organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Bromo-1-methyl­indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve d'Ascq Cedex, France, cUSR 3290 Miniaturisation pour l'analyse, la synthèse et la protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille1, France, and dLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kharbachy26@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 12 May 2016; accepted 14 May 2016; online 24 May 2016)

In the title compound, C9H6BrNO2, the indoline ring system, the two ketone O atoms and the Br atom are nearly coplanar, with the largest deviation from the mean plane being −0.1025 (4) Å. In the crystal, mol­ecules are linked by two weak C—H⋯O hydrogen bonds and ππ inter­actions [inter-centroid distance = 3.510 (2) Å], forming a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin derivatives have a wide range of biological properties. They display moderate anti­microbial effects in a wide variety of preclinical anti­microbial models. Isatin also exhibits other biological activities, such as anti­convulsant, cytotoxic, anti­fungal etc. Isatin and its analogs are versatile substrates, which can be used for the synthesis of numerous heterocyclic compounds (Sridhar et al., 2001[Sridhar, S. K., Muniyandy, S. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615-625.]; Sridhar & Sreenivasulu, 2001[Sridhar, S. K. & Sreenivasulu, M. (2001). Indian Drugs, 38, 531-534.]; Sarangapani & Reddy, 1994[Sarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257-260.]; Varma et al., 2004[Varma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49-56.]; Pandeya et al., 1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25-31.]; Aboul-Fadl et al., 2010[Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.]). In our work, we are inter­ested in developing a new 5-bromo­isatin and continuing the research work of Qachchachi to explore other applications (Qachchachi et al., 2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.], 2014[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o588.]; Kharbach et al., 2016[Kharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160559.]). The present paper reports the synthesis and crystal structure of 5-bromo-1-methyl­indoline-2,3-dione (see Scheme).

The title compound is built up from two fused five- and six-membered rings linked to two ketone O atoms, a Br atom and a methyl group, as shown in Fig. 1[link]. Besides the methyl H atoms, all the atoms of the structure are almost coplanar, with a maximum deviation of −0.1025 (4) Å for the Br1 atom.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

In the crystal, mol­ecules are linked by two weak C—H⋯O hydrogen bonds (Table 1[link]) and ππ inter­actions [inter-centroid distance = 3.510 (2) Å], forming a three-dimensional network as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2i 0.96 2.56 3.454 (5) 155
C9—H9C⋯O1ii 0.96 2.61 3.403 (5) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Mol­ecules of the title compound linked by C—H⋯O hydrogen bonds and ππ inter­actions, forming a three-dimensionnal network.

Synthesis and crystallization

A mixture of 5-bromo­isatin (0.4 g, 1.76 mmol) and iodo­methane (0.12 ml, 0.84 mmol) in DMF (25 ml) in the presence of a catalytic amount of tetra-n-butyl­ammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. The title compound was obtained in 69% yield (m.p. 446 K). The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals suitable for the X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflections 011 and 002 were affected by the beam-stop and were removed during the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C9H6BrNO2
Mr 240.06
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 4.0634 (1), 11.9235 (3), 18.0978 (5)
β (°) 96.170 (2)
V3) 871.76 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.68
Crystal size (mm) 0.57 × 0.22 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.452, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9696, 2022, 1606
Rint 0.041
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.07
No. of reflections 2022
No. of parameters 119
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Experimental top

A mixture of 5-bromoisatin (0.4 g, 1.76 mmol) and iodomethane (0.12 ml, 0.84 mmol) in DMF (25 ml) in the presence of a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. The title compound was obtained in 69% yield (m.p. 446 K). The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals suitable for the X-ray diffraction.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were located in a difference map and treated as riding, with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(aromatic) and Uiso(H) = 1.5 Ueq(methyl). The reflections 011 and 002 affected by the beam-stop are removed during the refinement.

Structure description top

Isatin derivatives have a wide range of biological properties. They have display moderate antimicrobial effect in a wide variety of preclinical antimicrobial models. Isatin is also exerting other biological activities, such as anticonvulsant activity, cytotoxic activity, antifungal activity etc. Isatin and its analogs are versatile substrates, which can be used for the synthesis of numerous heterocyclic compounds (Sridhar et al., 2001; Sridhar & Sreenivasulu, 2001; Sarangapani & Reddy, 1994; Varma et al., 2004; Pandeya et al., 1999; Aboul-Fadl et al., 2010). In our work, we are interested in developing a new 5-bromoisatin and continuing Qachchachi research work to explore other applications (Qachchachi et al., 2013, 2014; Kharbach et al., 2016). The present paper reports the synthesis and crystal structure of 5-bromo-1-methylindoline-2,3-dione (see Scheme).

The title compound is built up from two fused five- and six-membered rings linked to two ketone atoms, a Br atom and to a methyl group, as shown in Fig. 1. Besides the methyl H atoms belonging, all atoms of the structure are almost coplanar, with a maximum deviation of -0.1025 (4) Å for the Br1 atom.

In the crystal, molecules are linked by two weak C—H···O hydrogen bonds (Table 1) and by ππ interactions [inter-centroid distance = 3.510 (2) Å], forming a three-dimensional network as shown in Fig. 2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Molecules of the title compound linked by C—H···O hydrogen bonds and ππ interactions, forming a three-dimensionnal network.
5-Bromo-1-methylindoline-2,3-dione top
Crystal data top
C9H6BrNO2F(000) = 472
Mr = 240.06Dx = 1.829 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.0634 (1) ÅCell parameters from 2022 reflections
b = 11.9235 (3) Åθ = 3.4–27.9°
c = 18.0978 (5) ŵ = 4.68 mm1
β = 96.170 (2)°T = 296 K
V = 871.76 (4) Å3Sheet, orange
Z = 40.57 × 0.22 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
1606 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.041
φ and ω scansθmax = 27.9°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.452, Tmax = 0.746k = 1515
9696 measured reflectionsl = 2323
2022 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.9585P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
2022 reflectionsΔρmax = 0.55 e Å3
119 parametersΔρmin = 0.34 e Å3
Crystal data top
C9H6BrNO2V = 871.76 (4) Å3
Mr = 240.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.0634 (1) ŵ = 4.68 mm1
b = 11.9235 (3) ÅT = 296 K
c = 18.0978 (5) Å0.57 × 0.22 × 0.03 mm
β = 96.170 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2022 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1606 reflections with I > 2σ(I)
Tmin = 0.452, Tmax = 0.746Rint = 0.041
9696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.07Δρmax = 0.55 e Å3
2022 reflectionsΔρmin = 0.34 e Å3
119 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8560 (9)0.3090 (2)0.90400 (19)0.0403 (7)
C20.8118 (8)0.2178 (3)0.85539 (18)0.0370 (7)
C30.9557 (8)0.1155 (3)0.87379 (19)0.0421 (7)
H30.93080.05500.84130.050*
C41.1383 (8)0.1065 (3)0.9425 (2)0.0436 (8)
H41.23770.03850.95650.052*
C51.1765 (8)0.1971 (3)0.99091 (19)0.0409 (7)
C61.0369 (9)0.3001 (3)0.9723 (2)0.0433 (8)
H61.06400.36081.00470.052*
C70.6624 (10)0.4026 (3)0.8673 (2)0.0494 (8)
C80.5016 (10)0.3540 (3)0.7928 (2)0.0484 (8)
C90.5091 (11)0.1663 (3)0.7309 (2)0.0526 (9)
H9A0.36440.20290.69290.079*
H9B0.39590.10410.75040.079*
H9C0.70230.13970.71010.079*
N10.6078 (7)0.2458 (2)0.79063 (16)0.0424 (6)
O10.6250 (8)0.4971 (2)0.88782 (17)0.0689 (8)
O20.3142 (8)0.4020 (2)0.74695 (17)0.0685 (8)
Br11.41762 (10)0.17426 (3)1.08562 (2)0.05405 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (18)0.0291 (15)0.0493 (19)0.0038 (13)0.0112 (15)0.0013 (13)
C20.0377 (16)0.0318 (15)0.0431 (17)0.0029 (13)0.0120 (14)0.0021 (13)
C30.0481 (19)0.0330 (16)0.0465 (18)0.0046 (14)0.0117 (15)0.0030 (14)
C40.0449 (18)0.0351 (17)0.0526 (19)0.0081 (13)0.0134 (15)0.0032 (15)
C50.0361 (17)0.0450 (18)0.0426 (17)0.0005 (13)0.0091 (14)0.0010 (14)
C60.0465 (19)0.0341 (16)0.0504 (19)0.0047 (14)0.0108 (16)0.0035 (14)
C70.061 (2)0.0324 (17)0.056 (2)0.0008 (15)0.0117 (18)0.0074 (15)
C80.056 (2)0.0343 (17)0.056 (2)0.0037 (15)0.0116 (18)0.0101 (15)
C90.065 (2)0.045 (2)0.0461 (19)0.0019 (17)0.0011 (18)0.0021 (16)
N10.0478 (16)0.0323 (14)0.0473 (16)0.0017 (11)0.0060 (13)0.0020 (12)
O10.103 (2)0.0291 (13)0.0731 (18)0.0102 (13)0.0036 (16)0.0032 (13)
O20.084 (2)0.0502 (16)0.0679 (18)0.0132 (15)0.0051 (16)0.0111 (14)
Br10.0514 (3)0.0586 (3)0.0511 (2)0.00589 (17)0.00106 (17)0.00134 (17)
Geometric parameters (Å, º) top
C1—C61.373 (5)C5—Br11.900 (4)
C1—C21.398 (5)C6—H60.9300
C1—C71.480 (5)C7—O11.202 (4)
C2—C31.378 (5)C7—C81.546 (6)
C2—N11.401 (5)C8—O21.208 (5)
C3—C41.381 (5)C8—N11.363 (4)
C3—H30.9300C9—N11.461 (5)
C4—C51.389 (5)C9—H9A0.9600
C4—H40.9300C9—H9B0.9600
C5—C61.379 (5)C9—H9C0.9600
C6—C1—C2121.8 (3)C5—C6—H6121.5
C6—C1—C7132.0 (3)O1—C7—C1130.3 (4)
C2—C1—C7106.1 (3)O1—C7—C8124.4 (3)
C3—C2—C1120.9 (3)C1—C7—C8105.3 (3)
C3—C2—N1127.6 (3)O2—C8—N1127.4 (4)
C1—C2—N1111.5 (3)O2—C8—C7126.7 (3)
C2—C3—C4117.3 (3)N1—C8—C7105.9 (3)
C2—C3—H3121.3N1—C9—H9A109.5
C4—C3—H3121.3N1—C9—H9B109.5
C3—C4—C5121.4 (3)H9A—C9—H9B109.5
C3—C4—H4119.3N1—C9—H9C109.5
C5—C4—H4119.3H9A—C9—H9C109.5
C6—C5—C4121.6 (3)H9B—C9—H9C109.5
C6—C5—Br1120.4 (3)C8—N1—C2111.2 (3)
C4—C5—Br1118.0 (3)C8—N1—C9124.9 (3)
C1—C6—C5117.0 (3)C2—N1—C9123.8 (3)
C1—C6—H6121.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.962.563.454 (5)155
C9—H9C···O1ii0.962.613.403 (5)141
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.962.563.454 (5)155.3
C9—H9C···O1ii0.962.613.403 (5)140.6
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H6BrNO2
Mr240.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.0634 (1), 11.9235 (3), 18.0978 (5)
β (°) 96.170 (2)
V3)871.76 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.68
Crystal size (mm)0.57 × 0.22 × 0.03
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.452, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
9696, 2022, 1606
Rint0.041
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.07
No. of reflections2022
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

References

First citationAboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586.  Web of Science CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160559.  Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25–31.  CAS Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o588.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.  CSD CrossRef IUCr Journals Google Scholar
First citationSarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257–260.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K., Muniyandy, S. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615–625.  CrossRef PubMed CAS Google Scholar
First citationSridhar, S. K. & Sreenivasulu, M. (2001). Indian Drugs, 38, 531–534.  CAS Google Scholar
First citationVarma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds