organic compounds
5-Bromo-1-methylindoline-2,3-dione
aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve d'Ascq Cedex, France, cUSR 3290 Miniaturisation pour l'analyse, la synthèse et la protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille1, France, and dLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kharbachy26@gmail.com
In the title compound, C9H6BrNO2, the indoline ring system, the two ketone O atoms and the Br atom are nearly coplanar, with the largest deviation from the mean plane being −0.1025 (4) Å. In the crystal, molecules are linked by two weak C—H⋯O hydrogen bonds and π–π interactions [inter-centroid distance = 3.510 (2) Å], forming a three-dimensional structure.
Keywords: crystal structure; Indoline ring; hydrogen bonds; π–π interaction.
CCDC reference: 1479815
Structure description
Isatin derivatives have a wide range of biological properties. They display moderate antimicrobial effects in a wide variety of preclinical antimicrobial models. Isatin also exhibits other biological activities, such as anticonvulsant, cytotoxic, antifungal etc. Isatin and its analogs are versatile substrates, which can be used for the synthesis of numerous (Sridhar et al., 2001; Sridhar & Sreenivasulu, 2001; Sarangapani & Reddy, 1994; Varma et al., 2004; Pandeya et al., 1999; Aboul-Fadl et al., 2010). In our work, we are interested in developing a new 5-bromoisatin and continuing the research work of Qachchachi to explore other applications (Qachchachi et al., 2013, 2014; Kharbach et al., 2016). The present paper reports the synthesis and of 5-bromo-1-methylindoline-2,3-dione (see Scheme).
The title compound is built up from two fused five- and six-membered rings linked to two ketone O atoms, a Br atom and a methyl group, as shown in Fig. 1. Besides the methyl H atoms, all the atoms of the structure are almost coplanar, with a maximum deviation of −0.1025 (4) Å for the Br1 atom.
In the crystal, molecules are linked by two weak C—H⋯O hydrogen bonds (Table 1) and π–π interactions [inter-centroid distance = 3.510 (2) Å], forming a three-dimensional network as shown in Fig. 2.
Synthesis and crystallization
A mixture of 5-bromoisatin (0.4 g, 1.76 mmol) and iodomethane (0.12 ml, 0.84 mmol) in DMF (25 ml) in the presence of a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. The title compound was obtained in 69% yield (m.p. 446 K). The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals suitable for the X-ray diffraction.
Refinement
Crystal data, data collection and structure . The reflections 011 and 002 were affected by the beam-stop and were removed during the refinement.
details are summarized in Table 2Structural data
CCDC reference: 1479815
10.1107/S2414314616007926/sj4033sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616007926/sj4033Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616007926/sj4033Isup3.cml
A mixture of 5-bromoisatin (0.4 g, 1.76 mmol) and iodomethane (0.12 ml, 0.84 mmol) in DMF (25 ml) in the presence of a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. The title compound was obtained in 69% yield (m.p. 446 K). The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals suitable for the X-ray diffraction.
Crystal data, data collection and structure
details are summarized in Table 2. The H atoms were located in a difference map and treated as riding, with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(aromatic) and Uiso(H) = 1.5 Ueq(methyl). The reflections 011 and 002 affected by the beam-stop are removed during the refinement.Isatin derivatives have a wide range of biological properties. They have display moderate antimicrobial effect in a wide variety of preclinical antimicrobial models. Isatin is also exerting other biological activities, such as anticonvulsant activity, cytotoxic activity, antifungal activity etc. Isatin and its analogs are versatile substrates, which can be used for the synthesis of numerous
(Sridhar et al., 2001; Sridhar & Sreenivasulu, 2001; Sarangapani & Reddy, 1994; Varma et al., 2004; Pandeya et al., 1999; Aboul-Fadl et al., 2010). In our work, we are interested in developing a new 5-bromoisatin and continuing Qachchachi research work to explore other applications (Qachchachi et al., 2013, 2014; Kharbach et al., 2016). The present paper reports the synthesis and of 5-bromo-1-methylindoline-2,3-dione (see Scheme).The title compound is built up from two fused five- and six-membered rings linked to two ketone atoms, a Br atom and to a methyl group, as shown in Fig. 1. Besides the methyl H atoms belonging, all atoms of the structure are almost coplanar, with a maximum deviation of -0.1025 (4) Å for the Br1 atom.
In the crystal, molecules are linked by two weak C—H···O hydrogen bonds (Table 1) and by π–π interactions [inter-centroid distance = 3.510 (2) Å], forming a three-dimensional network as shown in Fig. 2.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles. | |
Fig. 2. Molecules of the title compound linked by C—H···O hydrogen bonds and π–π interactions, forming a three-dimensionnal network. |
C9H6BrNO2 | F(000) = 472 |
Mr = 240.06 | Dx = 1.829 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 4.0634 (1) Å | Cell parameters from 2022 reflections |
b = 11.9235 (3) Å | θ = 3.4–27.9° |
c = 18.0978 (5) Å | µ = 4.68 mm−1 |
β = 96.170 (2)° | T = 296 K |
V = 871.76 (4) Å3 | Sheet, orange |
Z = 4 | 0.57 × 0.22 × 0.03 mm |
Bruker APEXII CCD diffractometer | 1606 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.041 |
φ and ω scans | θmax = 27.9°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −5→5 |
Tmin = 0.452, Tmax = 0.746 | k = −15→15 |
9696 measured reflections | l = −23→23 |
2022 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0386P)2 + 0.9585P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.002 |
2022 reflections | Δρmax = 0.55 e Å−3 |
119 parameters | Δρmin = −0.34 e Å−3 |
C9H6BrNO2 | V = 871.76 (4) Å3 |
Mr = 240.06 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 4.0634 (1) Å | µ = 4.68 mm−1 |
b = 11.9235 (3) Å | T = 296 K |
c = 18.0978 (5) Å | 0.57 × 0.22 × 0.03 mm |
β = 96.170 (2)° |
Bruker APEXII CCD diffractometer | 2022 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1606 reflections with I > 2σ(I) |
Tmin = 0.452, Tmax = 0.746 | Rint = 0.041 |
9696 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.55 e Å−3 |
2022 reflections | Δρmin = −0.34 e Å−3 |
119 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8560 (9) | 0.3090 (2) | 0.90400 (19) | 0.0403 (7) | |
C2 | 0.8118 (8) | 0.2178 (3) | 0.85539 (18) | 0.0370 (7) | |
C3 | 0.9557 (8) | 0.1155 (3) | 0.87379 (19) | 0.0421 (7) | |
H3 | 0.9308 | 0.0550 | 0.8413 | 0.050* | |
C4 | 1.1383 (8) | 0.1065 (3) | 0.9425 (2) | 0.0436 (8) | |
H4 | 1.2377 | 0.0385 | 0.9565 | 0.052* | |
C5 | 1.1765 (8) | 0.1971 (3) | 0.99091 (19) | 0.0409 (7) | |
C6 | 1.0369 (9) | 0.3001 (3) | 0.9723 (2) | 0.0433 (8) | |
H6 | 1.0640 | 0.3608 | 1.0047 | 0.052* | |
C7 | 0.6624 (10) | 0.4026 (3) | 0.8673 (2) | 0.0494 (8) | |
C8 | 0.5016 (10) | 0.3540 (3) | 0.7928 (2) | 0.0484 (8) | |
C9 | 0.5091 (11) | 0.1663 (3) | 0.7309 (2) | 0.0526 (9) | |
H9A | 0.3644 | 0.2029 | 0.6929 | 0.079* | |
H9B | 0.3959 | 0.1041 | 0.7504 | 0.079* | |
H9C | 0.7023 | 0.1397 | 0.7101 | 0.079* | |
N1 | 0.6078 (7) | 0.2458 (2) | 0.79063 (16) | 0.0424 (6) | |
O1 | 0.6250 (8) | 0.4971 (2) | 0.88782 (17) | 0.0689 (8) | |
O2 | 0.3142 (8) | 0.4020 (2) | 0.74695 (17) | 0.0685 (8) | |
Br1 | 1.41762 (10) | 0.17426 (3) | 1.08562 (2) | 0.05405 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0440 (18) | 0.0291 (15) | 0.0493 (19) | −0.0038 (13) | 0.0112 (15) | 0.0013 (13) |
C2 | 0.0377 (16) | 0.0318 (15) | 0.0431 (17) | −0.0029 (13) | 0.0120 (14) | 0.0021 (13) |
C3 | 0.0481 (19) | 0.0330 (16) | 0.0465 (18) | 0.0046 (14) | 0.0117 (15) | −0.0030 (14) |
C4 | 0.0449 (18) | 0.0351 (17) | 0.0526 (19) | 0.0081 (13) | 0.0134 (15) | 0.0032 (15) |
C5 | 0.0361 (17) | 0.0450 (18) | 0.0426 (17) | 0.0005 (13) | 0.0091 (14) | 0.0010 (14) |
C6 | 0.0465 (19) | 0.0341 (16) | 0.0504 (19) | −0.0047 (14) | 0.0108 (16) | −0.0035 (14) |
C7 | 0.061 (2) | 0.0324 (17) | 0.056 (2) | 0.0008 (15) | 0.0117 (18) | 0.0074 (15) |
C8 | 0.056 (2) | 0.0343 (17) | 0.056 (2) | 0.0037 (15) | 0.0116 (18) | 0.0101 (15) |
C9 | 0.065 (2) | 0.045 (2) | 0.0461 (19) | −0.0019 (17) | 0.0011 (18) | −0.0021 (16) |
N1 | 0.0478 (16) | 0.0323 (14) | 0.0473 (16) | −0.0017 (11) | 0.0060 (13) | 0.0020 (12) |
O1 | 0.103 (2) | 0.0291 (13) | 0.0731 (18) | 0.0102 (13) | 0.0036 (16) | −0.0032 (13) |
O2 | 0.084 (2) | 0.0502 (16) | 0.0679 (18) | 0.0132 (15) | −0.0051 (16) | 0.0111 (14) |
Br1 | 0.0514 (3) | 0.0586 (3) | 0.0511 (2) | 0.00589 (17) | 0.00106 (17) | −0.00134 (17) |
C1—C6 | 1.373 (5) | C5—Br1 | 1.900 (4) |
C1—C2 | 1.398 (5) | C6—H6 | 0.9300 |
C1—C7 | 1.480 (5) | C7—O1 | 1.202 (4) |
C2—C3 | 1.378 (5) | C7—C8 | 1.546 (6) |
C2—N1 | 1.401 (5) | C8—O2 | 1.208 (5) |
C3—C4 | 1.381 (5) | C8—N1 | 1.363 (4) |
C3—H3 | 0.9300 | C9—N1 | 1.461 (5) |
C4—C5 | 1.389 (5) | C9—H9A | 0.9600 |
C4—H4 | 0.9300 | C9—H9B | 0.9600 |
C5—C6 | 1.379 (5) | C9—H9C | 0.9600 |
C6—C1—C2 | 121.8 (3) | C5—C6—H6 | 121.5 |
C6—C1—C7 | 132.0 (3) | O1—C7—C1 | 130.3 (4) |
C2—C1—C7 | 106.1 (3) | O1—C7—C8 | 124.4 (3) |
C3—C2—C1 | 120.9 (3) | C1—C7—C8 | 105.3 (3) |
C3—C2—N1 | 127.6 (3) | O2—C8—N1 | 127.4 (4) |
C1—C2—N1 | 111.5 (3) | O2—C8—C7 | 126.7 (3) |
C2—C3—C4 | 117.3 (3) | N1—C8—C7 | 105.9 (3) |
C2—C3—H3 | 121.3 | N1—C9—H9A | 109.5 |
C4—C3—H3 | 121.3 | N1—C9—H9B | 109.5 |
C3—C4—C5 | 121.4 (3) | H9A—C9—H9B | 109.5 |
C3—C4—H4 | 119.3 | N1—C9—H9C | 109.5 |
C5—C4—H4 | 119.3 | H9A—C9—H9C | 109.5 |
C6—C5—C4 | 121.6 (3) | H9B—C9—H9C | 109.5 |
C6—C5—Br1 | 120.4 (3) | C8—N1—C2 | 111.2 (3) |
C4—C5—Br1 | 118.0 (3) | C8—N1—C9 | 124.9 (3) |
C1—C6—C5 | 117.0 (3) | C2—N1—C9 | 123.8 (3) |
C1—C6—H6 | 121.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O2i | 0.96 | 2.56 | 3.454 (5) | 155 |
C9—H9C···O1ii | 0.96 | 2.61 | 3.403 (5) | 141 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O2i | 0.96 | 2.56 | 3.454 (5) | 155.3 |
C9—H9C···O1ii | 0.96 | 2.61 | 3.403 (5) | 140.6 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C9H6BrNO2 |
Mr | 240.06 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 4.0634 (1), 11.9235 (3), 18.0978 (5) |
β (°) | 96.170 (2) |
V (Å3) | 871.76 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.68 |
Crystal size (mm) | 0.57 × 0.22 × 0.03 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.452, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9696, 2022, 1606 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.102, 1.07 |
No. of reflections | 2022 |
No. of parameters | 119 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.34 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
References
Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586. Web of Science CAS PubMed Google Scholar
Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160559. Google Scholar
Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25–31. CAS Google Scholar
Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o588. CSD CrossRef IUCr Journals Google Scholar
Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801. CSD CrossRef IUCr Journals Google Scholar
Sarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257–260. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridhar, S. K., Muniyandy, S. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615–625. CrossRef PubMed CAS Google Scholar
Sridhar, S. K. & Sreenivasulu, M. (2001). Indian Drugs, 38, 531–534. CAS Google Scholar
Varma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56. PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.