metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Aqua­(4-bromo­benzoato-κO)bis­­(1,10-phenanthroline-κ2N,N′)manganese(II) 4-bromo­benzoate dihydrate

aCollge of Pharmaceutics and Material Engineering, Jinhua Polytechnic, Jinhua, Zhejiang 321007, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com

Edited by J. Simpson, University of Otago, New Zealand (Received 14 May 2016; accepted 22 May 2016; online 27 May 2016)

The asymmetric unit of the title compound, [Mn(C7H4BrO2)(C12H8N2)2(H2O)](C7H4BrO2)·2H2O, consists of a monovalent [Mn(C7H4BrO2)(C12H8N2)2(H2O)]+ complex cation, a 4-bromo­benzoate anion and two lattice water mol­ecules. In the complex cation, the MnII atom is coordinated by four N atoms from two bidentate chelating 1,10-phenanthroline (phen) ligands and two O atoms, one from a 4-bromo­benzoate anion and the other from a coordinating water mol­ecule. This completes an MnN4O2 coordination sphere with a distorted octa­hedral geometry. The Br atom of the bromo­benzoato ligand is equally disordered over two sites. In the crystal, the complex cations are connected to each other via O—H⋯O, O—H⋯Br and C—H⋯O hydrogen bonds and ππ stacking inter­actions [closest separation = 3.492 (4) Å]. ππ contacts [closest separation = 3.771 (4) Å] also link the complex cations to both the coordinated and non-coordinating 4-bromo­benzoate anions. Overall, these contacts generate a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The structures [Mn(phen)2(H2O)(C7H4FO2)](C7H4FO2)·2H2O, (Li et al., 2011[Li, Y.-X., Zhang, B.-S., Wu, C.-S., Zheng, M. & Lin, J.-L. (2011). Acta Cryst. E67, m1853.]) and [Mn2(phen)4(H2O)(C7H4IO2)](I)2·2H2O (Zhang, 2007[Zhang, B.-S. (2007). Z. Kristallogr. New Cryst. Struct. 222, 274-276.]) with Mn2+ cations and 1,10-phenanthroline (phen) ligands have been reported. We report here the synthesis and structure of the related complex aqua­(4-bromo­benzoato-κO)bis­(1,10-phenanthroline-κ2N,N′)-manganese(II) 4-bromo­benzoate dihydrate. The title complex is closely related to the compounds [Mn(phen)2(H2O)(C7H4FO2)](C7H4FO2)·2H2O, (Li et al., 2011[Li, Y.-X., Zhang, B.-S., Wu, C.-S., Zheng, M. & Lin, J.-L. (2011). Acta Cryst. E67, m1853.]) and [Zn(H2O)(phen)2(C7H4BrO2)](C7H4BrO2)·2H2O, (Zhang et al., 2010[Zhang, B.-S., Wu, C.-S. & Xu, W. (2010). Acta Cryst. E66, m1426.]).

The title compound comprises an [Mn(H2O)(phen)2(C7H4BrO2)]+complex cation with the charge-balanced by a 4-bromo­benzoate anion. Two lattice water mol­ecules complete the asymmetric unit (Fig. 1[link]). Within the cation, the MnII atom is coordinated by four N atoms from two bidentate chelating 1,10-phenanthroline (phen)ligands and two O atoms, one from a 4-bromo­benzoate anion and the other from a coordinating water mol­ecule. This completes an MnN4O2 coordination sphere with distorted octa­hedral geometry. The Mn—N bond lengths are in the range of 2.282 (5)–2.343 (5) Å with Mn—O bond lengths of 2.114 (5) and 2.128 (5) Å. The two crystallographically independent chelating phen ligands are almost perfectly planar (r.m.s. deviations = 0.018 and 0.032 Å, respectively). The dihedral angle between the mean planes of the phen ligands is 87.9 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, an extensive series of O—H⋯O, O—H⋯Br and C—H⋯O hydrogen bonds stabilize the structure (Table 1[link] and Fig. 2[link]). In addition, inversion-related offset ππ contacts occur between adjacent N3,N4 phen ligands with Cg6⋯Cg6v = 3.492 (4) and Cg6⋯Cg9v = 3.689 (4) Å [symmetry code: (v) 1 − x, −y, −z; Cg6 and Cg9 are the centroids of the N4/C28–C31 and C24–C27/C21/C32 rings, respectively]. Furthermore there are other significant ππ contacts Cg4⋯Cg8vi =3.948 (4) Å and Cg3⋯Cg10vii = 3.771 (4) Å between the aromatic rings of the other phen ligand and the benzene rings of both the coordinating and non-coordinating anions [symmetry codes: (vi) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (vii) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; Cg3, Cg4, Cg8 and Cg10 are the centroids of the N1/C1–C4/C12, N2/C7–C11, C13–C18 and C33–C38 rings, respectively]. This extensive series of contacts combines to generate a three dimensional network structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3WA⋯O4i 0.85 1.83 2.656 (7) 162
O3—H3WB⋯O7 0.85 1.85 2.696 (7) 179
O6—H6WA⋯O5 0.85 2.07 2.751 (8) 136
O6—H6WB⋯O5ii 0.85 2.33 2.823 (7) 118
O6—H6WB⋯O7iii 0.85 2.51 2.798 (9) 101
O7—H7WA⋯Br2 0.85 2.58 3.256 (6) 137
O7—H7WB⋯O6iii 0.85 2.20 2.798 (9) 127
C21—H21A⋯O2 0.93 2.59 3.091 (9) 115
C28—H28A⋯O1iv 0.93 2.57 3.402 (8) 149
C30—H30A⋯O3 0.93 2.53 3.107 (8) 121
Symmetry codes: (i) x-1, y, z; (ii) -x+3, -y+1, -z; (iii) -x+2, -y+1, -z; (iv) -x+1, -y, -z.
[Figure 2]
Figure 2
A packing diagram, viewed along the b axis. Dashed lines indicate hydrogen bonds.

Synthesis and crystallization

MnCl2·2H2O (0.0811 g, 0.50 mmol) was dissolved in an appropriate amount of water, and then 1 M Na2CO3 solution was added. MnCO3 was separated by filtration and was then washed five times with distilled water. The freshly prepared MnCO3, 1,10-phenanthroline(phen)·H2O, 0.0493 g, 0.25 mmol) and 4-bromo­benzoic acid (0.0516 g, 0.25 mmol), CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2.0 h. Subsequently, the resulting suspension was heated in a 23 ml Teflon- lined stainless steel autoclave at 433 K for 5800 minutes. After the autoclave was cooled to room temperature over 2600 minutes, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation over 1 month afforded yellow block-like single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atom Br1 of the bromo­benzoato ligand is equally disordered over two sites.

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C7H4BrO2)(C12H8N2)2(H2O)](C7H4BrO2)·2H2O
Mr 869.42
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.193 (3), 11.912 (2), 21.253 (4)
β (°) 93.86 (3)
V3) 3584.9 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.65
Crystal size (mm) 0.49 × 0.40 × 0.35
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation. Tokyo Japan.])
Tmin, Tmax 0.289, 0.399
No. of measured, independent and observed [I > 2σ(I)] reflections 26000, 5952, 3857
Rint 0.093
(sin θ/λ)max−1) 0.583
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.205, 1.13
No. of reflections 5952
No. of parameters 473
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −1.01
Computer programs: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation. Tokyo Japan.]), CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC. The Woodlands. Texas, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Synthesis and crystallization top

MnCl2.2H2O (0.0811 g, 0.50 mmol) was dissolved in an appropriate amount of water, and then 1M Na2CO3 solution was added. MnCO3 was separated by filtration and was then washed 5 times with distilled water. The freshly prepared MnCO3, 1,10-phenanthroline(phen).H2O, 0.0493 g, 0.25 mmol) and 4-bromo­benzoic acid (0.0516 g, 0.25 mmol), CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2.0 h. Subsequently, the resulting suspension was heated in a 23 ml Teflon- lined stainless steel autoclave at 433 K for 5800 minutes. After the autoclave was cooled to room temperature over 2600 minutes, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation over 1 month afforded yellow block-like single crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The Br1 atom of the bromo­benzoato ligand is equally disordered over two sites.

Experimental top

MnCl2·2H2O (0.0811 g, 0.50 mmol) was dissolved in an appropriate amount of water, and then 1 M Na2CO3 solution was added. MnCO3 was separated by filtration and was then washed five times with distilled water. The freshly prepared MnCO3, 1,10-phenanthroline(phen)·H2O, 0.0493 g, 0.25 mmol) and 4-bromobenzoic acid (0.0516 g, 0.25 mmol), CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2.0 h. Subsequently, the resulting suspension was heated in a 23 ml Teflon- lined stainless steel autoclave at 433 K for 5800 minutes. After the autoclave was cooled to room temperature over 2600 minutes, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation over 1 month afforded yellow block-like single crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Atom Br1 of the bromobenzoato ligand is equally disordered over two sites.

Structure description top

The structures [Mn(phen)2(H2O)(C7H4FO2)](C7H4FO2)·2H2O, (Li et al., 2011) and [Mn2(phen)4(H2O)(C7H4IO2)](I)2·2H2O (Zhang, 2007) with Mn2+ cations and 1,10-phenanthroline (phen) ligands have been reported. We report here the synthesis and structure of the related complex aqua(4-bromobenzoato-κO)bis(1,10-phenanthroline-κ2N,N')-manganese(II) 4-bromobenzoate dihydrate. The title complex is also closely related to the compounds [Mn(phen)2(H2O)(C7H4FO2)](C7H4FO2)·2H2O, (Li et al., 2011) and [Zn(H2O)(phen)2(C7H4BrO2)](C7H4BrO2)·2H2O, (Zhang et al., 2010).

The title compound comprises an [Mn(H2O)(phen)2(C7H4BrO2)]+complex cation with the charge-balanced by a 4-bromobenzoate anion. Two lattice water molecules complete the asymmetric unit (Fig.1). Within the cation, the MnII atom is coordinated by four N atoms from two bidentate chelating 1,10-phenanthroline (phen)ligands and two O atoms, one from a 4-bromobenzoate anion and the other from a coordinating water molecule. This completes an MnN4O2 coordination sphere with distorted octahedral geometry. The Mn—N bond lengths are in the range of 2.282 (5)–2.343 (5) Å with Mn—O bond lengths of 2.114 (5) and 2.128 (5) Å. The two crystallographically independent chelating phen ligands are almost perfectly planar [give r.m.s. deviations]. The dihedral angle between the mean planes of the phen ligands is 87.9 (1)°.

In the crystal, an extensive series of O—H···O, O—H···Br and C—H···O hydrogen bonds stabilize the structure (Table 1). In addition, inversion-related offset ππ contacts occur between adjacent N3,N4 phen ligands with Cg6···Cg6v = 3.492 (4) and Cg6···Cg9v = 3.689 (4) Å [symmetry code: (v) 1 - x, -y, -z; Cg6 and Cg9 are the centroids of the N4/C28–C31 and C24–C27/C21/C32 rings, respectively]. Furthermore there are other significant ππ contacts Cg4···Cg8vi =3.948 (4) Å and Cg3···Cg10vii = 3.771 (4) Å between the aromatic rings of the other phen ligand and the benzene rings of both the coordinating and non-coordinating anions [symmetry codes: (vi) 3/2 - x, 1/2 + y, 1/2 - z; (vii) 3/2 - x, -1/2 + y, 1/2 - z; Cg3, Cg4, Cg8 and Cg10 are the centroids of the N1/C1–C4/C12, N2/C7–C11, C13–C18 and C33–C38 rings, respectively]. This extensive series of contacts combines to generate a three dimensional network structure.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram, viewed along the b axis. Dashed lines indicate hydrogen bonds.
Aqua(4-bromobenzoato-κO)bis(1,10-phenanthroline-κ2N,N')manganese(II) 4-bromobenzoate dihydrate top
Crystal data top
[Mn(C7H4BrO2)(C12H8N2)2(H2O)](C7H4BrO2)·2H2OF(000) = 1748
Mr = 869.42Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 14746 reflections
a = 14.193 (3) Åθ = 3.0–24.5°
b = 11.912 (2) ŵ = 2.65 mm1
c = 21.253 (4) ÅT = 293 K
β = 93.86 (3)°Block, yellow
V = 3584.9 (12) Å30.49 × 0.40 × 0.35 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5952 independent reflections
Radiation source: fine-focus sealed tube3857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ω scansθmax = 24.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.289, Tmax = 0.399k = 1213
26000 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.0898P)2 + 6.5748P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
5952 reflectionsΔρmax = 0.66 e Å3
473 parametersΔρmin = 1.01 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (6)
Crystal data top
[Mn(C7H4BrO2)(C12H8N2)2(H2O)](C7H4BrO2)·2H2OV = 3584.9 (12) Å3
Mr = 869.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.193 (3) ŵ = 2.65 mm1
b = 11.912 (2) ÅT = 293 K
c = 21.253 (4) Å0.49 × 0.40 × 0.35 mm
β = 93.86 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5952 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3857 reflections with I > 2σ(I)
Tmin = 0.289, Tmax = 0.399Rint = 0.093
26000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0566 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.13Δρmax = 0.66 e Å3
5952 reflectionsΔρmin = 1.01 e Å3
473 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.56915 (7)0.11055 (8)0.18912 (4)0.0445 (3)
N10.4353 (4)0.1308 (4)0.2469 (2)0.0484 (13)
N20.6170 (4)0.1671 (5)0.2888 (2)0.0506 (13)
N30.5305 (4)0.0764 (4)0.1816 (2)0.0487 (13)
N40.4701 (4)0.0841 (4)0.0990 (2)0.0449 (12)
Br11.1551 (5)0.0191 (13)0.0874 (6)0.0857 (12)0.50
Br1'1.1764 (5)0.0103 (13)0.0992 (6)0.0857 (12)0.50
Br20.93834 (5)0.38650 (7)0.10085 (4)0.0712 (3)
O10.7019 (3)0.0811 (4)0.1526 (2)0.0626 (13)
O20.7475 (4)0.0247 (5)0.2351 (2)0.0722 (14)
O30.5724 (3)0.2821 (4)0.1613 (2)0.0631 (12)
H3WA0.52940.32890.16870.076*
H3WB0.61860.32400.15340.076*
O41.4147 (4)0.4000 (5)0.1686 (2)0.0690 (14)
O51.4133 (3)0.4581 (5)0.0697 (2)0.0701 (14)
O61.4030 (4)0.4556 (5)0.0600 (3)0.0849 (16)
H6WA1.39860.49250.02610.102*
H6WB1.42640.50150.08530.102*
O70.7205 (4)0.4136 (5)0.1376 (3)0.0854 (17)
H7WA0.77540.38850.14800.102*
H7WB0.71470.44190.10090.102*
C10.3473 (5)0.1152 (6)0.2263 (3)0.0599 (18)
H1A0.33500.09310.18460.072*
C20.2707 (5)0.1299 (7)0.2636 (4)0.072 (2)
H2A0.20920.11690.24720.086*
C30.2883 (5)0.1638 (6)0.3245 (4)0.069 (2)
H3A0.23850.17570.34990.082*
C40.3804 (5)0.1807 (6)0.3485 (3)0.0576 (17)
C50.4046 (6)0.2155 (7)0.4125 (3)0.069 (2)
H5A0.35710.22610.44000.082*
C60.4940 (7)0.2325 (7)0.4325 (3)0.074 (2)
H6A0.50780.25380.47420.088*
C70.5697 (5)0.2192 (6)0.3921 (3)0.0557 (17)
C80.6649 (6)0.2411 (6)0.4104 (3)0.071 (2)
H8A0.68190.26440.45140.085*
C90.7325 (6)0.2282 (7)0.3684 (3)0.072 (2)
H9A0.79540.24410.38010.086*
C100.7060 (5)0.1913 (7)0.3082 (3)0.0642 (19)
H10A0.75260.18290.27980.077*
C110.5493 (5)0.1832 (5)0.3304 (3)0.0463 (15)
C120.4530 (4)0.1634 (5)0.3078 (3)0.0464 (15)
C130.8606 (5)0.0191 (5)0.1618 (3)0.0489 (15)
C140.8805 (5)0.0655 (7)0.1047 (4)0.067 (2)
H14A0.83250.09880.07930.080*
C150.9710 (6)0.0628 (8)0.0853 (4)0.078 (2)
H15A0.98370.09340.04650.093*
C161.0420 (5)0.0158 (6)0.1224 (4)0.0591 (18)
C171.0244 (5)0.0307 (6)0.1787 (4)0.0615 (19)
H17A1.07330.06320.20380.074*
C180.9340 (5)0.0297 (6)0.1986 (3)0.0519 (16)
H18A0.92200.06200.23710.062*
C190.7627 (5)0.0248 (6)0.1851 (3)0.0571 (18)
C210.5591 (5)0.1556 (6)0.2225 (3)0.0543 (17)
H21A0.59650.13460.25820.065*
C220.5360 (5)0.2685 (6)0.2146 (4)0.0649 (19)
H22A0.55690.32100.24480.078*
C230.4827 (5)0.3015 (6)0.1623 (4)0.0620 (19)
H23A0.46730.37680.15620.074*
C240.4514 (4)0.2215 (6)0.1179 (3)0.0508 (16)
C250.3961 (5)0.2478 (7)0.0603 (3)0.0630 (19)
H25A0.38120.32220.05110.076*
C260.3658 (5)0.1671 (7)0.0197 (3)0.0620 (19)
H26A0.32970.18680.01680.074*
C270.3875 (4)0.0527 (6)0.0312 (3)0.0500 (16)
C280.3580 (5)0.0365 (7)0.0096 (3)0.0597 (19)
H28A0.32050.02170.04620.072*
C290.3845 (5)0.1437 (6)0.0047 (3)0.0561 (17)
H29A0.36460.20250.02170.067*
C300.4409 (4)0.1644 (6)0.0587 (3)0.0495 (15)
H30A0.45950.23790.06730.059*
C310.4436 (4)0.0226 (5)0.0856 (3)0.0441 (14)
C320.4752 (4)0.1087 (5)0.1296 (3)0.0465 (15)
C331.2670 (5)0.4084 (5)0.1103 (3)0.0472 (15)
C341.2206 (5)0.3675 (6)0.1606 (3)0.0594 (18)
H34A1.25520.34620.19740.071*
C351.1240 (6)0.3579 (7)0.1569 (4)0.070 (2)
H35A1.09380.32850.19080.084*
C361.0719 (5)0.3915 (6)0.1036 (3)0.0579 (17)
C371.1172 (5)0.4316 (6)0.0528 (3)0.0599 (18)
H37A1.08230.45270.01610.072*
C381.2146 (5)0.4403 (6)0.0564 (3)0.0591 (18)
H38A1.24500.46780.02220.071*
C391.3731 (5)0.4228 (6)0.1165 (3)0.0524 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0424 (6)0.0504 (6)0.0409 (5)0.0014 (4)0.0039 (4)0.0048 (4)
N10.040 (3)0.058 (3)0.048 (3)0.002 (2)0.008 (2)0.003 (2)
N20.051 (3)0.057 (3)0.044 (3)0.002 (3)0.005 (2)0.009 (2)
N30.054 (3)0.046 (3)0.046 (3)0.002 (3)0.003 (2)0.003 (2)
N40.047 (3)0.049 (3)0.038 (3)0.007 (2)0.001 (2)0.000 (2)
Br10.020 (3)0.134 (2)0.103 (4)0.005 (3)0.003 (2)0.019 (3)
Br1'0.020 (3)0.134 (2)0.103 (4)0.005 (3)0.003 (2)0.019 (3)
Br20.0485 (5)0.0924 (7)0.0734 (5)0.0039 (4)0.0098 (4)0.0010 (4)
O10.043 (3)0.072 (3)0.072 (3)0.012 (2)0.000 (2)0.006 (3)
O20.054 (3)0.100 (4)0.063 (3)0.005 (3)0.009 (2)0.010 (3)
O30.050 (3)0.051 (3)0.089 (3)0.000 (2)0.004 (2)0.000 (2)
O40.051 (3)0.095 (4)0.060 (3)0.008 (3)0.004 (2)0.004 (3)
O50.053 (3)0.095 (4)0.064 (3)0.007 (3)0.015 (2)0.014 (3)
O60.0841 (18)0.0868 (18)0.0837 (18)0.0013 (10)0.0060 (10)0.0003 (10)
O70.061 (3)0.108 (5)0.089 (4)0.010 (3)0.011 (3)0.009 (3)
C10.038 (4)0.082 (5)0.061 (4)0.006 (3)0.014 (3)0.006 (3)
C20.042 (4)0.080 (6)0.095 (6)0.004 (4)0.011 (4)0.005 (4)
C30.063 (5)0.068 (5)0.079 (5)0.007 (4)0.035 (4)0.005 (4)
C40.058 (4)0.051 (4)0.066 (4)0.002 (3)0.020 (3)0.004 (3)
C50.083 (6)0.068 (5)0.058 (4)0.002 (4)0.029 (4)0.005 (4)
C60.105 (7)0.067 (5)0.050 (4)0.004 (5)0.016 (4)0.009 (3)
C70.075 (5)0.053 (4)0.039 (3)0.003 (4)0.006 (3)0.003 (3)
C80.097 (6)0.068 (5)0.045 (4)0.002 (4)0.011 (4)0.010 (3)
C90.069 (5)0.082 (6)0.062 (4)0.004 (4)0.013 (4)0.015 (4)
C100.042 (4)0.087 (6)0.063 (4)0.002 (4)0.002 (3)0.023 (4)
C110.056 (4)0.043 (4)0.040 (3)0.007 (3)0.006 (3)0.001 (3)
C120.051 (4)0.045 (4)0.044 (3)0.007 (3)0.015 (3)0.003 (3)
C130.051 (4)0.044 (4)0.052 (4)0.000 (3)0.001 (3)0.012 (3)
C140.058 (5)0.076 (5)0.066 (5)0.005 (4)0.003 (4)0.015 (4)
C150.059 (5)0.100 (6)0.077 (5)0.010 (5)0.025 (4)0.018 (5)
C160.040 (4)0.063 (5)0.074 (5)0.003 (3)0.001 (3)0.009 (4)
C170.053 (4)0.055 (4)0.075 (5)0.009 (3)0.010 (4)0.013 (4)
C180.045 (4)0.056 (4)0.054 (4)0.008 (3)0.004 (3)0.006 (3)
C190.058 (4)0.057 (4)0.058 (4)0.006 (4)0.010 (4)0.019 (3)
C210.045 (4)0.068 (5)0.050 (4)0.001 (3)0.008 (3)0.006 (3)
C220.059 (5)0.058 (5)0.079 (5)0.005 (4)0.014 (4)0.016 (4)
C230.054 (4)0.046 (4)0.088 (5)0.001 (3)0.020 (4)0.006 (4)
C240.041 (3)0.055 (4)0.057 (4)0.003 (3)0.013 (3)0.007 (3)
C250.061 (5)0.061 (5)0.068 (5)0.013 (4)0.015 (4)0.015 (4)
C260.046 (4)0.085 (6)0.056 (4)0.011 (4)0.007 (3)0.020 (4)
C270.038 (3)0.067 (5)0.045 (3)0.001 (3)0.004 (3)0.011 (3)
C280.050 (4)0.089 (6)0.040 (3)0.004 (4)0.004 (3)0.006 (3)
C290.051 (4)0.071 (5)0.045 (4)0.012 (4)0.003 (3)0.004 (3)
C300.049 (4)0.053 (4)0.046 (3)0.008 (3)0.002 (3)0.005 (3)
C310.045 (4)0.050 (4)0.038 (3)0.002 (3)0.011 (3)0.002 (3)
C320.044 (4)0.053 (4)0.044 (3)0.000 (3)0.013 (3)0.004 (3)
C330.047 (4)0.045 (4)0.050 (4)0.004 (3)0.006 (3)0.002 (3)
C340.043 (4)0.072 (5)0.064 (4)0.007 (3)0.006 (3)0.018 (3)
C350.071 (5)0.076 (5)0.066 (5)0.001 (4)0.033 (4)0.016 (4)
C360.058 (4)0.060 (4)0.057 (4)0.001 (3)0.014 (3)0.007 (3)
C370.052 (4)0.079 (5)0.048 (4)0.000 (4)0.004 (3)0.003 (3)
C380.057 (4)0.071 (5)0.050 (4)0.003 (4)0.003 (3)0.001 (3)
C390.050 (4)0.049 (4)0.059 (4)0.001 (3)0.003 (3)0.007 (3)
Geometric parameters (Å, º) top
Mn1—O12.114 (5)C10—H10A0.9300
Mn1—O32.128 (5)C11—C121.438 (9)
Mn1—N22.282 (5)C13—C141.380 (9)
Mn1—N32.297 (5)C13—C181.387 (9)
Mn1—N42.320 (5)C13—C191.508 (9)
Mn1—N12.343 (5)C14—C151.376 (11)
N1—C11.310 (8)C14—H14A0.9300
N1—C121.358 (7)C15—C161.357 (11)
N2—C101.334 (8)C15—H15A0.9300
N2—C111.363 (7)C16—C171.358 (10)
N3—C211.328 (8)C17—C181.379 (10)
N3—C321.367 (8)C17—H17A0.9300
N4—C301.331 (8)C18—H18A0.9300
N4—C311.351 (8)C21—C221.392 (10)
Br1—C161.814 (13)C21—H21A0.9300
Br1'—C162.003 (12)C22—C231.360 (10)
Br2—C361.894 (7)C22—H22A0.9300
O1—C191.261 (8)C23—C241.393 (10)
O2—C191.246 (8)C23—H23A0.9300
O3—H3WA0.8500C24—C321.404 (9)
O3—H3WB0.8501C24—C251.443 (9)
O4—C391.250 (8)C25—C261.343 (10)
O5—C391.253 (8)C25—H25A0.9300
O6—H6WA0.8500C26—C271.415 (10)
O6—H6WB0.8499C26—H26A0.9300
O7—H7WA0.8500C27—C311.404 (9)
O7—H7WB0.8499C27—C281.417 (10)
C1—C21.398 (10)C28—C291.359 (10)
C1—H1A0.9300C28—H28A0.9300
C2—C31.363 (11)C29—C301.376 (9)
C2—H2A0.9300C29—H29A0.9300
C3—C41.385 (10)C30—H30A0.9300
C3—H3A0.9300C31—C321.439 (9)
C4—C121.404 (8)C33—C381.375 (9)
C4—C51.442 (10)C33—C341.382 (9)
C5—C61.326 (11)C33—C391.513 (9)
C5—H5A0.9300C34—C351.372 (10)
C6—C71.429 (10)C34—H34A0.9300
C6—H6A0.9300C35—C361.371 (10)
C7—C111.392 (8)C35—H35A0.9300
C7—C81.404 (10)C36—C371.378 (10)
C8—C91.363 (11)C37—C381.384 (10)
C8—H8A0.9300C37—H37A0.9300
C9—C101.380 (9)C38—H38A0.9300
C9—H9A0.9300
O1—Mn1—O391.20 (19)C16—C15—C14120.4 (7)
O1—Mn1—N299.94 (19)C16—C15—H15A119.8
O3—Mn1—N287.91 (19)C14—C15—H15A119.8
O1—Mn1—N391.62 (19)C15—C16—C17120.5 (7)
O3—Mn1—N3157.11 (18)C15—C16—Br1113.3 (7)
N2—Mn1—N3113.92 (19)C17—C16—Br1126.2 (7)
O1—Mn1—N4100.37 (18)C15—C16—Br1'123.5 (7)
O3—Mn1—N485.67 (18)C17—C16—Br1'116.0 (6)
N2—Mn1—N4158.80 (18)Br1—C16—Br1'10.4 (7)
N3—Mn1—N471.48 (18)C16—C17—C18119.8 (7)
O1—Mn1—N1169.49 (19)C16—C17—H17A120.1
O3—Mn1—N194.60 (18)C18—C17—H17A120.1
N2—Mn1—N171.58 (19)C17—C18—C13120.7 (6)
N3—Mn1—N186.44 (18)C17—C18—H18A119.7
N4—Mn1—N188.82 (18)C13—C18—H18A119.7
C1—N1—C12118.1 (5)O2—C19—O1124.6 (7)
C1—N1—Mn1126.8 (4)O2—C19—C13118.3 (7)
C12—N1—Mn1115.1 (4)O1—C19—C13117.1 (6)
C10—N2—C11117.6 (5)N3—C21—C22123.3 (7)
C10—N2—Mn1124.6 (4)N3—C21—H21A118.4
C11—N2—Mn1117.7 (4)C22—C21—H21A118.4
C21—N3—C32117.5 (6)C23—C22—C21119.4 (7)
C21—N3—Mn1125.6 (5)C23—C22—H22A120.3
C32—N3—Mn1116.8 (4)C21—C22—H22A120.3
C30—N4—C31118.0 (5)C22—C23—C24119.4 (7)
C30—N4—Mn1125.4 (4)C22—C23—H23A120.3
C31—N4—Mn1116.5 (4)C24—C23—H23A120.3
C19—O1—Mn1118.7 (4)C23—C24—C32118.2 (6)
Mn1—O3—H3WA123.4C23—C24—C25123.8 (7)
Mn1—O3—H3WB130.6C32—C24—C25117.9 (6)
H3WA—O3—H3WB103.0C26—C25—C24121.5 (7)
H6WA—O6—H6WB105.0C26—C25—H25A119.3
H7WA—O7—H7WB114.2C24—C25—H25A119.3
N1—C1—C2123.6 (7)C25—C26—C27121.4 (6)
N1—C1—H1A118.2C25—C26—H26A119.3
C2—C1—H1A118.2C27—C26—H26A119.3
C3—C2—C1118.4 (7)C31—C27—C26119.5 (6)
C3—C2—H2A120.8C31—C27—C28116.1 (6)
C1—C2—H2A120.8C26—C27—C28124.3 (6)
C2—C3—C4120.0 (6)C29—C28—C27120.1 (6)
C2—C3—H3A120.0C29—C28—H28A120.0
C4—C3—H3A120.0C27—C28—H28A120.0
C3—C4—C12117.8 (6)C28—C29—C30119.4 (7)
C3—C4—C5123.2 (6)C28—C29—H29A120.3
C12—C4—C5119.0 (7)C30—C29—H29A120.3
C6—C5—C4120.5 (7)N4—C30—C29123.1 (7)
C6—C5—H5A119.7N4—C30—H30A118.4
C4—C5—H5A119.7C29—C30—H30A118.4
C5—C6—C7122.2 (7)N4—C31—C27123.2 (6)
C5—C6—H6A118.9N4—C31—C32117.6 (5)
C7—C6—H6A118.9C27—C31—C32119.2 (6)
C11—C7—C8116.9 (6)N3—C32—C24122.1 (6)
C11—C7—C6118.9 (7)N3—C32—C31117.5 (6)
C8—C7—C6124.2 (6)C24—C32—C31120.4 (6)
C9—C8—C7120.3 (6)C38—C33—C34118.9 (6)
C9—C8—H8A119.8C38—C33—C39121.4 (6)
C7—C8—H8A119.8C34—C33—C39119.7 (6)
C8—C9—C10118.9 (7)C35—C34—C33120.8 (7)
C8—C9—H9A120.6C35—C34—H34A119.6
C10—C9—H9A120.6C33—C34—H34A119.6
N2—C10—C9123.3 (7)C36—C35—C34120.2 (6)
N2—C10—H10A118.4C36—C35—H35A119.9
C9—C10—H10A118.4C34—C35—H35A119.9
N2—C11—C7123.0 (6)C35—C36—C37119.7 (7)
N2—C11—C12117.1 (5)C35—C36—Br2119.9 (5)
C7—C11—C12119.9 (6)C37—C36—Br2120.4 (6)
N1—C12—C4122.1 (6)C36—C37—C38119.9 (7)
N1—C12—C11118.4 (5)C36—C37—H37A120.1
C4—C12—C11119.4 (6)C38—C37—H37A120.1
C14—C13—C18118.2 (6)C33—C38—C37120.5 (6)
C14—C13—C19121.2 (6)C33—C38—H38A119.7
C18—C13—C19120.5 (6)C37—C38—H38A119.7
C15—C14—C13120.4 (7)O4—C39—O5124.4 (6)
C15—C14—H14A119.8O4—C39—C33117.5 (6)
C13—C14—H14A119.8O5—C39—C33118.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3WA···O4i0.851.832.656 (7)162
O3—H3WB···O70.851.852.696 (7)179
O6—H6WA···O50.852.072.751 (8)136
O6—H6WB···O5ii0.852.332.823 (7)118
O6—H6WB···O7iii0.852.512.798 (9)101
O7—H7WA···Br20.852.583.256 (6)137
O7—H7WB···O6iii0.852.202.798 (9)127
C21—H21A···O20.932.593.091 (9)115
C28—H28A···O1iv0.932.573.402 (8)149
C30—H30A···O30.932.533.107 (8)121
Symmetry codes: (i) x1, y, z; (ii) x+3, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3WA···O4i0.851.832.656 (7)162
O3—H3WB···O70.851.852.696 (7)179
O6—H6WA···O50.852.072.751 (8)136
O6—H6WB···O5ii0.852.332.823 (7)118
O6—H6WB···O7iii0.852.512.798 (9)101
O7—H7WA···Br20.852.583.256 (6)137
O7—H7WB···O6iii0.852.202.798 (9)127
C21—H21A···O20.932.593.091 (9)115
C28—H28A···O1iv0.932.573.402 (8)149
C30—H30A···O30.932.533.107 (8)121
Symmetry codes: (i) x1, y, z; (ii) x+3, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C7H4BrO2)(C12H8N2)2(H2O)](C7H4BrO2)·2H2O
Mr869.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.193 (3), 11.912 (2), 21.253 (4)
β (°) 93.86 (3)
V3)3584.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.65
Crystal size (mm)0.49 × 0.40 × 0.35
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.289, 0.399
No. of measured, independent and
observed [I > 2σ(I)] reflections
26000, 5952, 3857
Rint0.093
(sin θ/λ)max1)0.583
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.205, 1.13
No. of reflections5952
No. of parameters473
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 1.01

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 51343003).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation. Tokyo Japan.  Google Scholar
First citationLi, Y.-X., Zhang, B.-S., Wu, C.-S., Zheng, M. & Lin, J.-L. (2011). Acta Cryst. E67, m1853.  CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation. Tokyo Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC. The Woodlands. Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B.-S. (2007). Z. Kristallogr. New Cryst. Struct. 222, 274–276.  CAS Google Scholar
First citationZhang, B.-S., Wu, C.-S. & Xu, W. (2010). Acta Cryst. E66, m1426.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds