organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3′,6′-Bis(di­ethyl­amino)-2-(prop-2-yn­yl)spiro[isoindoline-1,9′-xanthen]-3-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 April 2016; accepted 9 May 2016; online 20 May 2016)

In the title compound, C31H33N3O2, the spiro­pyrrolidine ring has a twisted conformation on the Cspiro—N bond, whereas the tetra­hydro­pyran ring adopts a sofa confirmation. The spiro joined fragments are almost orthogonal, with a dihedral angle of 89.1 (2)° between the mean planes of the pyrrolidine and tetra­hydro­pyran rings. In the di­ethyl­amine group, the ethanamine portion is disordered over the two positions, with a refined occupancy ratio of 0.73 (1):0.27 (1). In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif. The dimers are linked by further C—H⋯O hydrogen bonds, forming slabs parallel to (100).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Rhodamine-based dyes, known for their excellent spectroscopic properties having a large molar extinction coefficient and high fluorescence quantum yield (Wu et al., 2007[Wu, D., Huang, W., Duan, C. Y., Lin, Z. H. & Meng, Q. J. (2007). Inorg. Chem. 46, 1538-1540.]), have found applications in the study of complex biological systems and environmental analysis as mol­ecular probes. Rhodamine B derivatives are known to have excellent photophysical properties, such as long absorption and emission wavelengths elongated to the visible region. They have therefore been extensively used as fluorescent chemosensors for heavy and transition metal ions, such as copper(II) (Zhang et al., 2007[Zhang, X., Shiraishi, Y. & Hirai, T. (2007). Org. Lett. 9, 5039-5042.]) and mercury(II) (Soh et al., 2007[Soh, J. H., Swamy, K. M. K., Kim, S. K., Kim, S., Lee, S. H. & Yoon, J. (2007). Tetrahedron Lett. 48, 5966-5969.]) chemical sensors.

The main skeleton of the title compound is formed by a xanthene ring and a spiro­lactam ring, as illustrated in Fig. 1[link]. The spiro pyrrolidine ring (C13/C14/C19/C20/N1) adopts a twisted confirmation on the C13—N1 bond [puckering parameters: q2 = 0.068 (3) Å and φ2 = 198 (2)°]. The six-membered tetra­hydro­pyran ring (C1/C6/O1/C7/C12/C13) of the xanthene ring system adopts a sofa confirmation [puckering parameters: Q = 0.261 (2) Å, Θ = 80.3 (7)° and φ = 184.5 (6)°]. The pyrrolidine ring mean plane is orthogonal to the mean plane of the tetra­hydro­pyran ring with a dihedral angle of 89.1 (2)°. The dihedral angle between the benzene rings in the xanthene fragment is 17.3 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif (Table 1[link] and Fig. 2[link]). The dimers are linked by further C—H⋯O hydrogen bonds, forming slabs parallel to the bc plane (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21A⋯O2i 0.97 2.59 3.483 (3) 153
C23—H23⋯O2ii 0.93 2.36 3.246 (4) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound, showing the formation of hydrogen-bonded dimers (dashed lines; see Table 1[link]). The minor components of the disordered atoms and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds (see Table 1[link]) are shown as dashed lines. The minor components of the disordered atoms and H atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

To a solution of rhodamine B (5.76 g, 12 mmol) in anhydrous di­chloro­methane (20 ml) was added sequentially 2-(1H-benzotriazol-1-yl-1,1,3,3-tetra­methyl­uronium hexa­fluoro­phosphate (5.45 g, 14.4 mmol), propargyl­amine (0.925 ml, 14.4 mmol) and tri­ethyl­amine (2.5 ml, 14.4 mmol). The reaction mixture was stirred at room temperature overnight until TLC indicated the disappearance of the starting products. The reaction mixture was diluted with di­chloro­methane (200 ml) and then washed with brine. The organic layer was dried over anhydrous sodium sulfate, filtered and evaporated under reduced pressure. The crude residue was purified by flash column chromatography on silica gel (hexa­ne:EtOAc, 4:1) to yield the title compound as a pale-pink solid. Pink block-like crystals were obtained by slow evaporation of a solution in chloro­form/ethanol/aceto­nitrile in a (2:1:1) ratio.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the di­ethyl­amine group, one of the NCH2CH3 group of atoms is disordered over the two positions (N2/N2′, C30/C30′ and C31/C31′), with a refined occupancy ratio of 0.73 (1):0.27 (1).

Table 2
Experimental details

Crystal data
Chemical formula C31H33N3O2
Mr 479.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 18.0701 (8), 16.2611 (7), 9.0801 (4)
β (°) 97.645 (2)
V3) 2644.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.35 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.977, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 40635, 4654, 3350
Rint 0.037
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.09
No. of reflections 4654
No. of parameters 354
No. of restraints 72
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.18
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

To a solution of rhodamine B (5.76 g, 12 mmol) in anhydrous dichloromethane (20 ml) was added sequentially 2-(1H-benzotriazol-1-yl-1,1,3,3-tetramethyluronium hexafluorophosphate (5.45 g, 14.4 mmol), propargylamine (0.925 ml, 14.4 mmol) and triethylamine (2.5 ml, 14.4 mmol). The reaction mixture was stirred at room temperature overnight until TLC indicated the disappearance of the starting products. The reaction mixture was diluted with dichloromethane (200 ml) and then washed with brine. The organic layer was dried over anhydrous sodium sulfate, filtered and evaporated under reduced pressure. The crude residue was purified by flash column chromatography on silica gel (hexane:EtOAc, 4:1) to yield the title compound as a pale-pink solid. Pink block-like crystals were obtained by slow evaporation of a solution in chloroform/ethanol/acetonitrile in a (2:1:1) ratio.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. In the diethylamine group, one of the NCH2CH3 group of atoms is disordered over the two positions (N2/N2', C30/C30' and C31/C31'), with a refined occupancy ratio of 0.73 (1):0.27 (1).

Structure description top

Rhodamine-based dyes, known for their excellent spectroscopic properties having a large molar extinction coefficient and high fluorescence quantum yield (Wu et al., 2007), have found applications in the study of complex biological systems and environmental analysis as molecular probes. Rhodamine B derivatives are known to have excellent photophysical properties, such as long absorption and emission wavelengths elongated to the visible region. They have therefore been extensively used as fluorescent chemosensors for heavy and transition metal ions, such as copper(II) (Zhang et al., 2007) and mercury(II) (Soh et al., 2007) chemical sensors.

The main skeleton of the title compound is formed by a xanthene ring and a spirolactam ring, as illustrated in Fig. 1. The spiro pyrrolidine ring (C13/C14/C19/C20/N1) adopts a twisted confirmation on the C13—N1 bond [puckering parameters: q2 = 0.068 (3) Å and φ2 = 198 (2)°]. The six-membered tetrahydropyran ring (C1/C6/O1/C7/C12/C13) of the xanthene ring system adopts a sofa confirmation [puckering parameters: Q = 0.261 (2) Å, Θ = 80.3 (7)° and φ = 184.5 (6)°]. The pyrrolidine ring mean plane is orthogonal to the mean plane of the tetrahydropyran ring with a dihedral angle of 89.1 (2)°. The dihedral angle between the benzene rings in the xanthene fragment is 17.3 (1)°.

In the crystal, molecules are linked by pairs of C—H···O hydrogen bonds, forming inversion dimers with an R22(10) ring motif (Table 1 and Fig. 2). The dimers are linked by further C—H···O hydrogen bonds, forming slabs parallel to the bc plane (Table 1 and Fig. 3).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the formation of hydrogen-bonded dimers (dashed lines; see Table 1). The minor components of the disordered atoms and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. A view along the c axis of the crystal packing of the title compound. The hydrogen bonds (see Table 1) are shown as dashed lines. The minor components of the disordered atoms and H atoms not involved in hydrogen bonding have been omitted for clarity.
3',6'-Bis(diethylamino)-2-(prop-2-ynyl)spiro[isoindoline-1,9'-xanthen]-3-one top
Crystal data top
C31H33N3O2F(000) = 1024
Mr = 479.60Dx = 1.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.0701 (8) ÅCell parameters from 3350 reflections
b = 16.2611 (7) Åθ = 2.3–25.0°
c = 9.0801 (4) ŵ = 0.08 mm1
β = 97.645 (2)°T = 293 K
V = 2644.4 (2) Å3Block, pink
Z = 40.35 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3350 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
ω and φ scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2121
Tmin = 0.977, Tmax = 0.985k = 1919
40635 measured reflectionsl = 1010
4654 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0474P)2 + 2.114P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4654 reflectionsΔρmax = 0.38 e Å3
354 parametersΔρmin = 0.18 e Å3
72 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (8)
Crystal data top
C31H33N3O2V = 2644.4 (2) Å3
Mr = 479.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.0701 (8) ŵ = 0.08 mm1
b = 16.2611 (7) ÅT = 293 K
c = 9.0801 (4) Å0.35 × 0.25 × 0.20 mm
β = 97.645 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4654 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3350 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.037
40635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05372 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.09Δρmax = 0.38 e Å3
4654 reflectionsΔρmin = 0.18 e Å3
354 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.29699 (12)0.55506 (14)0.4059 (3)0.0400 (5)
C20.35508 (15)0.60419 (16)0.3708 (3)0.0540 (7)
H20.39870.57900.34970.065*
C30.35069 (15)0.68822 (16)0.3658 (4)0.0601 (8)
H30.39110.71850.34170.072*
C40.28656 (15)0.72918 (16)0.3964 (3)0.0566 (7)
C50.22779 (15)0.68068 (16)0.4334 (3)0.0555 (7)
H50.18440.70560.45610.067*
C60.23396 (13)0.59608 (15)0.4363 (3)0.0436 (6)
C70.17976 (13)0.47332 (14)0.5134 (3)0.0412 (6)
C80.12177 (13)0.44161 (15)0.5811 (3)0.0447 (6)
H80.08070.47440.59170.054*
C90.12425 (13)0.36132 (14)0.6335 (3)0.0410 (6)
C100.18786 (13)0.31512 (15)0.6149 (3)0.0442 (6)
H100.19230.26160.65130.053*
C110.24385 (13)0.34752 (14)0.5440 (3)0.0426 (6)
H110.28470.31470.53140.051*
C120.24146 (12)0.42754 (14)0.4904 (3)0.0373 (5)
C130.29979 (12)0.46205 (14)0.4032 (3)0.0391 (5)
C140.29140 (13)0.43066 (14)0.2440 (3)0.0401 (5)
C150.23015 (15)0.43577 (16)0.1353 (3)0.0492 (6)
H150.18540.45880.15530.059*
C160.23772 (17)0.40540 (17)0.0046 (3)0.0585 (7)
H160.19720.40770.07930.070*
C170.30422 (17)0.37172 (18)0.0353 (3)0.0604 (8)
H170.30790.35230.13040.072*
C180.36521 (16)0.36645 (17)0.0729 (3)0.0553 (7)
H180.41000.34390.05260.066*
C190.35730 (14)0.39608 (15)0.2131 (3)0.0436 (6)
C200.41227 (14)0.39862 (14)0.3487 (3)0.0431 (6)
C210.41217 (14)0.44670 (16)0.6068 (3)0.0476 (6)
H21A0.45470.48270.60240.057*
H21B0.37760.47480.66260.057*
C220.43761 (14)0.37143 (17)0.6847 (3)0.0484 (6)
C230.45786 (16)0.3112 (2)0.7474 (3)0.0624 (8)
H230.47400.26320.79740.075*
N10.37558 (10)0.43172 (12)0.4563 (2)0.0412 (5)
N30.06666 (12)0.32915 (14)0.7002 (3)0.0552 (6)
O10.17142 (9)0.55466 (10)0.4709 (2)0.0564 (5)
O20.47756 (10)0.37691 (12)0.3659 (2)0.0570 (5)
C250.07600 (17)0.25489 (18)0.7890 (3)0.0618 (8)
H25A0.04760.26050.87190.074*
H25B0.12820.24970.82960.074*
C260.00442 (16)0.3710 (2)0.6930 (4)0.0693 (9)
H26A0.04320.33020.69790.083*
H26B0.01470.39850.59770.083*
C240.0522 (2)0.1779 (2)0.7072 (5)0.0911 (11)
H24A0.06010.13190.77350.137*
H24B0.00010.18160.66890.137*
H24C0.08090.17080.62640.137*
C270.0086 (2)0.4336 (3)0.8147 (5)0.1045 (14)
H27A0.05710.45850.80250.157*
H27B0.00010.40680.90970.157*
H27C0.02870.47510.80940.157*
C280.3992 (3)0.8913 (3)0.4442 (5)0.1125 (14)
H28A0.43410.92410.39870.169*
H28C0.37910.92330.51850.169*
H28B0.42430.84390.48980.169*
C290.33793 (18)0.86470 (19)0.3299 (4)0.0703 (9)
H29A0.31240.91230.28290.084*
H29B0.35770.83260.25410.084*
N20.2856 (5)0.8146 (6)0.4037 (10)0.073 (2)0.730 (10)
C300.2286 (3)0.8579 (3)0.4703 (8)0.0714 (17)0.730 (10)
H30A0.24920.90910.51230.086*0.730 (10)
H30B0.21430.82490.55100.086*0.730 (10)
C310.1602 (4)0.8765 (4)0.3633 (8)0.106 (2)0.730 (10)
H31A0.12460.90510.41410.159*0.730 (10)
H31B0.17360.91020.28420.159*0.730 (10)
H31C0.13860.82600.32290.159*0.730 (10)
N2'0.2711 (11)0.8100 (15)0.358 (3)0.060 (4)0.270 (10)
C30'0.1995 (10)0.8497 (8)0.3683 (19)0.075 (4)0.270 (10)
H30C0.15950.81780.31400.090*0.270 (10)
H30D0.19900.90420.32470.090*0.270 (10)
C31'0.1881 (12)0.8558 (10)0.5277 (18)0.103 (6)0.270 (10)
H31D0.14110.88190.53490.155*0.270 (10)
H31E0.18830.80170.57000.155*0.270 (10)
H31F0.22770.88780.58070.155*0.270 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0367 (12)0.0351 (12)0.0485 (14)0.0002 (10)0.0066 (10)0.0021 (10)
C20.0440 (14)0.0443 (15)0.0771 (19)0.0025 (12)0.0201 (13)0.0055 (13)
C30.0462 (15)0.0426 (15)0.095 (2)0.0087 (12)0.0213 (15)0.0040 (15)
C40.0509 (16)0.0399 (15)0.082 (2)0.0005 (12)0.0181 (14)0.0014 (13)
C50.0472 (15)0.0407 (14)0.083 (2)0.0081 (12)0.0231 (14)0.0074 (13)
C60.0385 (13)0.0383 (13)0.0549 (15)0.0005 (10)0.0099 (11)0.0055 (11)
C70.0387 (13)0.0362 (13)0.0477 (14)0.0025 (10)0.0020 (11)0.0062 (10)
C80.0381 (13)0.0429 (14)0.0531 (15)0.0056 (11)0.0060 (11)0.0072 (11)
C90.0395 (13)0.0414 (13)0.0407 (13)0.0027 (10)0.0002 (10)0.0037 (10)
C100.0488 (14)0.0335 (12)0.0478 (14)0.0011 (11)0.0027 (11)0.0041 (10)
C110.0393 (13)0.0370 (13)0.0500 (14)0.0041 (10)0.0000 (11)0.0038 (11)
C120.0359 (12)0.0340 (12)0.0413 (13)0.0011 (10)0.0028 (10)0.0009 (10)
C130.0350 (12)0.0368 (12)0.0444 (13)0.0030 (10)0.0015 (10)0.0033 (10)
C140.0455 (13)0.0321 (12)0.0421 (13)0.0043 (10)0.0037 (11)0.0002 (10)
C150.0496 (15)0.0467 (15)0.0494 (15)0.0010 (12)0.0004 (12)0.0014 (12)
C160.0691 (19)0.0565 (17)0.0453 (15)0.0097 (14)0.0091 (14)0.0007 (13)
C170.074 (2)0.0657 (19)0.0413 (15)0.0093 (15)0.0080 (14)0.0076 (13)
C180.0602 (17)0.0582 (17)0.0492 (15)0.0023 (13)0.0140 (13)0.0089 (13)
C190.0466 (14)0.0420 (13)0.0423 (13)0.0018 (11)0.0060 (11)0.0044 (11)
C200.0422 (14)0.0370 (13)0.0504 (15)0.0006 (11)0.0071 (11)0.0039 (11)
C210.0460 (14)0.0484 (15)0.0467 (14)0.0021 (12)0.0004 (11)0.0091 (12)
C220.0442 (14)0.0555 (17)0.0448 (14)0.0026 (12)0.0034 (11)0.0019 (13)
C230.0612 (18)0.065 (2)0.0599 (18)0.0009 (15)0.0045 (14)0.0101 (15)
N10.0384 (11)0.0424 (11)0.0419 (11)0.0032 (9)0.0020 (9)0.0066 (9)
N30.0489 (13)0.0508 (13)0.0665 (15)0.0008 (10)0.0108 (11)0.0190 (11)
O10.0408 (10)0.0399 (10)0.0914 (14)0.0083 (8)0.0200 (9)0.0207 (9)
O20.0406 (10)0.0644 (12)0.0661 (12)0.0049 (9)0.0072 (9)0.0151 (10)
C250.0676 (19)0.0595 (18)0.0589 (17)0.0004 (14)0.0114 (14)0.0160 (14)
C260.0486 (16)0.071 (2)0.090 (2)0.0004 (14)0.0149 (16)0.0262 (18)
C240.100 (3)0.061 (2)0.110 (3)0.0123 (19)0.003 (2)0.009 (2)
C270.111 (3)0.096 (3)0.117 (3)0.032 (2)0.052 (3)0.021 (3)
C280.122 (4)0.107 (3)0.105 (3)0.018 (3)0.001 (3)0.003 (3)
C290.075 (2)0.0487 (17)0.088 (2)0.0019 (15)0.0143 (18)0.0119 (16)
N20.067 (4)0.039 (2)0.116 (6)0.001 (3)0.026 (4)0.004 (3)
C300.078 (4)0.043 (2)0.098 (4)0.001 (2)0.029 (3)0.003 (3)
C310.071 (4)0.092 (4)0.156 (6)0.024 (3)0.019 (4)0.034 (4)
N2'0.053 (7)0.034 (6)0.100 (10)0.004 (5)0.033 (7)0.021 (7)
C30'0.072 (8)0.040 (6)0.112 (9)0.011 (6)0.011 (8)0.015 (7)
C31'0.112 (12)0.074 (9)0.136 (13)0.003 (8)0.060 (11)0.016 (9)
Geometric parameters (Å, º) top
C1—C61.379 (3)C21—N11.457 (3)
C1—C21.390 (3)C21—H21A0.9700
C1—C131.514 (3)C21—H21B0.9700
C2—C31.369 (4)C22—C231.167 (4)
C2—H20.9300C23—H230.9300
C3—C41.396 (4)N3—C261.447 (4)
C3—H30.9300N3—C251.449 (3)
C4—N2'1.38 (2)C25—C241.489 (4)
C4—N21.391 (10)C25—H25A0.9700
C4—C51.399 (4)C25—H25B0.9700
C5—C61.380 (3)C26—C271.512 (5)
C5—H50.9300C26—H26A0.9700
C6—O11.387 (3)C26—H26B0.9700
C7—C121.379 (3)C24—H24A0.9600
C7—O11.380 (3)C24—H24B0.9600
C7—C81.383 (3)C24—H24C0.9600
C8—C91.388 (3)C27—H27A0.9600
C8—H80.9300C27—H27B0.9600
C9—N31.375 (3)C27—H27C0.9600
C9—C101.402 (3)C28—C291.478 (5)
C10—C111.375 (3)C28—H28A0.9600
C10—H100.9300C28—H28C0.9600
C11—C121.388 (3)C28—H28B0.9600
C11—H110.9300C29—N21.474 (10)
C12—C131.508 (3)C29—N2'1.55 (2)
C13—N11.475 (3)C29—H29A0.9700
C13—C141.521 (3)C29—H29B0.9700
C14—C191.379 (3)N2—C301.446 (8)
C14—C151.384 (3)C30—C311.497 (8)
C15—C161.386 (4)C30—H30A0.9700
C15—H150.9300C30—H30B0.9700
C16—C171.382 (4)C31—H31A0.9600
C16—H160.9300C31—H31B0.9600
C17—C181.378 (4)C31—H31C0.9600
C17—H170.9300N2'—C30'1.459 (15)
C18—C191.386 (3)C30'—C31'1.492 (15)
C18—H180.9300C30'—H30C0.9700
C19—C201.476 (3)C30'—H30D0.9700
C20—O21.221 (3)C31'—H31D0.9600
C20—N11.362 (3)C31'—H31E0.9600
C21—C221.457 (4)C31'—H31F0.9600
C6—C1—C2115.9 (2)C20—N1—C13114.64 (19)
C6—C1—C13121.1 (2)C21—N1—C13122.43 (19)
C2—C1—C13122.9 (2)C9—N3—C26121.4 (2)
C3—C2—C1122.6 (2)C9—N3—C25121.5 (2)
C3—C2—H2118.7C26—N3—C25117.0 (2)
C1—C2—H2118.7C7—O1—C6117.82 (18)
C2—C3—C4121.0 (2)N3—C25—C24114.7 (3)
C2—C3—H3119.5N3—C25—H25A108.6
C4—C3—H3119.5C24—C25—H25A108.6
N2'—C4—C3123.4 (8)N3—C25—H25B108.6
N2—C4—C3120.1 (4)C24—C25—H25B108.6
N2'—C4—C5117.6 (8)H25A—C25—H25B107.6
N2—C4—C5122.5 (4)N3—C26—C27114.4 (3)
C3—C4—C5117.1 (2)N3—C26—H26A108.7
C6—C5—C4120.3 (2)C27—C26—H26A108.7
C6—C5—H5119.8N3—C26—H26B108.7
C4—C5—H5119.8C27—C26—H26B108.7
C1—C6—C5123.0 (2)H26A—C26—H26B107.6
C1—C6—O1122.0 (2)C25—C24—H24A109.5
C5—C6—O1115.0 (2)C25—C24—H24B109.5
C12—C7—O1122.3 (2)H24A—C24—H24B109.5
C12—C7—C8122.8 (2)C25—C24—H24C109.5
O1—C7—C8114.9 (2)H24A—C24—H24C109.5
C7—C8—C9120.7 (2)H24B—C24—H24C109.5
C7—C8—H8119.6C26—C27—H27A109.5
C9—C8—H8119.6C26—C27—H27B109.5
N3—C9—C8121.1 (2)H27A—C27—H27B109.5
N3—C9—C10122.0 (2)C26—C27—H27C109.5
C8—C9—C10116.9 (2)H27A—C27—H27C109.5
C11—C10—C9121.2 (2)H27B—C27—H27C109.5
C11—C10—H10119.4C29—C28—H28A109.5
C9—C10—H10119.4C29—C28—H28C109.5
C10—C11—C12122.2 (2)H28A—C28—H28C109.5
C10—C11—H11118.9C29—C28—H28B109.5
C12—C11—H11118.9H28A—C28—H28B109.5
C7—C12—C11116.2 (2)H28C—C28—H28B109.5
C7—C12—C13120.9 (2)N2—C29—C28108.0 (5)
C11—C12—C13122.8 (2)C28—C29—N2'125.4 (10)
N1—C13—C12112.79 (19)N2—C29—H29A110.1
N1—C13—C1111.12 (18)C28—C29—H29A110.1
C12—C13—C1109.62 (19)N2—C29—H29B110.1
N1—C13—C1499.74 (18)C28—C29—H29B110.1
C12—C13—C14112.69 (19)H29A—C29—H29B108.4
C1—C13—C14110.59 (19)C4—N2—C30121.3 (7)
C19—C14—C15120.6 (2)C4—N2—C29121.2 (6)
C19—C14—C13110.5 (2)C30—N2—C29117.2 (7)
C15—C14—C13128.8 (2)N2—C30—C31113.6 (8)
C14—C15—C16117.7 (3)N2—C30—H30A108.9
C14—C15—H15121.1C31—C30—H30A108.9
C16—C15—H15121.1N2—C30—H30B108.9
C17—C16—C15121.3 (3)C31—C30—H30B108.9
C17—C16—H16119.3H30A—C30—H30B107.7
C15—C16—H16119.3C30—C31—H31A109.5
C18—C17—C16121.0 (3)C30—C31—H31B109.5
C18—C17—H17119.5H31A—C31—H31B109.5
C16—C17—H17119.5C30—C31—H31C109.5
C17—C18—C19117.6 (3)H31A—C31—H31C109.5
C17—C18—H18121.2H31B—C31—H31C109.5
C19—C18—H18121.2C4—N2'—C30'123.9 (15)
C14—C19—C18121.7 (2)C4—N2'—C29117.0 (12)
C14—C19—C20108.8 (2)C30'—N2'—C29118.2 (16)
C18—C19—C20129.5 (2)N2'—C30'—C31'109 (2)
O2—C20—N1125.2 (2)N2'—C30'—H30C109.9
O2—C20—C19129.1 (2)C31'—C30'—H30C109.9
N1—C20—C19105.8 (2)N2'—C30'—H30D109.9
C22—C21—N1112.9 (2)C31'—C30'—H30D109.9
C22—C21—H21A109.0H30C—C30'—H30D108.3
N1—C21—H21A109.0C30'—C31'—H31D109.5
C22—C21—H21B109.0C30'—C31'—H31E109.5
N1—C21—H21B109.0H31D—C31'—H31E109.5
H21A—C21—H21B107.8C30'—C31'—H31F109.5
C23—C22—C21179.8 (3)H31D—C31'—H31F109.5
C22—C23—H23180.0H31E—C31'—H31F109.5
C20—N1—C21122.4 (2)
C6—C1—C2—C30.1 (4)C15—C14—C19—C181.0 (4)
C13—C1—C2—C3176.5 (3)C13—C14—C19—C18176.9 (2)
C1—C2—C3—C40.0 (5)C15—C14—C19—C20179.8 (2)
C2—C3—C4—N2'163.3 (13)C13—C14—C19—C202.4 (3)
C2—C3—C4—N2174.3 (5)C17—C18—C19—C140.8 (4)
C2—C3—C4—C50.6 (5)C17—C18—C19—C20179.9 (3)
N2'—C4—C5—C6163.9 (12)C14—C19—C20—O2177.1 (3)
N2—C4—C5—C6174.6 (5)C18—C19—C20—O22.0 (5)
C3—C4—C5—C61.0 (4)C14—C19—C20—N12.4 (3)
C2—C1—C6—C50.3 (4)C18—C19—C20—N1178.5 (3)
C13—C1—C6—C5177.0 (2)O2—C20—N1—C211.4 (4)
C2—C1—C6—O1179.0 (2)C19—C20—N1—C21178.1 (2)
C13—C1—C6—O12.3 (4)O2—C20—N1—C13173.0 (2)
C4—C5—C6—C10.9 (4)C19—C20—N1—C136.6 (3)
C4—C5—C6—O1178.5 (3)C22—C21—N1—C2063.7 (3)
C12—C7—C8—C91.8 (4)C22—C21—N1—C13125.4 (2)
O1—C7—C8—C9178.0 (2)C12—C13—N1—C20127.4 (2)
C7—C8—C9—N3179.6 (2)C1—C13—N1—C20109.1 (2)
C7—C8—C9—C100.3 (4)C14—C13—N1—C207.6 (2)
N3—C9—C10—C11178.0 (2)C12—C13—N1—C2161.1 (3)
C8—C9—C10—C111.9 (3)C1—C13—N1—C2162.5 (3)
C9—C10—C11—C121.5 (4)C14—C13—N1—C21179.1 (2)
O1—C7—C12—C11177.6 (2)C8—C9—N3—C2612.2 (4)
C8—C7—C12—C112.2 (4)C10—C9—N3—C26167.7 (3)
O1—C7—C12—C136.2 (4)C8—C9—N3—C25163.6 (2)
C8—C7—C12—C13174.1 (2)C10—C9—N3—C2516.5 (4)
C10—C11—C12—C70.5 (3)C12—C7—O1—C615.2 (3)
C10—C11—C12—C13175.7 (2)C8—C7—O1—C6164.6 (2)
C7—C12—C13—N1147.4 (2)C1—C6—O1—C717.1 (4)
C11—C12—C13—N136.6 (3)C5—C6—O1—C7163.6 (2)
C7—C12—C13—C123.0 (3)C9—N3—C25—C2495.0 (3)
C11—C12—C13—C1161.0 (2)C26—N3—C25—C2489.1 (4)
C7—C12—C13—C14100.6 (2)C9—N3—C26—C2787.4 (3)
C11—C12—C13—C1475.4 (3)C25—N3—C26—C2788.6 (3)
C6—C1—C13—N1146.5 (2)C3—C4—N2—C30164.4 (6)
C2—C1—C13—N137.1 (3)C5—C4—N2—C309.0 (11)
C6—C1—C13—C1221.1 (3)C3—C4—N2—C2922.2 (10)
C2—C1—C13—C12162.4 (2)C5—C4—N2—C29164.5 (5)
C6—C1—C13—C14103.7 (3)C28—C29—N2—C4100.9 (7)
C2—C1—C13—C1472.7 (3)C28—C29—N2—C3085.4 (8)
N1—C13—C14—C195.7 (2)C4—N2—C30—C3188.3 (9)
C12—C13—C14—C19125.6 (2)C29—N2—C30—C3185.3 (7)
C1—C13—C14—C19111.4 (2)C3—C4—N2'—C30'170.0 (16)
N1—C13—C14—C15176.7 (2)C5—C4—N2'—C30'6 (3)
C12—C13—C14—C1556.8 (3)C3—C4—N2'—C2921 (2)
C1—C13—C14—C1566.2 (3)C5—C4—N2'—C29175.3 (11)
C19—C14—C15—C160.3 (4)C28—C29—N2'—C468 (2)
C13—C14—C15—C16177.1 (2)C28—C29—N2'—C30'101.3 (18)
C14—C15—C16—C170.5 (4)C4—N2'—C30'—C31'67 (3)
C15—C16—C17—C180.6 (4)C29—N2'—C30'—C31'102.4 (18)
C16—C17—C18—C190.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O2i0.972.593.483 (3)153
C23—H23···O2ii0.932.363.246 (4)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O2i0.972.593.483 (3)153
C23—H23···O2ii0.932.363.246 (4)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC31H33N3O2
Mr479.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.0701 (8), 16.2611 (7), 9.0801 (4)
β (°) 97.645 (2)
V3)2644.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
40635, 4654, 3350
Rint0.037
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.09
No. of reflections4654
No. of parameters354
No. of restraints72
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoh, J. H., Swamy, K. M. K., Kim, S. K., Kim, S., Lee, S. H. & Yoon, J. (2007). Tetrahedron Lett. 48, 5966–5969.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D., Huang, W., Duan, C. Y., Lin, Z. H. & Meng, Q. J. (2007). Inorg. Chem. 46, 1538–1540.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, X., Shiraishi, Y. & Hirai, T. (2007). Org. Lett. 9, 5039–5042.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds