organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-4-Hy­dr­oxy-6-methyl-3-[1-(2-phenyl­hydrazinyl­­idene)eth­yl]-2H-pyran-2-one

aLaboratoire de Matériaux Moléculaires et Complexes, Faculté de Technologie Université Ferhat Abbes de Setif, Sétif, Algérie 19000, Algeria, bLaboratoire de Physicochimie Analytique et Cristallochimie de Matériaux Organométalliques et Biomoléculaires, Département de Chimie, Faculté des Sciences Exactes, Université des Fréres Mentouri, 2500 Constantine 1, Algeria, cEcole Normale Supérieure de Constantine, Ville Universitaire Ali Mendjeli, Constantine, Algeria, dLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP524, 60000, Oujda, Morocco, eFaculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco, fInstitut Jean Lamour UMR, 7198, Parc de Saurupt, CS 14234 F 54042 Nancy, France, and gDépartement de Chimie, Faculté des Sciences Université, Ferhat Abbes de Sétif, Sétif Algérie 19000, Algeria
*Correspondence e-mail: djedouani_amel@yahoo.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 30 April 2016; accepted 1 May 2016; online 6 May 2016)

The title compound, C14H14N2O3, crystallized with three crystallographically independent mol­ecules (A, B and C) in the asymmetric unit. The three mol­ecules each have an E conformation about the C=N bond but differ in the orientation of the phenyl and pyran rings. The dihedral angles between the phenyl and pyran ring planes are 14.30 (1), 28.38 (1) and 25.58 (1)° in mol­ecules A, B and C, respectively. There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule with an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to (001), enclosing R22(8) and R33(21) ring motifs. The layers are linked via C—H⋯π inter­actions, forming bilayers, which are joined by a further C—H⋯π inter­action, forming a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydrazones have received much attention recently due to their biological activities (Ajani et al., 2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]). The principle aim of investigating the structural chemistry of hydrazones is to study their coordination properties (Garcia-Herbosa et al. 1994[Garcia-Herbosa, G., Munoz, A., Miguel, D. & Garcia-Granda, S. (1994). Organometallics, 13, 1775-1780.]). In the present paper, we describe the synthesis and crystal structure of a new hydrazone ligand.

The title compound, Fig. 1[link], crystallized with three independent mol­ecules (A, B and C) in the asymmetric unit. The three mol­ecules exist in a trans or E conformation with respect to the C=N bond but differ in the orientation of the phenyl ring with respect the pyran-2-one ring. The dihedral angles between the phenyl and pyran ring planes are 14.30 (1), 28.38 (1) and 25.58 (1)°, in mol­ecules A, B and C, respectively. The N—N distances [1.356 (2)-1.377 (2) Å] are rather long compared to those observed in related compounds, viz. ethyl 4-chloro-3-oxo-2-(phenyl­hydrazono)butyrate [1.300 (2) Å; Alpaslan et al., 2005a[Alpaslan, G., Özdamar, O., Odabaşoğlu, M., Ersanlı, C. C., Büyükgüngör, O. & Erdönmez, A. (2005a). Acta Cryst. E61, o2428-o2430.]], (E)-ethyl 4-chloro-3-[2-(2-fluoro­phen­yl)hydrazono]butano­ate [1.306 (2) Å; Alpaslan et al., 2005b[Alpaslan, G., Özdamar, O., Odabaşoğlu, M., Ersanlı, C. C., Büyükgüngör, O. & Erdönmez, A. (2005b). Acta Cryst. E61, o2823-o2825.]] and (Z)-ethyl 4-chloro-2-[2-(2-meth­oxy­phen­yl) hydrazono]-3-oxo­butano­ate [1.300 (2) Å; Alpaslan et al., 2005c[Alpaslan, G., Özdamar, O., Odabaşogˇlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005c). Acta Cryst. E61, o3442-o3444.]]. This elong­ation may be the result of the intra­molecular O—H⋯N hydrogen bonds that occur in each mol­ecule (Fig. 1[link] and Table 1[link]), and which form an S(6) ring motif. The C—Niminium bond lengths [1.294 (2)–1.301 (2) Å] are comparable to that observed in 1-di­methyl­amino-3-di­methyl­iminio-2-(p-meth­oxy­phen­yl) prop-1-ene perchlorate [1.307 (3) Å; Girija et al., 2004[Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o592-o594.]].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg4 ad Cg6 are the centroids of rings C7A–C12A, C7B–C12B and C7C–C12C, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3A⋯N1A 0.82 1.74 2.469 (2) 147
O3B—H3B⋯N1B 0.82 1.71 2.448 (2) 148
N2A—H2A⋯O2Ci 0.91 2.20 3.099 (2) 170
N2B—H2B⋯O2Ai 0.89 2.13 2.994 (2) 165
O3C—H3C⋯N1C 0.82 1.73 2.462 (2) 148
N2C—H2C⋯O2B 0.88 2.19 3.028 (2) 157
C8B—H8B⋯O1Ai 0.93 2.53 3.438 (2) 165
C8C—H8C⋯O1B 0.93 2.58 3.473 (2) 162
C10A—H10A⋯O3Bii 0.93 2.58 3.294 (3) 134
C51A—H51BCg4iii 0.96 2.84 3.729 (3) 154
C51B—H51FCg2iii 0.96 2.62 3.436 (3) 143
C51C—H51GCg6iv 0.96 2.95 3.729 (2) 139
C51C—H51HCg6v 0.96 2.62 3.516 (2) 156
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [-x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+2]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+2; (v) [-x+2, y, -z+{\script{5\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the three independent mol­ecules (A, B and C) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, the three mol­ecules are linked via N—H⋯O and C—H⋯O hydrogen bonds forming layers parallel to the ab plane (Table 1[link] and Fig. 2[link]). The layers are linked via C—H⋯π inter­actions forming bilayers, which in turn are joined by a further C—H⋯π inter­action, forming a three-dimensional structure (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
A view along the c axis of the hydrogen-bonded (dashed lines; see Table 1[link]) layer in the crystal of the title compound (mol­ecule A blue, mol­ecule B red, mol­ecule C green).
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1[link]). H atoms are shown as grey balls and those H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

The title compound was prepared by reacting equimolar amounts of de­hydro­acetic acid and phenyl­hydrazine (1:1 M ratio), in absolute ethanol. The mixture was refluxed for 1 h, then the yellow solid which precipitated was filtered and recrystallized from 75% ethanol and 25% distilled water, giving colourless prismatic crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H14N2O3
Mr 258.27
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 30.1064 (12), 17.5911 (7), 13.7937 (8)
β (°) 92.613 (4)
V3) 7297.6 (6)
Z 24
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.1 × 0.1 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur Sapphire 1
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.725, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 37468, 7444, 4849
Rint 0.058
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.02
No. of reflections 7444
No. of parameters 524
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.21
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Synthesis and crystallization top

The title compound was prepared by reacting equimolar amounts of de­hydro­acetic acid and phenyl­hydrazine (1:1 M ratio), in absolute ethanol. The mixture was refluxed for 1 h, then the yellow solid which precipitated was filtered and recrystallized from 75% ethanol and 25% distilled water, giving colourless prismatic crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Experimental top

The title compound was prepared by reacting equimolar amounts of dehydroacetic acid and phenylhydrazine (1:1 M ratio), in absolute ethanol. The mixture was refluxed for 1 h, then the yellow solid which precipitated was filtered and recrystallized from 75% ethanol and 25% distilled water, giving colourless prismatic crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Hydrazones have received much attention recently due to their biological activities (Ajani et al., 2010). The principle aim of investigating the structural chemistry of hydrazones is to study their coordination properties (Garcia-Herbosa et al. 1994). In the present paper, we describe the synthesis and crystal structure of a new hydrazone ligand.

The title compound, Fig, 1, crystallized with three independent molecules (A, B and C) in the asymmetric unit. The three molecules exist in a trans or E conformation with respect to the CN bond but differ in the orientation of the phenyl ring with respect the pyran-2-one ring. The dihedral angles between the phenyl and pyran ring planes are 14.30 (1), 28.38 (1) and 25.58 (1)°, in molecules A, B and C, respectively. The N—N distances [1.356 (2)-1.377 (2) Å] are rather long compared to those observed in related compounds, viz. ethyl 4-chloro-3-oxo-2-(phenylhydrazono)butyrate [1.300 (2) Å; Alpaslan et al., 2005a], (E)-ethyl 4-chloro-3-[2-(2-fluorophenyl)hydrazono]butanoate [1.306 (2) Å; Alpaslan et al., 2005b] and (Z)-ethyl 4-chloro-2-[2-(2-methoxyphenyl) hydrazono]-3-oxobutanoate [1.300 (2) Å; Alpaslan et al., 2005c]. This elongation may be the result of the intramolecular O—H···N hydrogen bonds that occur in each molecule (Fig. 1 and Table 1), and which form an S(6) ring motif. The C—Niminium bond lengths [1.294 (2)–1.301 (2) Å] are comparable to that observed in 1-dimethylamino-3-dimethyliminio-2-(p-methoxyphenyl) prop-1-ene perchlorate [1.307 (3) Å; Girija et al., 2004].

In the crystal, the three molecules are linked via N—H···O and C—H···O hydrogen bonds forming layers parallel to the ab plane (Table 2 and Fig. 2). The layers are linked via C—H···π interactions forming bilayers, which in turn are joined by a further C—H···π interaction, forming a three-dimensional structure (Table 2 and Fig. 3).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the three independent molecules (A, B and C) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the c axis of the hydrogen-bonded (dashed lines; see Table 1) layer in the crystal of the title compound (molecule A blue, molecule B red, molecule C green).
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds and C—H···π interactions are shown as dashed lines (see Table 1). H atoms are shown as grey balls and those H atoms not involved in these interactions have been omitted for clarity.
(E)-4-Hydroxy-6-methyl-3-[1-(2-phenylhydrazinylidene)ethyl]-2H-pyran-2-one top
Crystal data top
C14H14N2O3F(000) = 3264
Mr = 258.27Dx = 1.410 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.1064 (12) ÅCell parameters from 13642 reflections
b = 17.5911 (7) Åθ = 3.0–28.5°
c = 13.7937 (8) ŵ = 0.10 mm1
β = 92.613 (4)°T = 293 K
V = 7297.6 (6) Å3Prism, colourless
Z = 240.1 × 0.1 × 0.1 mm
Data collection top
Agilent Xcalibur Sapphire 1 (long nozzle)
diffractometer
7444 independent reflections
Radiation source: fine-focus sealed tube4849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 3737
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2121
Tmin = 0.725, Tmax = 1.000l = 1717
37468 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0563P)2 + 1.4052P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.29 e Å3
7444 reflectionsΔρmin = 0.21 e Å3
524 parametersExtinction correction: SHELXL2014 (Sheldrick, 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00019 (4)
Crystal data top
C14H14N2O3V = 7297.6 (6) Å3
Mr = 258.27Z = 24
Monoclinic, C2/cMo Kα radiation
a = 30.1064 (12) ŵ = 0.10 mm1
b = 17.5911 (7) ÅT = 293 K
c = 13.7937 (8) Å0.1 × 0.1 × 0.1 mm
β = 92.613 (4)°
Data collection top
Agilent Xcalibur Sapphire 1 (long nozzle)
diffractometer
7444 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4849 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 1.000Rint = 0.058
37468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
7444 reflectionsΔρmin = 0.21 e Å3
524 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.92018 (4)0.11844 (8)0.83644 (11)0.0362 (4)
O2A0.96328 (5)0.01943 (8)0.82982 (13)0.0463 (4)
O3A0.80749 (4)0.00288 (8)0.85760 (12)0.0404 (4)
H3A0.81170.04890.85580.061*
N1A0.85018 (5)0.12222 (9)0.84702 (11)0.0272 (4)
N2A0.84735 (5)0.19903 (9)0.84125 (13)0.0335 (4)
H2A0.87050.22980.82830.050*
C1A0.92495 (6)0.04004 (12)0.83610 (15)0.0306 (5)
C2A0.88587 (6)0.00496 (11)0.84325 (13)0.0244 (4)
C3A0.84554 (6)0.03292 (11)0.85052 (15)0.0284 (4)
C4A0.84330 (7)0.11340 (12)0.84907 (15)0.0335 (5)
H4A0.81600.13780.85280.040*
C5A0.88017 (7)0.15357 (12)0.84241 (15)0.0328 (5)
C6A0.88806 (6)0.08819 (11)0.84065 (13)0.0254 (4)
C7A0.80575 (6)0.23277 (11)0.84855 (15)0.0303 (5)
C8A0.80153 (7)0.30963 (12)0.82736 (16)0.0346 (5)
H8A0.82610.33750.80960.042*
C9A0.76071 (7)0.34457 (13)0.83280 (17)0.0415 (6)
H9A0.75810.39620.81900.050*
C10A0.72387 (8)0.30471 (14)0.85816 (19)0.0490 (6)
H10A0.69640.32870.86120.059*
C11A0.72826 (8)0.22918 (15)0.8789 (2)0.0592 (8)
H11A0.70340.20160.89600.071*
C12A0.76869 (7)0.19293 (13)0.87504 (19)0.0492 (7)
H12A0.77100.14150.89030.059*
C51A0.88479 (8)0.23714 (12)0.84069 (18)0.0468 (6)
H51A0.85580.26010.83930.070*
H51B0.89990.25200.78400.070*
H51C0.90160.25360.89770.070*
C61A0.93004 (6)0.13205 (12)0.82913 (17)0.0383 (5)
H61A0.93710.16030.88730.057*
H61B0.95390.09750.81720.057*
H61C0.92610.16650.77540.057*
O1B0.82066 (4)0.19617 (7)1.10144 (11)0.0335 (3)
O2B0.89226 (5)0.21154 (8)1.08964 (12)0.0435 (4)
O3B0.82796 (4)0.03206 (8)1.11672 (12)0.0388 (4)
H3B0.85350.04771.11340.058*
N1B0.90859 (5)0.02693 (9)1.10124 (12)0.0265 (4)
N2B0.94645 (5)0.07052 (9)1.09691 (12)0.0306 (4)
H2B0.97070.05381.12910.046*
C1B0.86300 (6)0.16466 (11)1.09636 (15)0.0280 (5)
C2B0.86675 (6)0.08392 (10)1.09932 (13)0.0241 (4)
C3B0.82784 (6)0.04126 (11)1.11247 (14)0.0273 (4)
C4B0.78639 (6)0.07876 (12)1.12250 (15)0.0330 (5)
H4B0.76100.05051.13370.040*
C5B0.78377 (6)0.15347 (12)1.11605 (15)0.0307 (5)
C6B0.90956 (6)0.04645 (11)1.09164 (13)0.0246 (4)
C7B0.94002 (6)0.14901 (11)1.09955 (14)0.0263 (4)
C8B0.97515 (7)0.19505 (12)1.13130 (16)0.0351 (5)
H8B1.00200.17341.15270.042*
C9B0.97026 (7)0.27271 (12)1.13106 (17)0.0408 (6)
H9B0.99390.30331.15260.049*
C10B0.93070 (7)0.30586 (12)1.09932 (17)0.0401 (6)
H10B0.92750.35841.09970.048*
C11B0.89621 (7)0.26032 (12)1.06725 (16)0.0366 (5)
H11B0.86960.28241.04510.044*
C12B0.90023 (6)0.18240 (11)1.06722 (15)0.0316 (5)
H12B0.87640.15221.04570.038*
C51B0.74299 (7)0.20061 (13)1.12286 (18)0.0430 (6)
H51D0.71910.16951.14400.064*
H51E0.73500.22181.06030.064*
H51F0.74860.24101.16860.064*
C61B0.95219 (6)0.08598 (12)1.07389 (17)0.0367 (5)
H61D0.96770.09641.13480.055*
H61E0.94610.13291.04020.055*
H61F0.97030.05411.03520.055*
O1C1.10738 (4)0.43283 (7)1.19270 (10)0.0281 (3)
O2C1.07871 (4)0.31901 (8)1.18408 (11)0.0386 (4)
O3C0.99149 (4)0.53864 (7)1.12150 (12)0.0360 (4)
H3C0.97100.50861.11050.054*
N1C0.95353 (5)0.41541 (9)1.10040 (11)0.0250 (4)
N2C0.91419 (5)0.37916 (9)1.07685 (12)0.0275 (4)
H2C0.91050.33221.09770.041*
C1C1.07080 (6)0.38597 (11)1.17251 (14)0.0253 (4)
C2C1.02955 (6)0.42148 (10)1.14246 (13)0.0230 (4)
C3C1.02809 (6)0.50082 (11)1.14407 (14)0.0253 (4)
C4C1.06635 (6)0.54419 (11)1.16983 (15)0.0304 (5)
H4C1.06460.59691.17150.036*
C5C1.10493 (6)0.50989 (11)1.19177 (14)0.0270 (4)
C6C0.98991 (6)0.37651 (10)1.11594 (13)0.0232 (4)
C7C0.87613 (6)0.42396 (11)1.06602 (14)0.0245 (4)
C8C0.83493 (6)0.39141 (12)1.08257 (15)0.0320 (5)
H8C0.83330.34111.10280.038*
C9C0.79655 (6)0.43373 (12)1.06902 (16)0.0358 (5)
H9C0.76930.41181.08110.043*
C10C0.79808 (7)0.50790 (12)1.03792 (15)0.0351 (5)
H10C0.77210.53591.02800.042*
C11C0.83893 (7)0.54007 (12)1.02172 (15)0.0324 (5)
H11C0.84030.59031.00100.039*
C12C0.87773 (6)0.49917 (11)1.03562 (14)0.0272 (4)
H12C0.90490.52191.02470.033*
C51C1.14880 (6)0.54544 (12)1.21459 (16)0.0354 (5)
H51G1.16790.53731.16160.053*
H51H1.16200.52301.27250.053*
H51I1.14500.59901.22440.053*
C61C0.98990 (7)0.29251 (11)1.10723 (18)0.0379 (5)
H61G0.97840.27051.16460.057*
H61H1.01970.27491.09980.057*
H61I0.97160.27771.05160.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0283 (7)0.0266 (8)0.0535 (10)0.0037 (6)0.0020 (7)0.0060 (7)
O2A0.0202 (7)0.0350 (9)0.0836 (13)0.0030 (7)0.0003 (7)0.0046 (8)
O3A0.0231 (7)0.0312 (8)0.0674 (11)0.0024 (6)0.0066 (7)0.0023 (8)
N1A0.0252 (8)0.0251 (9)0.0311 (10)0.0036 (7)0.0018 (7)0.0001 (7)
N2A0.0251 (9)0.0242 (9)0.0511 (12)0.0035 (7)0.0001 (8)0.0045 (8)
C1A0.0261 (10)0.0288 (11)0.0365 (12)0.0021 (9)0.0030 (9)0.0044 (9)
C2A0.0226 (9)0.0260 (10)0.0243 (10)0.0031 (8)0.0011 (8)0.0010 (8)
C3A0.0230 (10)0.0307 (11)0.0315 (12)0.0026 (9)0.0000 (8)0.0020 (9)
C4A0.0288 (11)0.0305 (11)0.0413 (13)0.0043 (9)0.0036 (9)0.0031 (10)
C5A0.0344 (11)0.0286 (11)0.0354 (12)0.0024 (9)0.0003 (9)0.0042 (9)
C6A0.0234 (9)0.0287 (11)0.0239 (10)0.0019 (8)0.0020 (8)0.0012 (8)
C7A0.0284 (10)0.0290 (11)0.0335 (12)0.0052 (9)0.0006 (9)0.0002 (9)
C8A0.0313 (11)0.0265 (11)0.0455 (14)0.0012 (9)0.0039 (9)0.0030 (10)
C9A0.0443 (13)0.0261 (11)0.0536 (15)0.0092 (10)0.0031 (11)0.0038 (11)
C10A0.0395 (13)0.0414 (14)0.0671 (18)0.0181 (11)0.0125 (12)0.0008 (12)
C11A0.0386 (13)0.0454 (15)0.096 (2)0.0115 (12)0.0291 (14)0.0160 (15)
C12A0.0416 (13)0.0324 (13)0.0755 (19)0.0122 (10)0.0235 (12)0.0170 (12)
C51A0.0501 (14)0.0290 (12)0.0616 (17)0.0000 (11)0.0062 (12)0.0069 (12)
C61A0.0279 (11)0.0291 (12)0.0579 (15)0.0019 (9)0.0020 (10)0.0034 (10)
O1B0.0268 (7)0.0237 (7)0.0497 (10)0.0018 (6)0.0016 (6)0.0010 (7)
O2B0.0315 (8)0.0209 (8)0.0785 (12)0.0044 (7)0.0052 (8)0.0001 (8)
O3B0.0274 (7)0.0222 (8)0.0666 (11)0.0028 (6)0.0006 (7)0.0018 (7)
N1B0.0257 (8)0.0221 (9)0.0315 (10)0.0030 (7)0.0003 (7)0.0012 (7)
N2B0.0240 (8)0.0231 (9)0.0445 (11)0.0003 (7)0.0003 (7)0.0015 (8)
C1B0.0241 (10)0.0247 (10)0.0351 (12)0.0008 (9)0.0009 (8)0.0010 (9)
C2B0.0255 (9)0.0220 (10)0.0244 (10)0.0014 (8)0.0027 (8)0.0012 (8)
C3B0.0264 (10)0.0230 (10)0.0319 (12)0.0048 (8)0.0053 (8)0.0012 (9)
C4B0.0232 (10)0.0306 (12)0.0449 (13)0.0048 (9)0.0026 (9)0.0002 (10)
C5B0.0238 (10)0.0328 (12)0.0351 (12)0.0010 (9)0.0030 (8)0.0028 (9)
C6B0.0270 (10)0.0232 (10)0.0233 (10)0.0017 (8)0.0019 (8)0.0006 (8)
C7B0.0286 (10)0.0211 (10)0.0293 (11)0.0002 (8)0.0035 (8)0.0016 (8)
C8B0.0253 (10)0.0292 (11)0.0504 (14)0.0001 (9)0.0021 (9)0.0034 (10)
C9B0.0356 (12)0.0261 (11)0.0602 (16)0.0096 (10)0.0031 (11)0.0015 (11)
C10B0.0410 (13)0.0215 (11)0.0578 (16)0.0008 (10)0.0028 (11)0.0039 (10)
C11B0.0318 (11)0.0290 (11)0.0488 (14)0.0056 (9)0.0012 (10)0.0046 (10)
C12B0.0270 (10)0.0282 (11)0.0391 (13)0.0030 (9)0.0026 (9)0.0018 (9)
C51B0.0309 (11)0.0402 (14)0.0573 (16)0.0049 (10)0.0037 (10)0.0030 (11)
C61B0.0278 (11)0.0282 (11)0.0546 (15)0.0013 (9)0.0060 (10)0.0007 (10)
O1C0.0209 (6)0.0242 (7)0.0389 (8)0.0009 (6)0.0027 (6)0.0024 (6)
O2C0.0285 (8)0.0227 (8)0.0638 (11)0.0028 (6)0.0082 (7)0.0031 (7)
O3C0.0238 (7)0.0225 (7)0.0613 (11)0.0027 (6)0.0035 (7)0.0011 (7)
N1C0.0187 (8)0.0240 (9)0.0322 (9)0.0014 (7)0.0013 (7)0.0010 (7)
N2C0.0195 (8)0.0198 (8)0.0428 (11)0.0017 (6)0.0043 (7)0.0020 (7)
C1C0.0235 (9)0.0231 (10)0.0292 (11)0.0026 (8)0.0012 (8)0.0006 (8)
C2C0.0204 (9)0.0234 (10)0.0254 (10)0.0008 (8)0.0031 (7)0.0001 (8)
C3C0.0223 (10)0.0222 (10)0.0314 (11)0.0024 (8)0.0016 (8)0.0017 (8)
C4C0.0290 (11)0.0211 (10)0.0412 (13)0.0032 (8)0.0020 (9)0.0015 (9)
C5C0.0290 (10)0.0234 (10)0.0286 (11)0.0040 (8)0.0024 (8)0.0004 (9)
C6C0.0225 (9)0.0222 (10)0.0251 (10)0.0010 (8)0.0016 (8)0.0001 (8)
C7C0.0213 (9)0.0236 (10)0.0282 (11)0.0010 (8)0.0033 (8)0.0042 (8)
C8C0.0262 (10)0.0278 (11)0.0415 (13)0.0039 (9)0.0018 (9)0.0008 (9)
C9C0.0217 (10)0.0383 (13)0.0470 (14)0.0044 (9)0.0026 (9)0.0048 (10)
C10C0.0259 (10)0.0370 (12)0.0414 (13)0.0090 (9)0.0083 (9)0.0072 (10)
C11C0.0350 (11)0.0257 (11)0.0359 (12)0.0053 (9)0.0065 (9)0.0012 (9)
C12C0.0246 (10)0.0245 (10)0.0323 (11)0.0026 (8)0.0024 (8)0.0012 (9)
C51C0.0286 (11)0.0349 (12)0.0421 (13)0.0081 (9)0.0042 (9)0.0015 (10)
C61C0.0264 (11)0.0239 (11)0.0630 (16)0.0001 (9)0.0030 (10)0.0057 (10)
Geometric parameters (Å, º) top
O1A—C5A1.360 (2)C7B—C8B1.387 (3)
O1A—C1A1.387 (2)C7B—C12B1.389 (3)
O2A—C1A1.216 (2)C8B—C9B1.374 (3)
O3A—C3A1.315 (2)C8B—H8B0.9300
O3A—H3A0.8200C9B—C10B1.379 (3)
N1A—C6A1.294 (2)C9B—H9B0.9300
N1A—N2A1.356 (2)C10B—C11B1.369 (3)
N2A—C7A1.394 (2)C10B—H10B0.9300
N2A—H2A0.9064C11B—C12B1.376 (3)
C1A—C2A1.425 (3)C11B—H11B0.9300
C2A—C3A1.393 (3)C12B—H12B0.9300
C2A—C6A1.466 (3)C51B—H51D0.9600
C3A—C4A1.417 (3)C51B—H51E0.9600
C4A—C5A1.323 (3)C51B—H51F0.9600
C4A—H4A0.9300C61B—H61D0.9600
C5A—C51A1.477 (3)C61B—H61E0.9600
C6A—C61A1.495 (3)C61B—H61F0.9600
C7A—C12A1.381 (3)O1C—C5C1.358 (2)
C7A—C8A1.388 (3)O1C—C1C1.393 (2)
C8A—C9A1.379 (3)O2C—C1C1.211 (2)
C8A—H8A0.9300O3C—C3C1.312 (2)
C9A—C10A1.371 (3)O3C—H3C0.8200
C9A—H9A0.9300N1C—C6C1.301 (2)
C10A—C11A1.364 (3)N1C—N2C1.371 (2)
C10A—H10A0.9300N2C—C7C1.393 (2)
C11A—C12A1.377 (3)N2C—H2C0.8836
C11A—H11A0.9300C1C—C2C1.434 (2)
C12A—H12A0.9300C2C—C3C1.397 (3)
C51A—H51A0.9600C2C—C6C1.464 (2)
C51A—H51B0.9600C3C—C4C1.413 (3)
C51A—H51C0.9600C4C—C5C1.332 (3)
C61A—H61A0.9600C4C—H4C0.9300
C61A—H61B0.9600C5C—C51C1.482 (3)
C61A—H61C0.9600C6C—C61C1.483 (3)
O1B—C5B1.364 (2)C7C—C12C1.389 (3)
O1B—C1B1.395 (2)C7C—C8C1.395 (3)
O2B—C1B1.213 (2)C8C—C9C1.380 (3)
O3B—C3B1.291 (2)C8C—H8C0.9300
O3B—H3B0.8200C9C—C10C1.375 (3)
N1B—C6B1.298 (2)C9C—H9C0.9300
N1B—N2B1.377 (2)C10C—C11C1.381 (3)
N2B—C7B1.395 (2)C10C—H10C0.9300
N2B—H2B0.8876C11C—C12C1.378 (3)
C1B—C2B1.425 (3)C11C—H11C0.9300
C2B—C3B1.410 (3)C12C—H12C0.9300
C2B—C6B1.456 (3)C51C—H51G0.9600
C3B—C4B1.424 (3)C51C—H51H0.9600
C4B—C5B1.319 (3)C51C—H51I0.9600
C4B—H4B0.9300C61C—H61G0.9600
C5B—C51B1.488 (3)C61C—H61H0.9600
C6B—C61B1.490 (3)C61C—H61I0.9600
C5A—O1A—C1A122.99 (16)C9B—C8B—C7B119.98 (19)
C3A—O3A—H3A109.5C9B—C8B—H8B120.0
C6A—N1A—N2A120.67 (16)C7B—C8B—H8B120.0
N1A—N2A—C7A118.33 (16)C8B—C9B—C10B120.8 (2)
N1A—N2A—H2A124.1C8B—C9B—H9B119.6
C7A—N2A—H2A117.4C10B—C9B—H9B119.6
O2A—C1A—O1A113.30 (17)C11B—C10B—C9B119.1 (2)
O2A—C1A—C2A128.92 (19)C11B—C10B—H10B120.4
O1A—C1A—C2A117.78 (17)C9B—C10B—H10B120.4
C3A—C2A—C1A117.67 (18)C10B—C11B—C12B121.2 (2)
C3A—C2A—C6A121.33 (17)C10B—C11B—H11B119.4
C1A—C2A—C6A120.98 (17)C12B—C11B—H11B119.4
O3A—C3A—C2A122.79 (18)C11B—C12B—C7B119.71 (19)
O3A—C3A—C4A116.01 (17)C11B—C12B—H12B120.1
C2A—C3A—C4A121.20 (18)C7B—C12B—H12B120.1
C5A—C4A—C3A119.67 (19)C5B—C51B—H51D109.5
C5A—C4A—H4A120.2C5B—C51B—H51E109.5
C3A—C4A—H4A120.2H51D—C51B—H51E109.5
C4A—C5A—O1A120.67 (19)C5B—C51B—H51F109.5
C4A—C5A—C51A127.8 (2)H51D—C51B—H51F109.5
O1A—C5A—C51A111.53 (18)H51E—C51B—H51F109.5
N1A—C6A—C2A114.80 (17)C6B—C61B—H61D109.5
N1A—C6A—C61A121.34 (18)C6B—C61B—H61E109.5
C2A—C6A—C61A123.85 (17)H61D—C61B—H61E109.5
C12A—C7A—C8A118.87 (19)C6B—C61B—H61F109.5
C12A—C7A—N2A122.85 (19)H61D—C61B—H61F109.5
C8A—C7A—N2A118.28 (18)H61E—C61B—H61F109.5
C9A—C8A—C7A119.7 (2)C5C—O1C—C1C123.14 (14)
C9A—C8A—H8A120.1C3C—O3C—H3C109.5
C7A—C8A—H8A120.1C6C—N1C—N2C120.41 (15)
C10A—C9A—C8A121.3 (2)N1C—N2C—C7C117.36 (15)
C10A—C9A—H9A119.4N1C—N2C—H2C118.6
C8A—C9A—H9A119.4C7C—N2C—H2C116.7
C11A—C10A—C9A118.7 (2)O2C—C1C—O1C113.59 (16)
C11A—C10A—H10A120.7O2C—C1C—C2C128.63 (17)
C9A—C10A—H10A120.7O1C—C1C—C2C117.78 (16)
C10A—C11A—C12A121.4 (2)C3C—C2C—C1C117.27 (16)
C10A—C11A—H11A119.3C3C—C2C—C6C121.20 (16)
C12A—C11A—H11A119.3C1C—C2C—C6C121.46 (17)
C11A—C12A—C7A120.1 (2)O3C—C3C—C2C121.98 (17)
C11A—C12A—H12A120.0O3C—C3C—C4C116.86 (17)
C7A—C12A—H12A120.0C2C—C3C—C4C121.16 (17)
C5A—C51A—H51A109.5C5C—C4C—C3C120.34 (18)
C5A—C51A—H51B109.5C5C—C4C—H4C119.8
H51A—C51A—H51B109.5C3C—C4C—H4C119.8
C5A—C51A—H51C109.5C4C—C5C—O1C120.07 (17)
H51A—C51A—H51C109.5C4C—C5C—C51C128.09 (19)
H51B—C51A—H51C109.5O1C—C5C—C51C111.83 (16)
C6A—C61A—H61A109.5N1C—C6C—C2C115.30 (16)
C6A—C61A—H61B109.5N1C—C6C—C61C120.92 (16)
H61A—C61A—H61B109.5C2C—C6C—C61C123.78 (16)
C6A—C61A—H61C109.5C12C—C7C—N2C122.11 (17)
H61A—C61A—H61C109.5C12C—C7C—C8C118.92 (17)
H61B—C61A—H61C109.5N2C—C7C—C8C118.91 (17)
C5B—O1B—C1B122.75 (15)C9C—C8C—C7C120.1 (2)
C3B—O3B—H3B109.5C9C—C8C—H8C119.9
C6B—N1B—N2B121.79 (16)C7C—C8C—H8C119.9
N1B—N2B—C7B115.71 (15)C10C—C9C—C8C120.96 (19)
N1B—N2B—H2B117.2C10C—C9C—H9C119.5
C7B—N2B—H2B115.3C8C—C9C—H9C119.5
O2B—C1B—O1B113.71 (17)C9C—C10C—C11C118.81 (19)
O2B—C1B—C2B128.52 (18)C9C—C10C—H10C120.6
O1B—C1B—C2B117.77 (16)C11C—C10C—H10C120.6
C3B—C2B—C1B117.97 (17)C12C—C11C—C10C121.3 (2)
C3B—C2B—C6B120.79 (17)C12C—C11C—H11C119.4
C1B—C2B—C6B121.21 (17)C10C—C11C—H11C119.4
O3B—C3B—C2B122.47 (18)C11C—C12C—C7C119.90 (18)
O3B—C3B—C4B117.34 (17)C11C—C12C—H12C120.1
C2B—C3B—C4B120.19 (18)C7C—C12C—H12C120.1
C5B—C4B—C3B120.34 (19)C5C—C51C—H51G109.5
C5B—C4B—H4B119.8C5C—C51C—H51H109.5
C3B—C4B—H4B119.8H51G—C51C—H51H109.5
C4B—C5B—O1B120.80 (18)C5C—C51C—H51I109.5
C4B—C5B—C51B126.72 (19)H51G—C51C—H51I109.5
O1B—C5B—C51B112.47 (18)H51H—C51C—H51I109.5
N1B—C6B—C2B114.76 (17)C6C—C61C—H61G109.5
N1B—C6B—C61B120.29 (17)C6C—C61C—H61H109.5
C2B—C6B—C61B124.95 (17)H61G—C61C—H61H109.5
C8B—C7B—C12B119.23 (18)C6C—C61C—H61I109.5
C8B—C7B—N2B118.78 (17)H61G—C61C—H61I109.5
C12B—C7B—N2B121.92 (17)H61H—C61C—H61I109.5
Hydrogen-bond geometry (Å, º) top
Cg2, Cg4 ad Cg6 are the centroids of rings C7A–C12A, C7B–C12B and C7C–C12C, respectively.
D—H···AD—HH···AD···AD—H···A
O3A—H3A···N1A0.821.742.469 (2)147
O3B—H3B···N1B0.821.712.448 (2)148
N2A—H2A···O2Ci0.912.203.099 (2)170
N2B—H2B···O2Ai0.892.132.994 (2)165
O3C—H3C···N1C0.821.732.462 (2)148
N2C—H2C···O2B0.882.193.028 (2)157
C8B—H8B···O1Ai0.932.533.438 (2)165
C8C—H8C···O1B0.932.583.473 (2)162
C10A—H10A···O3Bii0.932.583.294 (3)134
C51A—H51B···Cg4iii0.962.843.729 (3)154
C51B—H51F···Cg2iii0.962.623.436 (3)143
C51C—H51G···Cg6iv0.962.953.729 (2)139
C51C—H51H···Cg6v0.962.623.516 (2)156
Symmetry codes: (i) x+2, y, z+2; (ii) x+3/2, y1/2, z+2; (iii) x, y, z1/2; (iv) x+2, y+1, z+2; (v) x+2, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
Cg2, Cg4 ad Cg6 are the centroids of rings C7A–C12A, C7B–C12B and C7C–C12C, respectively.
D—H···AD—HH···AD···AD—H···A
O3A—H3A···N1A0.821.742.469 (2)147.0
O3B—H3B···N1B0.821.712.448 (2)148.0
N2A—H2A···O2Ci0.912.203.099 (2)169.5
N2B—H2B···O2Ai0.892.132.994 (2)164.6
O3C—H3C···N1C0.821.732.462 (2)148.2
N2C—H2C···O2B0.882.193.028 (2)157.3
C8B—H8B···O1Ai0.932.533.438 (2)165
C8C—H8C···O1B0.932.583.473 (2)162
C10A—H10A···O3Bii0.932.583.294 (3)134
C51A—H51B···Cg4iii0.962.843.729 (3)154
C51B—H51F···Cg2iii0.962.623.436 (3)143
C51C—H51G···Cg6iv0.962.953.729 (2)139
C51C—H51H···Cg6v0.962.623.516 (2)156
Symmetry codes: (i) x+2, y, z+2; (ii) x+3/2, y1/2, z+2; (iii) x, y, z1/2; (iv) x+2, y+1, z+2; (v) x+2, y, z+5/2.

Experimental details

Crystal data
Chemical formulaC14H14N2O3
Mr258.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)30.1064 (12), 17.5911 (7), 13.7937 (8)
β (°) 92.613 (4)
V3)7297.6 (6)
Z24
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerAgilent Xcalibur Sapphire 1 (long nozzle)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.725, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
37468, 7444, 4849
Rint0.058
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.02
No. of reflections7444
No. of parameters524
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: CrysAlis PRO (Agilent, 2011), SIR97 (Altomare et al., 1999), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge support from the Algerian agency MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), and the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique),

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlpaslan, G., Özdamar, O., Odabaşoğlu, M., Ersanlı, C. C., Büyükgüngör, O. & Erdönmez, A. (2005a). Acta Cryst. E61, o2428–o2430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlpaslan, G., Özdamar, O., Odabaşoğlu, M., Ersanlı, C. C., Büyükgüngör, O. & Erdönmez, A. (2005b). Acta Cryst. E61, o2823–o2825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlpaslan, G., Özdamar, O., Odabaşogˇlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005c). Acta Cryst. E61, o3442–o3444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcia-Herbosa, G., Munoz, A., Miguel, D. & Garcia-Granda, S. (1994). Organometallics, 13, 1775–1780.  CAS Google Scholar
First citationGirija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o592–o594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds