organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Methyl­pyridinium 2-carb­­oxy­benzoate–benzene-1,2-di­carb­­oxy­lic acid (2/1)

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, dDepartment of Physics and Nanotechnology, SRM University, Kattankulathur, Tamil Nadu, India, and eDepartment of Physics, The American College, Madurai 625 002, India
*Correspondence e-mail: , chakkaravarthi_2005@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 17 May 2016; accepted 19 May 2016; online 24 May 2016)

The asymmetric unit of the title compound, C6H8N+·C8H5O4·0.5C8H6O4, contains a 2-methyl­pyridinium cation, a 2-carb­oxy­benzoate monoanion and half of the co-crystallized benzene-1,2-di­carb­oxy­lic acid mol­ecule, which lies on a mirror plane. The N atom of the pyridine ring is protonated, while the anion of this salt is generated by deprotonation of the OH group of one of the carb­oxy­lic acid substituents of the benzene-1,2-di­carb­oxy­lic acid mol­ecule. The pyridine ring of the cation is inclined to the benzene ring of the anion at an angle of 2.27 (11)°. The benzene ring of the anion makes dihedral angles of 2.8 (2) and 6.0 (2)° with the carboxyl­ate and carboxyl substituents, respectively. An intra­molecular O—H⋯O hydrogen bond in the anion closes an S(7) ring. In the crystal, weak N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds lead to the formation of a three-dimensional network. Weak offset ππ contacts [centroid-to-centroid distance = 3.852 (1) Å] are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives exhibit anti-inflammatory (Abdel-Alim et al., 2005[Abdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Moty, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637-647.]) and anti­cancer (Girgis et al. 2006[Girgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466-4476.]) activities. We report herein the synthesis and the crystal structure of a co-crystal of the 2-methyl­pyridinium 2-carb­oxy­benzoate salt and a benzene-1,2-di­carb­oxy­lic acid mol­ecule (Fig. 1[link]). The asymmetric unit contains a 2-methyl­pyridinium cation, a 2-carb­oxy­benzoate anion and half of a benzene-1,2-di­carb­oxy­lic acid mol­ecule, which lies on a mirror plane. The N atom of the pyridine ring is protonated while the OH group of one of the carb­oxy­lic acid substituents of a benzene-1,2-di­carb­oxy­lic acid mol­ecule is deprotonated to form the monoanion.

[Figure 1]
Figure 1
The structure of the title co-crystal, showing the atom labelling and 30% probability displacement ellipsoids. Atoms labelled with the suffix `a′ are generated by the symmetry operation (−x + 1, y, −z + [{1\over 2}]).

The N1/C1–C5 pyridinium ring and the C7–C12 benzene ring of the 2-carb­oxy­benzoate monoanion are inclined at an angle of 2.27 (11)° to one another. The co-crystallized benzene-1,2-di­carb­oxy­lic acid mol­ecule lies on a mirror plane. The C7–C12 benzene ring of the anion makes dihedral angles of 2.8 (2) and 6.0 (2)° with the attached carboxyl­ate (C13/O1/O2) and carboxyl (C14/O3/O4) groups, respectively.

An intra­molecular O3—H2A⋯O2 hydrogen bond in the anion (Fig. 1[link]) forms an S(7) graph-set motif. The crystal structure features N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds (Fig. 2[link], Table 1[link]), which generate a three-dimensional network. Weak offset ππ contacts are also observed in the crystal structure [Cg2⋯Cg3iv = 3.852 (1), Cg3⋯Cg2v = 3.852 (1) Å; symmetry codes: (iv) [{1\over 2}] + x, −[{1\over 2}] + y, z; (v) −[{1\over 2}] + x, [{1\over 2}] + y,z; Cg2 and Cg3 are the centroids of the C7–C12 and N1/C1–C5, rings respectively].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H2A⋯O2 0.84 (1) 1.52 (1) 2.365 (2) 178 (4)
N1—H1⋯O1i 0.86 1.84 2.697 (2) 176
N1—H1⋯O2i 0.86 2.59 3.194 (2) 128
O6—H6⋯O4ii 0.83 (1) 1.84 (1) 2.640 (2) 162 (3)
C2—H2⋯O5iii 0.93 2.44 3.244 (3) 144
C5—H5⋯O2i 0.93 2.60 3.207 (3) 124
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y-1, z; (iii) [-x+1, y+1, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1[link]). C-bound H atoms have been omitted for clarity.

Synthesis and crystallization

2-Picoline (0.93 g) and phthalic acid (1.66 g) dissolved in 20 ml of methanol were magnetically stirred for 3 hr in a round-bottomed flask. The solvent was allowed to evaporate slowly at room temperature. Over 15 days, crystals suitable for X-ray diffraction were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H8N+·C8H5O4·0.5C8H6O4
Mr 342.32
Crystal system, space group Monoclinic, C2/c
Temperature (K) 295
a, b, c (Å) 13.0967 (8), 8.1049 (4), 30.3013 (18)
β (°) 97.543 (3)
V3) 3188.6 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.24 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.975, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 25680, 3706, 1961
Rint 0.059
(sin θ/λ)max−1) 0.654
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.139, 1.00
No. of reflections 3706
No. of parameters 243
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Synthesis and crystallization top

2-Picoline (0.93 g) and phthalic acid (1.66 g) dissolved in 20 ml of methanol were magnetically stirred for 3 hr in a round bottomed flask. The solvent was allowed to slowly evaporate at room temperature. Over 15 days, crystals suitable for X-ray diffraction were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1

Experimental top

2-Picoline (0.93 g) and phthalic acid (1.66 g) dissolved in 20 ml of methanol were magnetically stirred for 3 hr in a round-bottomed flask. The solvent was allowed to evaporate slowly at room temperature. Over 15 days, crystals suitable for X-ray diffraction were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Pyridine derivatives exhibit anti-inflammatory (Abdel-Alim et al., 2005) and anticancer (Girgis et al. 2006) activities. We report herein the synthesis and the crystal structure of a co-crystal of the 2-methylpyridinium 2-carboxybenzoate salt and a benzene-1,2-dicarboxylic acid molecule (Fig. 1). The asymmetric unit contains a 2-methylpyridinium cation, a 2-carboxybenzoate anion and half of a benzene-1,2-dicarboxylic acid molecule, which lies on a mirror plane. The N atom of the pyridine ring is protonated while the OH group of one of the carboxylic acid substituents of a benzene-1,2-dicarboxylic acid molecule is deprotonated to form the monoanion.

The (N1/C1–C5) pyridinium ring and the (C7–C12) benzene ring of the 2-carboxybenzoate monoanion are inclined at an angle of 2.27 (11)° to one another. The co-crystallized benzene-1,2-dicarboxylic acid molecule lies on a mirror plane. The C7–C12 benzene ring of the anion makes dihedral angles of 2.8 (2) and 6.0 (2)° with the attached carboxylate (C13/O1/O2) and carboxyl (C14/O3/O4) groups, respectively.

An intramolecular O3—H2A···O2 hydrogen bond in the anion (Fig. 1) forms an S(7) graph-set motif. The crystal structure features N—H···O, O—H···O and C—H···O hydrogen bonds (Fig. 2, Table 1), which generate a three-dimensional network. Weak offset ππ contacts are also observed in the crystal structure [Cg2···Cg3iv = 3.852 (1), Cg3···Cg2v = 3.852 (1) Å; symmetry codes: (iv) 1/2 + x, -1/2 + y, z; (v) -1/2 + x, 1/2 + y,z; Cg2 and Cg3 are the centroids of the C7–C12 and N1/C1–C5, rings respectively].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title co-crystal, showing the atom labelling and 30% probability displacement ellipsoids. Atoms labelled with the suffix `a' are generated by the symmetry operation (-x + 1, y, -z + 1/2).
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1). C-bound H atoms have been omitted for clarity.
2-Methylpyridinium 2-carboxybenzoate–benzene-1,2-dicarboxylic acid (2/1) top
Crystal data top
C6H8N+·C8H5O4·0.5C8H6O4F(000) = 1432
Mr = 342.32Dx = 1.426 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2963 reflections
a = 13.0967 (8) Åθ = 2.7–22.6°
b = 8.1049 (4) ŵ = 0.11 mm1
c = 30.3013 (18) ÅT = 295 K
β = 97.543 (3)°Block, colourless
V = 3188.6 (3) Å30.24 × 0.20 × 0.18 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3706 independent reflections
Radiation source: fine-focus sealed tube1961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and φ scanθmax = 27.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.975, Tmax = 0.981k = 1010
25680 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.061P)2 + 0.7843P]
where P = (Fo2 + 2Fc2)/3
3706 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.29 e Å3
6 restraintsΔρmin = 0.25 e Å3
Crystal data top
C6H8N+·C8H5O4·0.5C8H6O4V = 3188.6 (3) Å3
Mr = 342.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.0967 (8) ŵ = 0.11 mm1
b = 8.1049 (4) ÅT = 295 K
c = 30.3013 (18) Å0.24 × 0.20 × 0.18 mm
β = 97.543 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3706 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1961 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.981Rint = 0.059
25680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0466 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.29 e Å3
3706 reflectionsΔρmin = 0.25 e Å3
243 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41428 (15)0.4797 (3)0.11616 (7)0.0442 (5)
C20.41880 (18)0.3486 (3)0.14524 (8)0.0548 (6)
H20.43180.36710.17570.066*
C30.40426 (19)0.1908 (3)0.12937 (8)0.0602 (7)
H30.40780.10250.14910.072*
C40.38447 (18)0.1628 (3)0.08442 (8)0.0553 (6)
H40.37400.05630.07330.066*
C50.38050 (18)0.2941 (3)0.05662 (8)0.0538 (6)
H50.36750.27780.02600.065*
C60.42957 (18)0.6547 (3)0.12976 (8)0.0565 (6)
H6A0.50180.67610.13750.085*
H6B0.39430.67620.15500.085*
H6C0.40250.72510.10550.085*
C70.66307 (14)0.2220 (2)0.10324 (6)0.0354 (5)
C80.66764 (16)0.0815 (2)0.12987 (7)0.0432 (5)
H80.68370.09330.16050.052*
C90.64932 (17)0.0741 (2)0.11253 (8)0.0489 (6)
H90.65330.16570.13120.059*
C100.62521 (18)0.0921 (3)0.06759 (8)0.0533 (6)
H100.61080.19610.05540.064*
C110.62217 (17)0.0433 (2)0.04044 (7)0.0474 (5)
H110.60710.02850.00980.057*
C120.64073 (15)0.2021 (2)0.05690 (6)0.0364 (5)
C130.63393 (17)0.3339 (3)0.02139 (7)0.0465 (5)
C140.68093 (16)0.3795 (2)0.12974 (7)0.0423 (5)
C150.54949 (19)0.1071 (2)0.24500 (8)0.0543 (6)
C160.59899 (19)0.0401 (2)0.23966 (7)0.0471 (6)
C170.54999 (15)0.1893 (2)0.24464 (6)0.0394 (5)
C180.60728 (19)0.3451 (3)0.23892 (7)0.0500 (6)
N10.39510 (13)0.4462 (2)0.07275 (6)0.0476 (5)
H10.39200.52700.05420.057*
O10.61695 (14)0.29077 (18)0.01781 (5)0.0679 (5)
O20.64605 (15)0.48431 (18)0.03183 (5)0.0704 (5)
O30.67044 (15)0.51902 (18)0.11001 (6)0.0637 (5)
O40.70341 (14)0.37269 (17)0.17001 (5)0.0642 (5)
O50.6114 (2)0.4596 (2)0.26340 (7)0.1240 (10)
O60.65490 (14)0.34266 (19)0.20419 (5)0.0592 (5)
H60.679 (2)0.434 (2)0.1988 (10)0.099 (11)*
H150.5865 (15)0.2030 (17)0.2412 (7)0.064 (7)*
H160.6671 (7)0.040 (2)0.2337 (7)0.044 (6)*
H2A0.661 (3)0.509 (4)0.0821 (4)0.109 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (12)0.0578 (13)0.0367 (12)0.0011 (10)0.0047 (9)0.0053 (10)
C20.0593 (15)0.0656 (16)0.0387 (13)0.0028 (12)0.0031 (11)0.0082 (11)
C30.0664 (16)0.0583 (15)0.0568 (16)0.0037 (12)0.0115 (13)0.0155 (12)
C40.0596 (15)0.0534 (14)0.0535 (15)0.0029 (11)0.0100 (12)0.0006 (11)
C50.0611 (15)0.0591 (15)0.0414 (13)0.0041 (12)0.0072 (11)0.0009 (11)
C60.0592 (15)0.0588 (14)0.0498 (14)0.0067 (12)0.0005 (12)0.0012 (11)
C70.0365 (11)0.0327 (10)0.0381 (11)0.0001 (8)0.0096 (9)0.0014 (8)
C80.0501 (13)0.0413 (12)0.0392 (12)0.0003 (10)0.0098 (10)0.0050 (9)
C90.0600 (15)0.0349 (11)0.0531 (14)0.0008 (10)0.0129 (12)0.0069 (10)
C100.0663 (16)0.0331 (11)0.0609 (16)0.0060 (10)0.0103 (12)0.0055 (10)
C110.0603 (15)0.0417 (12)0.0402 (12)0.0039 (10)0.0066 (11)0.0054 (9)
C120.0397 (11)0.0330 (10)0.0370 (11)0.0007 (8)0.0060 (9)0.0015 (8)
C130.0544 (14)0.0439 (13)0.0414 (13)0.0008 (10)0.0068 (10)0.0053 (10)
C140.0454 (13)0.0390 (12)0.0442 (13)0.0021 (9)0.0128 (10)0.0036 (10)
C150.0856 (18)0.0320 (11)0.0456 (13)0.0115 (11)0.0102 (13)0.0003 (10)
C160.0615 (16)0.0401 (12)0.0409 (13)0.0085 (11)0.0106 (11)0.0011 (9)
C170.0573 (13)0.0323 (10)0.0292 (10)0.0017 (9)0.0085 (10)0.0004 (8)
C180.0746 (16)0.0412 (12)0.0366 (12)0.0079 (11)0.0159 (11)0.0045 (10)
N10.0504 (11)0.0546 (12)0.0373 (10)0.0022 (9)0.0039 (8)0.0084 (8)
O10.1035 (14)0.0600 (10)0.0367 (9)0.0097 (9)0.0034 (9)0.0063 (8)
O20.1260 (16)0.0365 (9)0.0489 (10)0.0010 (9)0.0125 (10)0.0090 (7)
O30.1106 (15)0.0334 (9)0.0496 (11)0.0058 (8)0.0203 (10)0.0023 (8)
O40.0962 (13)0.0516 (9)0.0418 (10)0.0133 (9)0.0025 (9)0.0093 (7)
O50.230 (3)0.0662 (12)0.0978 (16)0.0684 (15)0.1034 (18)0.0428 (11)
O60.0841 (12)0.0502 (10)0.0482 (10)0.0138 (9)0.0267 (9)0.0016 (8)
Geometric parameters (Å, º) top
C1—N11.334 (3)C10—C111.369 (3)
C1—C21.377 (3)C10—H100.9300
C1—C61.483 (3)C11—C121.390 (3)
C2—C31.371 (3)C11—H110.9300
C2—H20.9300C12—C131.511 (3)
C3—C41.371 (3)C13—O11.230 (2)
C3—H30.9300C13—O21.264 (2)
C4—C51.354 (3)C14—O41.218 (2)
C4—H40.9300C14—O31.278 (2)
C5—N11.330 (3)C15—C15i1.370 (5)
C5—H50.9300C15—C161.378 (3)
C6—H6A0.9600C15—H150.931 (7)
C6—H6B0.9600C16—C171.387 (3)
C6—H6C0.9600C16—H160.933 (7)
C7—C81.392 (3)C17—C17i1.390 (4)
C7—C121.406 (3)C17—C181.490 (3)
C7—C141.510 (3)C18—O51.185 (3)
C8—C91.375 (3)C18—O61.292 (3)
C8—H80.9300N1—H10.8600
C9—C101.365 (3)O3—H2A0.842 (10)
C9—H90.9300O6—H60.830 (10)
N1—C1—C2117.4 (2)C9—C10—H10120.0
N1—C1—C6118.05 (19)C11—C10—H10120.0
C2—C1—C6124.6 (2)C10—C11—C12122.4 (2)
C3—C2—C1120.2 (2)C10—C11—H11118.8
C3—C2—H2119.9C12—C11—H11118.8
C1—C2—H2119.9C11—C12—C7117.93 (17)
C2—C3—C4120.1 (2)C11—C12—C13114.09 (18)
C2—C3—H3119.9C7—C12—C13127.98 (17)
C4—C3—H3119.9O1—C13—O2121.09 (19)
C5—C4—C3118.4 (2)O1—C13—C12118.23 (19)
C5—C4—H4120.8O2—C13—C12120.68 (19)
C3—C4—H4120.8O4—C14—O3120.38 (19)
N1—C5—C4120.5 (2)O4—C14—C7119.62 (18)
N1—C5—H5119.8O3—C14—C7119.98 (19)
C4—C5—H5119.8C15i—C15—C16119.98 (14)
C1—C6—H6A109.5C15i—C15—H15123.4 (14)
C1—C6—H6B109.5C16—C15—H15116.6 (14)
H6A—C6—H6B109.5C15—C16—C17120.7 (2)
C1—C6—H6C109.5C15—C16—H16119.9 (12)
H6A—C6—H6C109.5C17—C16—H16119.3 (12)
H6B—C6—H6C109.5C16—C17—C17i119.28 (13)
C8—C7—C12118.19 (17)C16—C17—C18118.61 (19)
C8—C7—C14113.06 (17)C17i—C17—C18122.10 (12)
C12—C7—C14128.73 (17)O5—C18—O6122.3 (2)
C9—C8—C7122.46 (19)O5—C18—C17124.9 (2)
C9—C8—H8118.8O6—C18—C17112.71 (17)
C7—C8—H8118.8C5—N1—C1123.41 (19)
C10—C9—C8119.0 (2)C5—N1—H1118.3
C10—C9—H9120.5C1—N1—H1118.3
C8—C9—H9120.5C14—O3—H2A112 (2)
C9—C10—C11119.9 (2)C18—O6—H6112 (2)
N1—C1—C2—C30.2 (3)C7—C12—C13—O1177.4 (2)
C6—C1—C2—C3179.5 (2)C11—C12—C13—O2177.9 (2)
C1—C2—C3—C40.4 (4)C7—C12—C13—O22.2 (3)
C2—C3—C4—C50.4 (4)C8—C7—C14—O44.5 (3)
C3—C4—C5—N10.3 (4)C12—C7—C14—O4177.2 (2)
C12—C7—C8—C91.2 (3)C8—C7—C14—O3174.1 (2)
C14—C7—C8—C9177.23 (19)C12—C7—C14—O34.1 (3)
C7—C8—C9—C100.3 (3)C15i—C15—C16—C170.5 (4)
C8—C9—C10—C111.7 (3)C15—C16—C17—C17i0.3 (4)
C9—C10—C11—C121.4 (3)C15—C16—C17—C18179.4 (2)
C10—C11—C12—C70.2 (3)C16—C17—C18—O5133.3 (3)
C10—C11—C12—C13179.8 (2)C17i—C17—C18—O545.8 (4)
C8—C7—C12—C111.4 (3)C16—C17—C18—O645.6 (3)
C14—C7—C12—C11176.75 (19)C17i—C17—C18—O6135.3 (3)
C8—C7—C12—C13178.55 (19)C4—C5—N1—C10.1 (3)
C14—C7—C12—C133.3 (3)C2—C1—N1—C50.1 (3)
C11—C12—C13—O12.6 (3)C6—C1—N1—C5179.7 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2A···O20.84 (1)1.52 (1)2.365 (2)178 (4)
N1—H1···O1ii0.861.842.697 (2)176
N1—H1···O2ii0.862.593.194 (2)128
O6—H6···O4iii0.83 (1)1.84 (1)2.640 (2)162 (3)
C2—H2···O5iv0.932.443.244 (3)144
C5—H5···O2ii0.932.603.207 (3)124
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2A···O20.842 (10)1.524 (10)2.365 (2)178 (4)
N1—H1···O1i0.861.842.697 (2)176
N1—H1···O2i0.862.593.194 (2)128
O6—H6···O4ii0.830 (10)1.840 (14)2.640 (2)162 (3)
C2—H2···O5iii0.932.443.244 (3)144
C5—H5···O2i0.932.603.207 (3)124
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H8N+·C8H5O4·0.5C8H6O4
Mr342.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)13.0967 (8), 8.1049 (4), 30.3013 (18)
β (°) 97.543 (3)
V3)3188.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.975, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
25680, 3706, 1961
Rint0.059
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.139, 1.00
No. of reflections3706
No. of parameters243
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAbdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Moty, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637–647.  Web of Science PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGirgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds