organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

D-(−)-2-Aza­niumyl-2-(4-hy­dr­oxy­phen­yl)acetate: an ortho­rhom­bic polymorph

aSchool of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, People's Republic of China, and bSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: confidencezzu@139.com

Edited by J. Simpson, University of Otago, New Zealand (Received 5 May 2016; accepted 9 May 2016; online 20 May 2016)

The title compound, C8H9NO3, is the zwitterionic form of D-(−)-4-hy­droxy­phenyl­glycine. The plane of the hy­droxy­benzene ring is inclined at an angle of 88.89 (5)° to the best-fit plane through the five non-H atoms of the amino­acetate substituent. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link adjacent mol­ecules, forming a three-dimensional network. Weak C—H⋯π inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

D-(−)-4-hy­droxy­phenyl­glycine (D-HPG) is a key inter­mediate in the preparation of semi-synthetic anti­biotics (Rudolph et al., 2001[Rudolph, E. S. J., Zomerdijk, M., Ottens, M. & van der Wielen, L. A. M. (2001). Ind. Eng. Chem. Res. 40, 398-406.]). The crystal structure of a monoclinic polymorph of D-(−)-amino-(4-hy­droxy­phen­yl) acetate has been reported previously in the space group P21 (Báthori & Bourne, 2009[Báthori, N. B. & Bourne, S. A. (2009). J. Chem. Crystallogr. 39, 539-543.]). For the crystal structures of other related compounds, see for example the structures of (p-hy­droxy­phen­yl)glycine(−)-4-(2-chloro-phen­yl)-5,5-dimethyl-2-hy­droxy-1,3,2-dioxa­phospho­rinane 2-oxide (Ten Hoeve & Wynberg, 1985[Ten Hoeve, W. & Wynberg, H. (1985). J. Org. Chem. 50, 4508-4514.]) and D-p-hy­droxy­phenyl­glycine (−)-1-phenyl­ethane­sulfonate (Yoshioka et al., 1994[Yoshioka, R., Ohtsuki, O., Da-te, T., Okamura, K. & Senuma, M. (1994). Bull. Chem. Soc. Jpn, 67, 3012-3020.]). Here we report the crystal structure of D-(−)-amino-(4-hy­droxy­phen­yl)acetate in the ortho­rhom­bic space group P212121. Although there is no heavy atom in the structure, the absolute configuration could be well determined by the Flack parameter [0.03 (11)]. However, crystals were grown from a commercial sample of D-(−)-4-hy­droxy­phenyl­glycine and the absolute structure assigned on that basis.

As shown in Fig. 1[link], the reported compound is a zwitterion with the carb­oxy­lic acid of the glycine moiety deprotonated and the amino group protonated. The hy­droxy­benzene ring plane approximately bis­ects the N1—C7—C8 angle and the plane of the hy­droxy­benzene ring is inclined at an angle of 88.89 (5) ° to the best fit plane through the five non-hydrogen atoms of the amino­acetate substituent.

[Figure 1]
Figure 1
View of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

In the crystal, adjacent mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, and a weak C—H⋯π inter­action into a three-dimensional network, Fig. 2[link] and Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 2.02 2.838 (2) 153
N1—H1B⋯O2ii 0.89 1.96 2.811 (2) 160
N1—H1C⋯O3iii 0.89 1.87 2.759 (2) 172
O1—H1D⋯O3iv 0.82 1.81 2.591 (2) 158
C2—H2⋯Cgv 0.93 3.17 3.913 (2) 139
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) x-1, y, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The packing diagram of the title compound, viewed along the b axis.

Synthesis and crystallization

1.2 g D-(−)-4-hy­droxy­phenyl­glycine (Aldrich, 22818–40-2) was stirred into 40 ml of water at 55°C to prepare a saturated solution. Colourless block-like crystals of the title compound were grown by slow evaporation of this solution at 1°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H9NO3
Mr 167.16
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 5.83624 (17), 8.4245 (3), 17.0381 (5)
V3) 837.72 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.86
Crystal size (mm) 0.2 × 0.19 × 0.16
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.861, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3647, 1613, 1570
Rint 0.031
(sin θ/λ)max−1) 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.05
No. of reflections 1613
No. of parameters 112
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.17
Absolute structure Flack x determined using 616 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.03 (11)
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Synthesis and crystallization top

1.2g D-(-)-4-hy­droxy­phenyl­glycine (Aldrich, 22818-40-2) was stirred into 40 ml of water at 55 °C to prepare a saturated solution. Colourless block-like crystals of the title compound were grown by slow evaporation of this solution at 1 °C.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1

Experimental top

1.2 g D-(-)-4-hydroxyphenylglycine (Aldrich, 22818–40-2) was stirred into 40 ml of water at 55°C to prepare a saturated solution. Colourless block-like crystals of the title compound were grown by slow evaporation of this solution at 1°C.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

D-(-)-4-hydroxyphenylglycine (D-HPG) is a key intermediate in the preparation of semi-synthetic antibiotics (Rudolph et al., 2001). The crystal structure of a monoclinic polymorph of D-(-)-amino-(4-hydroxyphenyl) acetate has been reported previously in the space group P21 (Báthori & Bourne, 2009). For the crystal structures of other related compounds, see for example the structures of (p-hydroxyphenyl)glycine(-)-4-(2-chloro-phenyl)-5,5-dimethyl-2- hydroxy-1,3,2-dioxaphosphorinane 2-oxide (Ten Hoeve & Wynberg, 1985) and D-p-hydroxyphenylglycine (-)-1-phenylethanesulfonate (Yoshioka et al., 1994). Here we report the crystal structure of D-(-)-amino-(4-hydroxyphenyl)acetate in the orthorhombic spacegroup P212121. With no heavy atom in the structure the absolute configuration could not be clearly established from anomalous scattering effects. However, crystals were grown from a commercial sample of D-(-)-4-hydroxyphenylglycine and the absolute structure assigned on that basis.

As shown in Fig.1, the reported compound is a zwitterion with the carboxylic acid of the glycine moiety deprotonated and the amino group protonated. The hydroxybenzene ring plane approximately bisects the N1—C7—C8 angle and the plane of the hydroxybenzene ring is inclined at an angle of 88.89 (5) ° to the best fit plane through the five non-hydrogen atoms of the aminoacetate substituent.

In the crystal, adjacent molecules are linked by N—H···O and O—H···O hydrogen bonds, and a weak C—H···π interaction into a three-dimensional network, Fig. 2 and Table 1.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the b axis.
D-(-)-2-Azaniumyl-2-(4-hydroxyphenyl)acetate top
Crystal data top
C8H9NO3Dx = 1.325 Mg m3
Mr = 167.16Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2415 reflections
a = 5.83624 (17) Åθ = 5.2–70.8°
b = 8.4245 (3) ŵ = 0.86 mm1
c = 17.0381 (5) ÅT = 293 K
V = 837.72 (4) Å3Block, colourless
Z = 40.2 × 0.19 × 0.16 mm
F(000) = 352
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
1613 independent reflections
Radiation source: Enhance (Cu) X-ray Source1570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.2312 pixels mm-1θmax = 70.9°, θmin = 5.2°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1010
Tmin = 0.861, Tmax = 1.000l = 1720
3647 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0615P)2 + 0.1107P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.096Δρmax = 0.34 e Å3
S = 1.05Δρmin = 0.17 e Å3
1613 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
112 parametersExtinction coefficient: 0.076 (5)
0 restraintsAbsolute structure: Flack x determined using 616 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (11)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
C8H9NO3V = 837.72 (4) Å3
Mr = 167.16Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.83624 (17) ŵ = 0.86 mm1
b = 8.4245 (3) ÅT = 293 K
c = 17.0381 (5) Å0.2 × 0.19 × 0.16 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
1613 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1570 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 1.000Rint = 0.031
3647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.34 e Å3
S = 1.05Δρmin = 0.17 e Å3
1613 reflectionsAbsolute structure: Flack x determined using 616 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
112 parametersAbsolute structure parameter: 0.03 (11)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8218 (4)0.6736 (2)0.67248 (12)0.0355 (5)
H10.86430.74840.63510.043*
C20.7995 (4)0.7195 (3)0.75027 (12)0.0369 (5)
H20.82670.82420.76480.044*
C30.7367 (4)0.6088 (3)0.80590 (11)0.0329 (5)
C40.6892 (5)0.4543 (3)0.78378 (12)0.0424 (6)
H40.64150.38060.82100.051*
C50.7130 (4)0.4097 (2)0.70566 (12)0.0355 (5)
H50.68220.30550.69110.043*
C60.7817 (3)0.5177 (2)0.64934 (10)0.0264 (4)
C70.8146 (3)0.4675 (2)0.56526 (10)0.0250 (4)
H70.79810.35190.56220.030*
C81.0554 (3)0.5127 (2)0.53564 (11)0.0270 (4)
N10.6394 (3)0.5416 (2)0.51327 (9)0.0276 (4)
H1A0.65960.50790.46420.033*
H1B0.65400.64670.51480.033*
H1C0.50000.51450.52960.033*
O10.7186 (4)0.6457 (2)0.88365 (8)0.0478 (5)
H1D0.75650.73840.89050.072*
O21.0735 (3)0.62801 (19)0.49116 (10)0.0396 (4)
O31.2178 (3)0.4283 (2)0.56048 (10)0.0445 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0467 (12)0.0325 (10)0.0274 (9)0.0062 (9)0.0064 (9)0.0043 (8)
C20.0468 (12)0.0329 (10)0.0310 (10)0.0058 (9)0.0005 (9)0.0006 (8)
C30.0358 (10)0.0425 (11)0.0205 (8)0.0008 (8)0.0037 (8)0.0010 (8)
C40.0586 (14)0.0416 (12)0.0268 (10)0.0122 (11)0.0024 (9)0.0069 (8)
C50.0447 (11)0.0325 (10)0.0293 (9)0.0092 (9)0.0017 (8)0.0014 (8)
C60.0216 (8)0.0330 (9)0.0244 (9)0.0005 (7)0.0003 (7)0.0028 (7)
C70.0216 (8)0.0274 (8)0.0260 (8)0.0022 (7)0.0014 (7)0.0022 (7)
C80.0232 (9)0.0317 (9)0.0261 (9)0.0017 (7)0.0027 (7)0.0011 (7)
N10.0235 (7)0.0347 (8)0.0247 (7)0.0002 (6)0.0002 (6)0.0000 (6)
O10.0744 (12)0.0473 (9)0.0216 (7)0.0069 (9)0.0020 (8)0.0002 (6)
O20.0347 (8)0.0366 (8)0.0474 (9)0.0045 (7)0.0063 (7)0.0119 (6)
O30.0237 (7)0.0589 (10)0.0510 (9)0.0039 (7)0.0020 (6)0.0199 (7)
Geometric parameters (Å, º) top
C1—H10.9300C6—C71.506 (3)
C1—C21.387 (3)C7—H70.9800
C1—C61.391 (3)C7—C81.541 (2)
C2—H20.9300C7—N11.490 (2)
C2—C31.379 (3)C8—O21.237 (2)
C3—C41.383 (3)C8—O31.258 (3)
C3—O11.365 (2)N1—H1A0.8900
C4—H40.9300N1—H1B0.8900
C4—C51.390 (3)N1—H1C0.8900
C5—H50.9300O1—H1D0.8200
C5—C61.382 (3)
C2—C1—H1119.4C5—C6—C7120.84 (18)
C2—C1—C6121.21 (19)C6—C7—H7108.5
C6—C1—H1119.4C6—C7—C8111.00 (15)
C1—C2—H2120.2C8—C7—H7108.5
C3—C2—C1119.6 (2)N1—C7—C6111.12 (16)
C3—C2—H2120.2N1—C7—H7108.5
C2—C3—C4120.14 (18)N1—C7—C8109.12 (14)
O1—C3—C2122.26 (19)O2—C8—C7118.21 (16)
O1—C3—C4117.60 (18)O2—C8—O3125.84 (18)
C3—C4—H4120.2O3—C8—C7115.94 (16)
C3—C4—C5119.67 (19)C7—N1—H1A109.5
C5—C4—H4120.2C7—N1—H1B109.5
C4—C5—H5119.5C7—N1—H1C109.5
C6—C5—C4121.1 (2)H1A—N1—H1B109.5
C6—C5—H5119.5H1A—N1—H1C109.5
C1—C6—C7120.89 (17)H1B—N1—H1C109.5
C5—C6—C1118.26 (18)C3—O1—H1D109.5
C1—C2—C3—C42.0 (4)C4—C5—C6—C7178.0 (2)
C1—C2—C3—O1178.0 (2)C5—C6—C7—C8126.0 (2)
C1—C6—C7—C853.4 (2)C5—C6—C7—N1112.4 (2)
C1—C6—C7—N168.2 (2)C6—C1—C2—C30.1 (4)
C2—C1—C6—C51.6 (3)C6—C7—C8—O2104.3 (2)
C2—C1—C6—C7177.8 (2)C6—C7—C8—O374.7 (2)
C2—C3—C4—C52.3 (4)N1—C7—C8—O218.4 (2)
C3—C4—C5—C60.6 (4)N1—C7—C8—O3162.55 (18)
C4—C5—C6—C11.4 (4)O1—C3—C4—C5177.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.022.838 (2)153
N1—H1B···O2ii0.891.962.811 (2)160
N1—H1C···O3iii0.891.872.759 (2)172
O1—H1D···O3iv0.821.812.591 (2)158
C2—H2···Cgv0.933.173.913 (2)139
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+3/2, z+1; (iii) x1, y, z; (iv) x+2, y+1/2, z+3/2; (v) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.022.838 (2)153.0
N1—H1B···O2ii0.891.962.811 (2)160.0
N1—H1C···O3iii0.891.872.759 (2)172.0
O1—H1D···O3iv0.821.812.591 (2)158.3
C2—H2···Cgv0.933.1653.913 (2)138.8
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+3/2, z+1; (iii) x1, y, z; (iv) x+2, y+1/2, z+3/2; (v) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H9NO3
Mr167.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.83624 (17), 8.4245 (3), 17.0381 (5)
V3)837.72 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.2 × 0.19 × 0.16
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.861, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3647, 1613, 1570
Rint0.031
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.05
No. of reflections1613
No. of parameters112
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.17
Absolute structureFlack x determined using 616 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.03 (11)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors are grateful to the Analysis and Testing Center of Zhengzhou University for use of the single-crystal X-ray diffractometer. This work was supported by the Science and Technology Bureau of Henan through the Cooperation Research Project fund (No. 152107000043 for WL), the Education Bureau of Henan for Major Research Project fund (No. 14 A530007 for WL), National Natural Science Foundation of China (project Nos. 81430085, 21372206 and 81172937 for HML), a PhD Educational Award from the Ministry of Education (No. 20134101130001 for HML), and the Graduate Student Science Research Foundation of Zhengzhou University.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBáthori, N. B. & Bourne, S. A. (2009). J. Chem. Crystallogr. 39, 539–543.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRudolph, E. S. J., Zomerdijk, M., Ottens, M. & van der Wielen, L. A. M. (2001). Ind. Eng. Chem. Res. 40, 398–406.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTen Hoeve, W. & Wynberg, H. (1985). J. Org. Chem. 50, 4508–4514.  CSD CrossRef CAS Web of Science Google Scholar
First citationYoshioka, R., Ohtsuki, O., Da-te, T., Okamura, K. & Senuma, M. (1994). Bull. Chem. Soc. Jpn, 67, 3012–3020.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds