organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Benzoyl-2-(5-bromo-1H-indol-3-yl)-4-(4-meth­­oxy­phen­yl)-1H-pyrrole-3-carbo­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry, CSIR–Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 April 2016; accepted 29 April 2016; online 6 May 2016)

In the title compound, C27H18BrN3O, the indole and central pyrrole ring systems are inclined to one another by 13.15 (15)°. The carbo­nitrile group is almost coplanar with its attached pyrrole ring, the C≡N bond making a dihedral angle of 1.9 (2)° with the ring plane. The 4-meth­oxy­benzene ring and the benzoyl ring are inclined to the central pyrrole ring by 55.1 (2) and 51.5 (2)°, respectively. The dihedral angle between these two benzene rings is 37.68 (17)°. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(16) ring motif. The dimers are linked by offset ππ inter­actions [inter­centroid distance = 3.614 (2) Å], which leads to the formation of chains propagating in the [010] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indole-containing compounds are best known for their medicinal properties in the pharmaceutical industry. Today, analogues based on indole are significant players in a diverse array of markets such as dyes, plastics, agriculture, vitamin supplements, over-the-counter drugs, flavour enhancers and perfumery (Barden, 2011[Barden, T. C. (2011). Top. Heterocycl. Chem. 26, 31-46.]). Indole derivatives exhibit anti­bacterial, anti­fungal (Singh et al. 2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.]), anti­tumor (Andreani et al., 2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]), anti­hepatitis B virus (Chai et al., 2006[Chai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]) and anti-inflammatory (Rodriguez et al., 1985[Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3823.]) activities. They are also used as bioactive drugs (Stevenson et al., 2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2699.]) and exhibit high aldose reductase inhibitory (Rajeswaran et al., 1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]) and anti­microbial activities (Amal Raj et al., 2003[Amal Raj, A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]). Against this background, we synthesized the title compound and report herein on its crystal structure.

The mol­ecular structure of the title indole derivative is illustrated in Fig. 1[link]. The central pyrrole ring is substituted with an indole ring, a 4-meth­oxy­benzene ring and a benzoyl group. The indole and central pyrrole rings are inclined to one another by 13.1 (2)°. The carbo­nitrile group is almost coplanar with its attached pyrrole ring, as indicated by the dihedral angle of 1.9 (2)° between the C11≡N3 bond and the ring plane. The central pyrrole ring makes dihedral angles of 55.1 (2) and 51.5 (2)° with the 4-meth­oxy­benzene ring and the benzoyl ring, respectively. The dihedral angle between these two benzene rings is 37.68 (17)°. The mol­ecular dimensions in the title compound are in agreement with those reported for closely related compounds (Vimala et al., 2015[Vimala, G., Raja, J. K., Naaz, Y. A., Preumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o335-o336.]; Inglebert et al., 2013[Inglebert, S. A., Arun, Y., Sethusankar, K. & Perumal, P. T. (2013). Acta Cryst. E69, o1585.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, mol­ecules are linked by pairs of Ni—H⋯Nc (i = indole and c = carbo­nitrile) classical hydrogen bonds, forming inversion dimers with [R_{2}^{2}](16) loops (Table 1[link] and Fig. 2[link]). The mol­ecules are also linked via slipped parallel ππ inter­actions, forming chains propagating along the b-axis direction [Cg2⋯Cg3i = 3.614 (2) Å; inter-planar distance = 3.535 (1) Å, slippage = 0.525 Å; Cg2 and Cg3 are the centroids of the N2/C9/C10/C12/C19 and C2–C7 rings; symmetry code: (i) −x + 1, −y, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.86 2.21 2.916 (4) 140
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the normal to (011). Hydrogen bonds are shown as dashed lines (see Table 1[link]) and C-bound H atoms have been omitted for clarity.

Synthesis and crystallization

To a stirred mixture of 4-meth­oxy­benzaldehyde (1.0 mmol), 3-(5-bromo-1H-indol-3-yl)-3-oxo­propane­nitrile (1.0 mmol) and phenacyl­azide (1.0 mmol) in water (3 ml), piperidine (0.25 mmol) was added at 353 K. The turbid solution slowly turned into a clear solution, followed by the formation of a solid after 1.5 h. After completion of the reaction, as indicated by TLC, the solid was filtered and washed with a petroleum ether-EtOAc mixture (1:1 ratio, v/v, 5 ml) to give title compound. It was recrystallized from ethanol by using slow evaporation, giving yellow block-like crystals (yield 85%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C27H18BrN3O2
Mr 496.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.6503 (6), 9.6974 (3), 15.2946 (7)
β (°) 93.284 (2)
V3) 2169.33 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.93
Crystal size (mm) 0.24 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.636, 0.680
No. of measured, independent and observed [I > 2σ(I)] reflections 26857, 3823, 2582
Rint 0.047
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.139, 0.78
No. of reflections 3823
No. of parameters 298
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.55
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

To a stirred mixture of 4-methoxybenzaldehyde (1.0 mmol), 3-(5-bromo-1H-indol-3-yl)-3-oxopropanenitrile (1.0 mmol) and phenacylazide (1.0 mmol) in water (3 ml), piperidine (0.25 mmol) was added at 353 K. The turbid solution slowly turned into a clear solution, followed by the formation of a solid after 1.5 h. After completion of the reaction, as indicated by TLC, the solid was filtered and washed with a petroleum ether-EtOAc mixture (1:1 ratio, v/v, 5 ml) to give title compound. It was recrystallized from ethanol by using slow evaporation, giving yellow block-like crystals (yield 85%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Indole-containing compounds are best known for their medicinal properties in the pharmaceutical industry. Today, analogues based on indole are significant players in a diverse array of markets such as dyes, plastics, agriculture, vitamin supplements, over-the-counter drugs, flavour enhancers and perfumery (Barden, 2011). Indole derivatives exhibit antibacterial, antifungal (Singh et al. 2000), antitumor (Andreani et al., 2001), antihepatitis B virus (Chai et al., 2006) and anti-inflammatory (Rodriguez et al., 1985) activities. They are also used as bioactive drugs (Stevenson et al., 2000) and exhibit high aldose reductase inhibitory (Rajeswaran et al., 1999) and antimicrobial activities (Amal Raj et al., 2003). Against this background, we synthesized the title compound and report herein on its crystal structure.

The molecular structure of the title indole derivative is illustrated in Fig. 1. The central pyrrole ring is substituted with an indole ring, a 4-methoxybenzene ring and a benzoyl group. The indole and central pyrrole rings are inclined to one another by 13.1 (2)°. The carbonitrile group is almost coplanar with its attached pyrrole ring, as indicated by the dihedral angle of 1.9 (2)° between the C11N3 bond and the ring plane. The central pyrrole ring makes dihedral angles of 55.1 (2) and 51.5 (2)° with the 4-methoxybenzene ring and the benzoyl ring, respectively. The dihedral angle between these two benzene rings is 37.68 (17)°. The molecular dimensions in the title compound are in agreement with those reported for closely related compounds (Vimala et al., 2015; Inglebert et al., 2013).

In the crystal, molecules are linked by pairs of Ni—H···Nc (i = indole and c = carbonitrile) classical hydrogen bonds, forming inversion dimers with R22(16) loops (Table 1 and Fig. 2). The molecules are also linked via slipped parallel ππ interactions, forming chains propagating along the b-axis direction [Cg2···Cg3i = 3.614 (2) Å; inter-planar distance = 3.535 (1) Å, slippage = 0.525 Å; Cg2 and Cg3 are the centroids of the N2/C9/C10/C12/C19 and C2–C7 rings; symmetry code: (i) -x + 1, -y, -z + 1].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the normal to (011). Hydrogen bonds are shown as dashed lines (see Table 1) and C-bound H atoms have been omitted for clarity.
5-Benzoyl-2-(5-bromo-1H-indol-3-yl)-4-(4-methoxyphenyl)-1H-pyrrole-3-carbonitrile top
Crystal data top
C27H18BrN3O2F(000) = 1008
Mr = 496.35Dx = 1.520 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2582 reflections
a = 14.6503 (6) Åθ = 1.9–25.0°
b = 9.6974 (3) ŵ = 1.93 mm1
c = 15.2946 (7) ÅT = 293 K
β = 93.284 (2)°Block, yellow
V = 2169.33 (15) Å30.24 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3823 independent reflections
Radiation source: fine-focus sealed tube2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω and φ scanθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.636, Tmax = 0.680k = 1111
26857 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 0.78 w = 1/[σ2(Fo2) + (0.1132P)2 + 1.1029P]
where P = (Fo2 + 2Fc2)/3
3823 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C27H18BrN3O2V = 2169.33 (15) Å3
Mr = 496.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.6503 (6) ŵ = 1.93 mm1
b = 9.6974 (3) ÅT = 293 K
c = 15.2946 (7) Å0.24 × 0.22 × 0.20 mm
β = 93.284 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3823 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2582 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.680Rint = 0.047
26857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 0.78Δρmax = 0.27 e Å3
3823 reflectionsΔρmin = 0.55 e Å3
298 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.30324 (3)0.25826 (4)0.72049 (3)0.0638 (2)
O21.10059 (16)0.3663 (2)0.55850 (18)0.0562 (7)
N10.3744 (2)0.2552 (2)0.5243 (2)0.0454 (7)
H10.33910.31560.49890.055*
N20.63376 (17)0.0077 (2)0.62556 (17)0.0380 (6)
H20.60210.06430.63640.046*
O10.73519 (18)0.2198 (2)0.66235 (19)0.0591 (7)
C60.4113 (2)0.0522 (3)0.6453 (2)0.0382 (7)
H60.46090.10280.66830.046*
C130.8450 (2)0.2048 (3)0.6045 (2)0.0341 (7)
C70.4242 (2)0.0693 (3)0.5988 (2)0.0345 (7)
C20.3459 (2)0.1408 (3)0.5665 (2)0.0393 (8)
C170.9914 (2)0.1932 (3)0.5422 (2)0.0442 (8)
H171.03200.14570.50870.053*
C90.5976 (2)0.1268 (3)0.5936 (2)0.0354 (7)
C180.9077 (2)0.1372 (3)0.5559 (2)0.0409 (8)
H180.89270.05150.53180.049*
C210.8702 (2)0.0997 (3)0.7049 (2)0.0408 (8)
N30.6659 (2)0.4599 (3)0.5252 (3)0.0697 (10)
C40.2471 (2)0.0223 (4)0.6240 (2)0.0451 (8)
H40.18860.05470.63310.054*
C100.6715 (2)0.2150 (3)0.5857 (2)0.0360 (7)
C200.7756 (2)0.1084 (3)0.6680 (2)0.0406 (8)
C120.7530 (2)0.1458 (3)0.6133 (2)0.0353 (7)
C150.9552 (2)0.3886 (3)0.6267 (2)0.0444 (8)
H150.97100.47350.65150.053*
C140.8703 (2)0.3318 (3)0.6391 (2)0.0437 (8)
H140.82920.38030.67160.052*
C190.7273 (2)0.0155 (3)0.6386 (2)0.0372 (7)
C50.3234 (2)0.0953 (3)0.6562 (2)0.0422 (8)
C161.0161 (2)0.3191 (3)0.5777 (2)0.0406 (8)
C30.2583 (2)0.0967 (4)0.5790 (2)0.0464 (9)
H30.20800.14720.55720.056*
C220.9322 (3)0.2039 (4)0.6870 (2)0.0512 (9)
H220.91320.27790.65180.061*
C260.8999 (2)0.0074 (3)0.7592 (2)0.0464 (8)
H260.85970.07760.77240.056*
C10.4662 (3)0.2596 (3)0.5283 (2)0.0441 (9)
H1A0.50080.32840.50380.053*
C80.5016 (2)0.1482 (3)0.5737 (2)0.0368 (7)
C250.9885 (3)0.0102 (4)0.7935 (3)0.0573 (10)
H251.00760.08160.83090.069*
C241.0489 (3)0.0906 (5)0.7736 (3)0.0643 (11)
H241.10930.08610.79580.077*
C110.6677 (2)0.3509 (3)0.5522 (2)0.0456 (8)
C271.1307 (3)0.4935 (4)0.5947 (3)0.0597 (10)
H27A1.19070.51380.57600.090*
H27B1.13260.48790.65740.090*
H27C1.08920.56520.57520.090*
C231.0206 (3)0.1980 (4)0.7209 (3)0.0630 (11)
H231.06160.26730.70800.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0542 (3)0.0555 (3)0.0818 (4)0.01062 (17)0.0039 (2)0.02027 (19)
O20.0395 (14)0.0513 (14)0.0787 (18)0.0067 (11)0.0114 (13)0.0024 (13)
N10.0445 (18)0.0371 (15)0.0539 (18)0.0096 (12)0.0047 (14)0.0085 (12)
N20.0366 (15)0.0292 (13)0.0484 (17)0.0014 (11)0.0045 (12)0.0051 (11)
O10.0560 (17)0.0371 (13)0.083 (2)0.0042 (12)0.0047 (14)0.0106 (12)
C60.0348 (18)0.0372 (17)0.042 (2)0.0037 (14)0.0001 (14)0.0013 (14)
C130.0371 (18)0.0303 (15)0.0353 (18)0.0019 (13)0.0035 (14)0.0028 (13)
C70.0352 (17)0.0335 (16)0.0349 (18)0.0049 (13)0.0030 (13)0.0003 (13)
C20.042 (2)0.0361 (17)0.0397 (19)0.0036 (14)0.0005 (15)0.0030 (14)
C170.0365 (19)0.0405 (18)0.057 (2)0.0061 (15)0.0120 (16)0.0051 (16)
C90.0394 (18)0.0328 (16)0.0346 (18)0.0045 (14)0.0074 (14)0.0004 (13)
C180.042 (2)0.0319 (16)0.049 (2)0.0008 (14)0.0069 (16)0.0046 (14)
C210.044 (2)0.0342 (17)0.044 (2)0.0043 (14)0.0062 (15)0.0113 (15)
N30.059 (2)0.0448 (19)0.107 (3)0.0062 (15)0.020 (2)0.0261 (18)
C40.0330 (19)0.054 (2)0.048 (2)0.0005 (15)0.0032 (15)0.0014 (16)
C100.0372 (18)0.0324 (15)0.0390 (19)0.0033 (13)0.0076 (14)0.0031 (13)
C200.044 (2)0.0326 (17)0.045 (2)0.0013 (15)0.0078 (16)0.0032 (14)
C120.0395 (18)0.0317 (15)0.0352 (18)0.0004 (13)0.0068 (14)0.0010 (13)
C150.048 (2)0.0341 (17)0.052 (2)0.0073 (15)0.0062 (16)0.0064 (15)
C140.043 (2)0.0388 (18)0.051 (2)0.0026 (15)0.0121 (16)0.0063 (15)
C190.0353 (18)0.0347 (16)0.042 (2)0.0007 (13)0.0036 (14)0.0016 (13)
C50.044 (2)0.0406 (18)0.042 (2)0.0012 (15)0.0031 (15)0.0001 (14)
C160.0329 (18)0.0396 (18)0.049 (2)0.0024 (14)0.0003 (15)0.0053 (15)
C30.0358 (19)0.052 (2)0.051 (2)0.0076 (16)0.0049 (16)0.0040 (17)
C220.056 (2)0.0422 (19)0.056 (2)0.0091 (17)0.0079 (19)0.0051 (16)
C260.050 (2)0.0430 (18)0.047 (2)0.0057 (16)0.0055 (17)0.0042 (15)
C10.046 (2)0.0381 (19)0.048 (2)0.0013 (15)0.0048 (17)0.0071 (15)
C80.0403 (19)0.0304 (15)0.0398 (19)0.0042 (13)0.0041 (14)0.0013 (13)
C250.056 (3)0.066 (2)0.049 (2)0.006 (2)0.0010 (19)0.0026 (19)
C240.047 (2)0.087 (3)0.059 (3)0.004 (2)0.0001 (19)0.021 (2)
C110.040 (2)0.043 (2)0.056 (2)0.0024 (15)0.0120 (16)0.0042 (16)
C270.049 (2)0.055 (2)0.076 (3)0.0152 (18)0.004 (2)0.0027 (19)
C230.047 (2)0.065 (2)0.078 (3)0.023 (2)0.008 (2)0.013 (2)
Geometric parameters (Å, º) top
Br—C51.893 (3)N3—C111.134 (4)
O2—C161.368 (4)C4—C31.358 (5)
O2—C271.411 (4)C4—C51.390 (5)
N1—C11.343 (5)C4—H40.9300
N1—C21.361 (4)C10—C121.412 (4)
N1—H10.8600C10—C111.415 (4)
N2—C91.350 (4)C20—C191.452 (4)
N2—C191.376 (4)C12—C191.380 (4)
N2—H20.8600C15—C161.374 (5)
O1—C201.233 (4)C15—C141.383 (4)
C6—C51.373 (4)C15—H150.9300
C6—C71.394 (4)C14—H140.9300
C6—H60.9300C3—H30.9300
C13—C181.380 (4)C22—C231.369 (5)
C13—C141.383 (4)C22—H220.9300
C13—C121.477 (4)C26—C251.373 (5)
C7—C21.406 (4)C26—H260.9300
C7—C81.438 (4)C1—C81.369 (4)
C2—C31.376 (5)C1—H1A0.9300
C17—C181.368 (4)C25—C241.364 (6)
C17—C161.376 (5)C25—H250.9300
C17—H170.9300C24—C231.367 (6)
C9—C101.391 (4)C24—H240.9300
C9—C81.437 (4)C27—H27A0.9600
C18—H180.9300C27—H27B0.9600
C21—C261.384 (5)C27—H27C0.9600
C21—C221.395 (5)C23—H230.9300
C21—C201.469 (5)
C16—O2—C27118.3 (3)C14—C15—H15120.1
C1—N1—C2109.8 (3)C15—C14—C13121.7 (3)
C1—N1—H1125.1C15—C14—H14119.1
C2—N1—H1125.1C13—C14—H14119.1
C9—N2—C19111.9 (3)N2—C19—C12107.1 (3)
C9—N2—H2124.1N2—C19—C20117.6 (3)
C19—N2—H2124.1C12—C19—C20135.1 (3)
C5—C6—C7118.4 (3)C6—C5—C4122.9 (3)
C5—C6—H6120.8C6—C5—Br119.5 (2)
C7—C6—H6120.8C4—C5—Br117.6 (3)
C18—C13—C14117.2 (3)O2—C16—C15125.2 (3)
C18—C13—C12120.2 (3)O2—C16—C17115.7 (3)
C14—C13—C12122.4 (3)C15—C16—C17119.1 (3)
C6—C7—C2117.7 (3)C4—C3—C2118.4 (3)
C6—C7—C8135.9 (3)C4—C3—H3120.8
C2—C7—C8106.4 (3)C2—C3—H3120.8
N1—C2—C3129.3 (3)C23—C22—C21120.5 (4)
N1—C2—C7107.6 (3)C23—C22—H22119.7
C3—C2—C7123.1 (3)C21—C22—H22119.7
C18—C17—C16120.7 (3)C25—C26—C21120.1 (3)
C18—C17—H17119.7C25—C26—H26119.9
C16—C17—H17119.7C21—C26—H26119.9
N2—C9—C10105.4 (3)N1—C1—C8110.3 (3)
N2—C9—C8124.0 (3)N1—C1—H1A124.8
C10—C9—C8130.6 (3)C8—C1—H1A124.8
C17—C18—C13121.6 (3)C1—C8—C9124.0 (3)
C17—C18—H18119.2C1—C8—C7105.9 (3)
C13—C18—H18119.2C9—C8—C7130.0 (3)
C26—C21—C22118.4 (3)C24—C25—C26120.7 (4)
C26—C21—C20122.0 (3)C24—C25—H25119.6
C22—C21—C20119.6 (3)C26—C25—H25119.6
C3—C4—C5119.6 (3)C25—C24—C23120.0 (4)
C3—C4—H4120.2C25—C24—H24120.0
C5—C4—H4120.2C23—C24—H24120.0
C9—C10—C12109.3 (3)N3—C11—C10179.0 (4)
C9—C10—C11126.1 (3)O2—C27—H27A109.5
C12—C10—C11124.5 (3)O2—C27—H27B109.5
O1—C20—C19118.7 (3)H27A—C27—H27B109.5
O1—C20—C21121.1 (3)O2—C27—H27C109.5
C19—C20—C21120.2 (3)H27A—C27—H27C109.5
C19—C12—C10106.2 (3)H27B—C27—H27C109.5
C19—C12—C13130.1 (3)C24—C23—C22120.2 (4)
C10—C12—C13123.3 (3)C24—C23—H23119.9
C16—C15—C14119.7 (3)C22—C23—H23119.9
C16—C15—H15120.1
C5—C6—C7—C20.5 (4)O1—C20—C19—N215.1 (5)
C5—C6—C7—C8179.6 (3)C21—C20—C19—N2164.1 (3)
C1—N1—C2—C3179.3 (3)O1—C20—C19—C12159.6 (4)
C1—N1—C2—C70.0 (4)C21—C20—C19—C1221.3 (6)
C6—C7—C2—N1179.6 (3)C7—C6—C5—C40.8 (5)
C8—C7—C2—N10.3 (3)C7—C6—C5—Br179.0 (2)
C6—C7—C2—C30.2 (5)C3—C4—C5—C60.4 (5)
C8—C7—C2—C3179.1 (3)C3—C4—C5—Br178.7 (3)
C19—N2—C9—C100.1 (4)C27—O2—C16—C153.1 (5)
C19—N2—C9—C8180.0 (3)C27—O2—C16—C17178.5 (3)
C16—C17—C18—C130.7 (5)C14—C15—C16—O2177.8 (3)
C14—C13—C18—C170.1 (5)C14—C15—C16—C170.4 (5)
C12—C13—C18—C17176.0 (3)C18—C17—C16—O2178.8 (3)
N2—C9—C10—C120.3 (3)C18—C17—C16—C150.4 (5)
C8—C9—C10—C12179.6 (3)C5—C4—C3—C20.3 (5)
N2—C9—C10—C11177.9 (3)N1—C2—C3—C4179.9 (3)
C8—C9—C10—C112.0 (6)C7—C2—C3—C40.7 (5)
C26—C21—C20—O1140.4 (3)C26—C21—C22—C231.6 (5)
C22—C21—C20—O137.9 (5)C20—C21—C22—C23179.9 (3)
C26—C21—C20—C1938.7 (5)C22—C21—C26—C250.5 (5)
C22—C21—C20—C19143.0 (3)C20—C21—C26—C25178.8 (3)
C9—C10—C12—C190.6 (4)C2—N1—C1—C80.3 (4)
C11—C10—C12—C19178.2 (3)N1—C1—C8—C9176.5 (3)
C9—C10—C12—C13173.3 (3)N1—C1—C8—C70.4 (4)
C11—C10—C12—C134.3 (5)N2—C9—C8—C1168.9 (3)
C18—C13—C12—C1951.9 (5)C10—C9—C8—C111.0 (5)
C14—C13—C12—C19132.2 (4)N2—C9—C8—C715.1 (5)
C18—C13—C12—C10120.4 (3)C10—C9—C8—C7165.0 (3)
C14—C13—C12—C1055.5 (4)C6—C7—C8—C1179.6 (4)
C16—C15—C14—C131.0 (5)C2—C7—C8—C10.4 (3)
C18—C13—C14—C150.8 (5)C6—C7—C8—C93.0 (6)
C12—C13—C14—C15176.8 (3)C2—C7—C8—C9176.2 (3)
C9—N2—C19—C120.4 (4)C21—C26—C25—C241.2 (6)
C9—N2—C19—C20176.5 (3)C26—C25—C24—C232.0 (6)
C10—C12—C19—N20.6 (4)C9—C10—C11—N3169 (100)
C13—C12—C19—N2172.7 (3)C12—C10—C11—N38 (24)
C10—C12—C19—C20175.6 (4)C25—C24—C23—C220.9 (6)
C13—C12—C19—C202.3 (6)C21—C22—C23—C240.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.862.212.916 (4)140
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.862.212.916 (4)140
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC27H18BrN3O2
Mr496.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.6503 (6), 9.6974 (3), 15.2946 (7)
β (°) 93.284 (2)
V3)2169.33 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.636, 0.680
No. of measured, independent and
observed [I > 2σ(I)] reflections
26857, 3823, 2582
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.139, 0.78
No. of reflections3823
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.55

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAmal Raj, A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBarden, T. C. (2011). Top. Heterocycl. Chem. 26, 31–46.  CrossRef Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationInglebert, S. A., Arun, Y., Sethusankar, K. & Perumal, P. T. (2013). Acta Cryst. E69, o1585.  CSD CrossRef IUCr Journals Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationRodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2699.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVimala, G., Raja, J. K., Naaz, Y. A., Preumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o335–o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds