0.018 (3) | 0.014 (3) | 0.000 (2) | −0.002 (3) | 0.006 (3) |
C11 | 0.013 (3) | 0.017 (3) | 0.016 (3) | 0.004 (2) | 0.000 (2) | −0.005 (3) |
C12 | 0.017 (3) | 0.014 (3) | 0.017 (3) | −0.001 (2) | −0.004 (3) | 0.000 (3) |
C13 | 0.025 (3) | 0.026 (3) | 0.034 (4) | −0.009 (3) | 0.006 (3) | 0.010 (3) |
C14 | 0.037 (4) | 0.038 (4) | 0.026 (4) | 0.019 (3) | −0.011 (4) | −0.003 (3) |
C15 | 0.039 (4) | 0.050 (4) | 0.028 (4) | −0.007 (4) | −0.015 (4) | −0.003 (4) |
C16 | 0.023 (3) | 0.027 (3) | 0.021 (4) | −0.002 (3) | −0.004 (3) | 0.004 (3) |
Br1—C2 | 1.933 (6) | C7—C8 | 1.575 (8) |
Br2—C2 | 1.939 (5) | C8—C9 | 1.490 (8) |
Br3—C11 | 1.985 (5) | C8—H8 | 1.0000 |
Br4—C16 | 1.968 (6) | C9—C10 | 1.320 (8) |
C1—C12 | 1.520 (8) | C9—H9 | 0.9500 |
C1—C8 | 1.524 (7) | C10—C11 | 1.492 (8) |
C1—C2 | 1.532 (7) | C10—C16 | 1.496 (8) |
C1—C3 | 1.535 (7) | C11—C12 | 1.516 (8) |
C2—C3 | 1.488 (8) | C11—H11 | 1.0000 |
C3—C4 | 1.516 (8) | C12—H12A | 0.9900 |
C3—C13 | 1.529 (8) | C12—H12B | 0.9900 |
C4—C5 | 1.526 (8) | C13—H13A | 0.9800 |
C4—H4A | 0.9900 | C13—H13B | 0.9800 |
C4—H4B | 0.9900 | C13—H13C | 0.9800 |
C5—C6 | 1.517 (8) | C14—H14A | 0.9800 |
C5—H5A | 0.9900 | C14—H14B | 0.9800 |
C5—H5B | 0.9900 | C14—H14C | 0.9800 |
C6—C7 | 1.550 (8) | C15—H15A | 0.9800 |
C6—H6A | 0.9900 | C15—H15B | 0.9800 |
C6—H6B | 0.9900 | C15—H15C | 0.9800 |
C7—C14 | 1.508 (8) | C16—H16A | 0.9900 |
C7—C15 | 1.547 (9) | C16—H16B | 0.9900 |
C12—C1—C8 | 112.3 (4) | C9—C8—H8 | 105.8 |
C12—C1—C2 | 115.1 (5) | C1—C8—H8 | 105.8 |
C8—C1—C2 | 119.9 (5) | C7—C8—H8 | 105.8 |
C12—C1—C3 | 121.7 (5) | C10—C9—C8 | 126.8 (5) |
C8—C1—C3 | 119.4 (5) | C10—C9—H9 | 116.6 |
C2—C1—C3 | 58.1 (4) | C8—C9—H9 | 116.6 |
C3—C2—C1 | 61.1 (4) | C9—C10—C11 | 120.6 (5) |
C3—C2—Br1 | 119.2 (4) | C9—C10—C16 | 120.4 (5) |
C1—C2—Br1 | 120.8 (4) | C11—C10—C16 | 118.9 (5) |
C3—C2—Br2 | 122.0 (4) | C10—C11—C12 | 113.8 (5) |
C1—C2—Br2 | 120.5 (4) | C10—C11—Br3 | 110.4 (4) |
Br1—C2—Br2 | 107.5 (3) | C12—C11—Br3 | 106.8 (4) |
C2—C3—C4 | 119.5 (5) | C10—C11—H11 | 108.6 |
C2—C3—C13 | 119.2 (5) | C12—C11—H11 | 108.6 |
C4—C3—C13 | 111.3 (5) | Br3—C11—H11 | 108.6 |
C2—C3—C1 | 60.9 (4) | C11—C12—C1 | 109.9 (4) |
C4—C3—C1 | 118.1 (5) | C11—C12—H12A | 109.7 |
C13—C3—C1 | 119.7 (5) | C1—C12—H12A | 109.7 |
C3—C4—C5 | 113.7 (5) | C11—C12—H12B | 109.7 |
C3—C4—H4A | 108.8 | C1—C12—H12B | 109.7 |
C5—C4—H4A | 108.8 | H12A—C12—H12B | 108.2 |
C3—C4—H4B | 108.8 | C3—C13—H13A | 109.5 |
C5—C4—H4B | 108.8 | C3—C13—H13B | 109.5 |
H4A—C4—H4B | 107.7 | H13A—C13—H13B | 109.5 |
C6—C5—C4 | 112.8 (5) | C3—C13—H13C | 109.5 |
C6—C5—H5A | 109.0 | H13A—C13—H13C | 109.5 |
C4—C5—H5A | 109.0 | H13B—C13—H13C | 109.5 |
C6—C5—H5B | 109.0 | C7—C14—H14A | 109.5 |
C4—C5—H5B | 109.0 | C7—C14—H14B | 109.5 |
H5A—C5—H5B | 107.8 | H14A—C14—H14B | 109.5 |
C5—C6—C7 | 118.3 (5) | C7—C14—H14C | 109.5 |
C5—C6—H6A | 107.7 | H14A—C14—H14C | 109.5 |
C7—C6—H6A | 107.7 | H14B—C14—H14C | 109.5 |
C5—C6—H6B | 107.7 | C7—C15—H15A | 109.5 |
C7—C6—H6B | 107.7 | C7—C15—H15B | 109.5 |
H6A—C6—H6B | 107.1 | H15A—C15—H15B | 109.5 |
C14—C7—C15 | 108.0 (5) | C7—C15—H15C | 109.5 |
C14—C7—C6 | 110.0 (5) | H15A—C15—H15C | 109.5 |
C15—C7—C6 | 104.3 (5) | H15B—C15—H15C | 109.5 |
C14—C7—C8 | 114.1 (5) | C10—C16—Br4 | 111.4 (4) |
C15—C7—C8 | 107.8 (5) | C10—C16—H16A | 109.3 |
C6—C7—C8 | 111.9 (5) | Br4—C16—H16A | 109.3 |
C9—C8—C1 | 109.9 (5) | C10—C16—H16B | 109.3 |
C9—C8—C7 | 113.4 (5) | Br4—C16—H16B | 109.3 |
C1—C8—C7 | 115.4 (5) | H16A—C16—H16B | 108.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···Br3i | 0.99 | 3.01 | 3.911 (6) | 152 |
Symmetry code: (i) −x+1/2, −y+1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···Br3i | 0.99 | 3.01 | 3.911 (6) | 152 |
Symmetry code: (i) −x+1/2, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H22Br4 |
Mr | 533.97 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 173 |
a, b, c (Å) | 8.2323 (3), 12.9269 (6), 16.6298 (8) |
V (Å3) | 1769.71 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.09 |
Crystal size (mm) | 0.43 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Agilent Xcalibur (Eos, Gemini ultra) |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2014) |
Tmin, Tmax | 0.419, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11268, 3613, 3134 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.059, 1.03 |
No. of reflections | 3613 |
No. of parameters | 184 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.64, −0.51 |
Absolute structure | Flack x determined using 1187 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Absolute structure parameter | 0.012 (10) |
Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2013 (Sheldrick, 2015b), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England. Google Scholar
Ait-Ouazzou, A., Lorán, S., Arakrak, A., Laglaoui, A., Rota, C., Herrera, A., Pagán, R. & Conchello, P. (2012). Food. Res. Int. 45, 313–319. CAS Google Scholar
Auhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2002). Synth. Commun. 32, 699–707. Web of Science CrossRef CAS Google Scholar
Benharref, A., El karroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o1283. CSD CrossRef IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
David, J. P., Santos, A. J. de O., Guedes, M. L. da S., David, J. M., Chai, H.-B., Pezzuto, J. M., Angerhoferand, C. K. & Cordell, G. A. (1999). Pharm. Biol. 37, 165–168. CrossRef CAS Google Scholar
Eljamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kim, K. H., Noh, H. J., Choi, S. U., Park, K. M., Seok, S. J. & Lee, K. R. (2010). Bioorg. Med. Chem. Lett. 20, 5385–5388. CrossRef CAS PubMed Google Scholar
Lyss, G., Knorre, A., Schmidt, T. J., Pahl, H. L. & Merfort, I. (1998). J. Biol. Chem. 273, 33508–33516. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sotanaphun, U., Lipipun, V., Suttisri, R. & Bavovada, R. (1999). Planta Med. 65, 257–258. CrossRef PubMed CAS Google Scholar
Wong, H. R. & Menendez, I. Y. (1999). Biochem. Biophys. Res. Commun. 262, 375–380. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.