organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 2,6-di­methyl-4-(naphthalen-1-yl)-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 7 April 2016; accepted 28 April 2016; online 4 May 2016)

In the title compound, C23H25NO4, the 1,4-di­hydro­pyridine ring adopts a flattened boat conformation. The naphthalene ring system forms a dihedral angle of 88.59 (6)° with the pyridine ring. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds generate an R12(6) ring motif and result in a zigzag chain along the b axis. Additional C—H⋯O hydrogen bonds form infinite chains along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,4-Di­hydro­pyridines (1,4-DHPs) are an important class of chemicals widely used as drugs or their precursors (Giorgi et al., 2010[Giorgi, G., Adamo, M. F. A., Ponticelli, F. & Ventura, A. (2010). Org. Biomol. Chem. 8, 5339-5344.]; Lavanya et al., 2011[Lavanya, T., Manjula, S., Rajkiran, E., Pradeep kumar, T. & Madhavi, K. (2011). IJRPC. 1, 1203-1208.]; Datar & Pratibha, 2012[Datar, P. A. & Pratibha, B. A. (2012). J. Comput. Methods Mol. Des. 2, 85-91.]). 1,4-Di­hydro­pyridine compounds are prescribed for the treatment of hypertension and heart defibrilation (Metcalf & Holt, 2000[Metcalf, S. K. & Holt, E. M. (2000). Acta Cryst. C56, 1228-1231.]). Di­hydro­pyridines (DHPs), in particular 4-aryl-substituted 1,4-di­hydro­pyridines (Hantzsch esters), have been recognized as an important class of organic calcium channel modulators for the treatment of cardiovascular diseases (Zonouz et al., 2013[Zonouz, A. M., Aras, M. A. & Abuali, N. (2013). Transition Met. Chem. 38, 335-340.]). Herein, we report the crystal structure of the title 4-aryl-substituted 1,4-di­hydro­pyridine compound, (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

The naphthalene substituent at C4 is positioned axially and is inclined to the pyridine ring at a dihedral angle of 88.590 (6)°. The pyridine ring with the naphthalene substituent at the C4 atom is significantly puckered and adopts a flattened boat conformation with atoms N1 and C4 displaced by 0.1444 (3) and 0.322 (6) Å, respectively, from the mean plane of the other four atoms C5/C6/C2/C3. Both ethyl­carboxyl­ate substituents on the di­hydro­pyridine ring adopt cis orientations of the carbonyl O atoms and the adjacent methyl groups with respect to the C2=C3 and C5=C6 double bonds, respectively. This contrasts with two of three meth­oxy-substituted 4-phenyl-2,6-dimethyl-1,4-di­hydro­pyridine-3,6-di­carboxyl­ate compounds (Metcalf & Holt, 2000[Metcalf, S. K. & Holt, E. M. (2000). Acta Cryst. C56, 1228-1231.]) where there is one cis and one trans conformation. This may be due to the presence of a bulky naphthalene group in the title compound. The bond lengths and angles in the title compound are in good agreement with the corresponding values in closely related structures (Fun et al., 2012[Fun, H.-K., Hemamalini, M., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2012). Acta Cryst. E68, o287-o288.]; Vrábel et al., 2005[Vrábel, V., Kožíšek, J., Marchalín, Š. & Svoboda, I. (2005). Acta Cryst. E61, o733-o735.]; Giorgi et al., 2010[Giorgi, G., Adamo, M. F. A., Ponticelli, F. & Ventura, A. (2010). Org. Biomol. Chem. 8, 5339-5344.]; Metcalf & Holt, 2000[Metcalf, S. K. & Holt, E. M. (2000). Acta Cryst. C56, 1228-1231.]).

In the crystal, the O1 atom acts as a double-acceptor for the N1—H1⋯O1 and C7—H7⋯O1 hydrogen bonds (Table 1[link]), generating an R21(6) ring motif and linking the mol­ecules into zigzag chains running along the b axis (Fig. 2[link]). C1—H1⋯O2 and C19—H19⋯O1 hydrogen bonds form infinite chains along the c-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.13 2.985 (3) 164
C7—H7B⋯O1i 0.98 2.58 3.378 (4) 138
C19—H19⋯O1ii 0.95 2.59 3.503 (4) 161
C1—H1C⋯O2iii 0.98 2.62 3.563 (3) 161
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+2]; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+2].
[Figure 2]
Figure 2
Fragment of an [010] chain in the title compound showing C—H⋯O and N—H⋯O inter­actions as dashed lines. H atoms not involved in hydrogen bonding have been excluded.
[Figure 3]
Figure 3
Fragment of an [001] chain in the title compound showing C—H⋯O inter­actions as dashed lines. H-atoms not involved in hydrogen bonding have been omitted.

Synthesis and crystallization

A mixture of naphthaldehyde (1 mmol), ethyl aceto­acetate (2 mmol) and aqueous ammonia (1.5 mmol), was refluxed in dry ethanol (20 mmol) for 12 h. The progress of the reaction was monitored by TLC. After confirming that the reaction was complete, the reaction mixture was cooled to room temperature and allowed to stand for two days to allow the formation of a solid. The resulting solid product was washed with methanol and recrystallized from ethanol solution to yield single crystals suitable for X-ray diffraction studies (Yield: 78%; m.p. 192–194°C). The absolute structure of this compound was indeterminate in the present experiment.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The compound, crystallizes in a non-centric monoclinic space group with one mol­ecule in the asymmetric unit but the absolute structure cannot be determined reliably by refinement of the Flack parameter because of insufficient anomalous scattering effects.

Table 2
Experimental details

Crystal data
Chemical formula C23H25NO4
Mr 379.44
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 8.7072 (17), 9.8740 (19), 11.221 (2)
β (°) 95.307 (6)
V3) 960.6 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.18 × 0.16 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.984, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 7663, 3319, 3046
Rint 0.048
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.05
No. of reflections 3319
No. of parameters 257
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.27
Computer programs: SMART and SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windowsand WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]).

Structural data


Synthesis and crystallization top

A mixture of naphthaldehyde (1 mmol), ethyl aceto­acetate (2 mmol) and aqueous ammonia (1.5 mmol), was refluxed in dry ethanol (20 mmol) for 12 h. The progress of the reaction was monitored by TLC. After confirming that the reaction was complete, the reaction mixture was cooled to room temperature and allowed to stand for 2 days to allow the formation of a solid. The resulting solid product was washed with methanol and recrystallized from ethanol to yield single crystals suitable for X-ray diffraction studies (Yield: 78% ; m.p.192—194°C).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The compound, crystallizes in a non-centric monoclinic space group with one molecule in the asymmetric unit but the absolute structure cannot be determined reliably by refinement of the Flack parameter because of insufficient anomalous scattering effects.

Experimental top

A mixture of naphthaldehyde (1 mmol), ethyl acetoacetate (2 mmol) and aqueous ammonia (1.5 mmol), was refluxed in dry ethanol (20 mmol) for 12 h. The progress of the reaction was monitored by TLC. After confirming that the reaction was complete, the reaction mixture was cooled to room temperature and allowed to stand for two days to allow the formation of a solid. The resulting solid product was washed with methanol and recrystallized from ethanol to yield single crystals suitable for X-ray diffraction studies (Yield: 78% ; m.p. 192–194°C).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The compound, crystallizes in a non-centric monoclinic space group with one molecule in the asymmetric unit but the absolute structure cannot be determined reliably by refinement of the Flack parameter because of insufficient anomalous scattering effects.

Structure description top

1,4-Dihydropyridines (1,4-DHPs) are an important class of chemicals widely used as drugs or their precursors (Giorgi et al., 2010; Lavanya et al., 2011; Datar & Pratibha, 2012). 1,4-Dihydropyridine compounds are prescribed for the treatment of hypertension and heart defibrilation (Metcalf & Holt, 2000). Dihydropyridines (DHPs), in particular 4-aryl-substituted 1,4-dihydropyridines (Hantzsch esters), have been recognized as an important class of organic calcium channel modulators for the treatment of cardiovascular diseases (Zonouz et al., 2013). Herein, we report the crystal structure of the title 4-aryl-substituted 1,4-dihydropyridine compound, (Fig. 1).

The naphthalene substituent at C4 is positioned axially and is inclined to the pyridine ring at a dihedral angle of 88.590 (6)°. The pyridine ring with the naphthalene substituent at the C4 atom is significantly puckered and adopts a flattened boat conformation with atoms N1 and C4 displaced by 0.1444 (3) and 0.322 (6) Å, respectively, from the mean plane of the other four atoms C5/C6/C2/C3. Both ethylcarboxylate substituents on the dihydropyridine ring adopt cis orientations of the carbonyl O atoms and the adjacent methyl groups with respect to the C2C3 and C5C6 double bonds, respectively. This contrasts with two of three methoxy-substituted 4-phenyl-2,6-dimethyl-1,4-dihydropyridine-3,6-dicarboxylate compounds (Metcalf & Holt, 2000) where there is one cis and one trans conformation. This may be due to the presence of a bulky naphthalene group in the title compound. The bond lengths and angles in the title compound are in good agreement with the corresponding values in closely related structures (Fun et al., 2012; Vrábel et al., 2005; Giorgi et al., 2010; Metcalf & Holt, 2000).

In the crystal, the O1 atom acts as a bifurcated acceptor for the N1—H1···O1 and C7—H7···O1 hydrogen bonds (Table 1), generating an R12(6) ring motif and linking the molecules into zigzag chains running along the b axis (Fig. 2). C1—H1···O2 and C19—H19···O1 hydrogen bonds form infinite chains along the c-axis direction (Fig. 3).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Unit-cell packing of the title compound showing C—H···O and N—H···O interactions as dashed lines. H atoms not involved in hydrogen bonding have been excluded.
[Figure 3] Fig. 3. Unit-cell packing of the title compound showing C—H···O interactions as dashed lines. H-atoms not involved in hydrogen bonding have been omitted.
Diethyl 2,6-dimethyl-4-(naphthalen-1-yl)-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C23H25NO4F(000) = 404
Mr = 379.44Dx = 1.312 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3319 reflections
a = 8.7072 (17) Åθ = 2.4–25.0°
b = 9.8740 (19) ŵ = 0.09 mm1
c = 11.221 (2) ÅT = 100 K
β = 95.307 (6)°Block, colorless
V = 960.6 (3) Å30.18 × 0.16 × 0.16 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3319 independent reflections
Radiation source: fine-focus sealed tube3046 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.984, Tmax = 0.986k = 1111
7663 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.5392P]
where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max = 0.006
257 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C23H25NO4V = 960.6 (3) Å3
Mr = 379.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.7072 (17) ŵ = 0.09 mm1
b = 9.8740 (19) ÅT = 100 K
c = 11.221 (2) Å0.18 × 0.16 × 0.16 mm
β = 95.307 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3319 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3046 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.986Rint = 0.048
7663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
3319 reflectionsΔρmin = 0.27 e Å3
257 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0444 (2)0.6473 (2)0.85079 (17)0.0229 (5)
O30.6369 (2)0.1373 (2)0.9159 (2)0.0363 (6)
O20.2555 (2)0.6312 (2)0.75134 (16)0.0206 (4)
O40.6092 (2)0.3009 (2)0.77744 (16)0.0216 (5)
C180.1941 (3)0.2709 (3)0.4733 (2)0.0223 (6)
C60.3320 (3)0.2149 (3)0.9818 (2)0.0165 (6)
C110.5595 (3)0.2253 (3)0.8650 (2)0.0180 (6)
N10.1949 (3)0.2706 (2)1.00885 (18)0.0167 (5)
H10.13990.22621.05800.020*
C50.4022 (3)0.2669 (3)0.8886 (2)0.0159 (6)
C230.2732 (3)0.3409 (3)0.5723 (3)0.0200 (6)
C150.1469 (3)0.1912 (3)0.7039 (2)0.0170 (6)
H150.13010.16210.78230.020*
C40.3184 (3)0.3685 (3)0.8039 (2)0.0161 (6)
H40.39600.43500.77900.019*
C20.1386 (3)0.3929 (3)0.9629 (2)0.0152 (6)
C140.2448 (3)0.2979 (3)0.6911 (2)0.0168 (6)
C190.2202 (4)0.3115 (3)0.3546 (3)0.0266 (7)
H190.16820.26580.28810.032*
C160.0703 (3)0.1230 (3)0.6056 (2)0.0221 (6)
H160.00370.04910.61770.026*
C80.1561 (3)0.5826 (3)0.8255 (2)0.0159 (6)
C10.3898 (3)0.1038 (3)1.0646 (2)0.0220 (6)
H1A0.41270.02371.01780.033*
H1B0.31090.08111.11820.033*
H1C0.48390.13371.11200.033*
C170.0929 (3)0.1642 (3)0.4929 (3)0.0235 (7)
H170.03920.12010.42630.028*
C70.0198 (3)0.4559 (3)1.0338 (2)0.0223 (6)
H7A0.05500.54581.06140.033*
H7B0.00440.39871.10310.033*
H7C0.07780.46450.98340.033*
C30.1992 (3)0.4460 (3)0.8674 (2)0.0167 (6)
C90.2391 (4)0.7720 (3)0.7145 (3)0.0269 (7)
H9A0.12850.79660.70480.032*
H9B0.28140.78430.63620.032*
C120.7675 (3)0.2790 (3)0.7500 (3)0.0241 (7)
H12A0.77930.18720.71660.029*
H12B0.83950.28840.82310.029*
C220.3751 (3)0.4470 (3)0.5484 (3)0.0231 (7)
H220.42920.49430.61300.028*
C130.8000 (4)0.3842 (4)0.6602 (3)0.0344 (8)
H13A0.72540.37580.58960.052*
H13B0.90460.37160.63660.052*
H13C0.79130.47440.69550.052*
C210.3965 (4)0.4823 (4)0.4328 (3)0.0299 (8)
H210.46550.55360.41820.036*
C200.3175 (4)0.4139 (4)0.3359 (3)0.0304 (8)
H200.33280.44010.25630.036*
C100.3226 (4)0.8625 (3)0.8053 (3)0.0317 (8)
H10A0.27400.85700.88050.047*
H10B0.31800.95600.77600.047*
H10C0.43050.83380.81890.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0252 (11)0.0204 (11)0.0234 (10)0.0072 (9)0.0043 (8)0.0025 (9)
O30.0269 (12)0.0407 (14)0.0427 (13)0.0166 (11)0.0096 (10)0.0209 (12)
O20.0248 (10)0.0155 (10)0.0224 (10)0.0042 (9)0.0065 (8)0.0050 (8)
O40.0167 (9)0.0236 (11)0.0252 (10)0.0042 (9)0.0053 (8)0.0062 (9)
C180.0204 (14)0.0267 (16)0.0197 (13)0.0118 (14)0.0005 (11)0.0056 (13)
C60.0155 (14)0.0156 (14)0.0176 (14)0.0034 (12)0.0024 (11)0.0020 (11)
C110.0203 (14)0.0169 (15)0.0166 (13)0.0024 (12)0.0003 (11)0.0008 (12)
N10.0174 (12)0.0154 (12)0.0177 (11)0.0014 (10)0.0044 (9)0.0027 (10)
C50.0175 (13)0.0136 (14)0.0156 (12)0.0005 (12)0.0032 (10)0.0017 (11)
C230.0198 (14)0.0215 (16)0.0188 (14)0.0077 (12)0.0017 (11)0.0011 (12)
C150.0164 (14)0.0171 (15)0.0179 (14)0.0035 (12)0.0033 (11)0.0004 (11)
C40.0154 (13)0.0157 (14)0.0174 (13)0.0022 (11)0.0025 (11)0.0011 (12)
C20.0163 (13)0.0120 (14)0.0171 (13)0.0052 (12)0.0005 (10)0.0024 (11)
C140.0156 (13)0.0139 (14)0.0208 (13)0.0077 (12)0.0009 (10)0.0009 (12)
C190.0294 (17)0.0312 (18)0.0184 (14)0.0082 (15)0.0016 (12)0.0014 (13)
C160.0193 (14)0.0185 (16)0.0281 (15)0.0011 (13)0.0005 (12)0.0059 (13)
C80.0183 (14)0.0172 (14)0.0120 (12)0.0022 (13)0.0002 (10)0.0017 (11)
C10.0215 (14)0.0218 (16)0.0224 (14)0.0017 (13)0.0001 (11)0.0029 (13)
C170.0200 (15)0.0242 (16)0.0247 (15)0.0053 (13)0.0062 (12)0.0083 (13)
C70.0230 (15)0.0211 (16)0.0235 (14)0.0005 (13)0.0057 (12)0.0005 (13)
C30.0156 (13)0.0157 (14)0.0183 (13)0.0028 (12)0.0021 (11)0.0042 (12)
C90.0329 (17)0.0193 (15)0.0292 (15)0.0031 (14)0.0068 (13)0.0078 (14)
C120.0188 (14)0.0238 (16)0.0308 (15)0.0024 (14)0.0080 (12)0.0023 (14)
C220.0212 (15)0.0238 (17)0.0245 (14)0.0033 (13)0.0027 (12)0.0011 (13)
C130.0286 (17)0.0296 (19)0.047 (2)0.0078 (16)0.0163 (15)0.0084 (17)
C210.0305 (18)0.0326 (18)0.0274 (16)0.0009 (15)0.0071 (14)0.0040 (14)
C200.0335 (17)0.041 (2)0.0170 (15)0.0142 (16)0.0065 (12)0.0047 (14)
C100.0250 (16)0.0201 (16)0.050 (2)0.0036 (13)0.0044 (15)0.0081 (15)
Geometric parameters (Å, º) top
O1—C81.219 (3)C16—C171.359 (4)
O3—C111.210 (4)C16—H160.9500
O2—C81.344 (3)C8—C31.466 (4)
O2—C91.454 (4)C1—H1A0.9800
O4—C111.338 (3)C1—H1B0.9800
O4—C121.457 (3)C1—H1C0.9800
C18—C171.404 (5)C17—H170.9500
C18—C191.428 (4)C7—H7A0.9800
C18—C231.430 (4)C7—H7B0.9800
C6—C51.360 (4)C7—H7C0.9800
C6—N11.373 (4)C9—C101.492 (4)
C6—C11.495 (4)C9—H9A0.9900
C11—C51.477 (4)C9—H9B0.9900
N1—C21.384 (4)C12—C131.492 (5)
N1—H10.8800C12—H12A0.9900
C5—C41.521 (4)C12—H12B0.9900
C23—C221.414 (4)C22—C211.372 (4)
C23—C141.442 (4)C22—H220.9500
C15—C141.371 (4)C13—H13A0.9800
C15—C161.407 (4)C13—H13B0.9800
C15—H150.9500C13—H13C0.9800
C4—C31.519 (4)C21—C201.405 (5)
C4—C141.533 (4)C21—H210.9500
C4—H41.0000C20—H200.9500
C2—C31.344 (4)C10—H10A0.9800
C2—C71.497 (4)C10—H10B0.9800
C19—C201.349 (5)C10—H10C0.9800
C19—H190.9500
C8—O2—C9117.8 (2)H1A—C1—H1C109.5
C11—O4—C12116.7 (2)H1B—C1—H1C109.5
C17—C18—C19120.9 (3)C16—C17—C18121.2 (3)
C17—C18—C23120.3 (3)C16—C17—H17119.4
C19—C18—C23118.8 (3)C18—C17—H17119.4
C5—C6—N1118.7 (3)C2—C7—H7A109.5
C5—C6—C1127.2 (3)C2—C7—H7B109.5
N1—C6—C1114.0 (2)H7A—C7—H7B109.5
O3—C11—O4122.9 (3)C2—C7—H7C109.5
O3—C11—C5126.9 (3)H7A—C7—H7C109.5
O4—C11—C5110.2 (2)H7B—C7—H7C109.5
C6—N1—C2123.5 (2)C2—C3—C8120.5 (2)
C6—N1—H1118.2C2—C3—C4120.9 (3)
C2—N1—H1118.2C8—C3—C4118.6 (2)
C6—C5—C11121.5 (3)O2—C9—C10110.5 (2)
C6—C5—C4120.4 (2)O2—C9—H9A109.6
C11—C5—C4118.1 (2)C10—C9—H9A109.6
C22—C23—C18118.4 (3)O2—C9—H9B109.6
C22—C23—C14123.9 (3)C10—C9—H9B109.6
C18—C23—C14117.7 (3)H9A—C9—H9B108.1
C14—C15—C16122.7 (3)O4—C12—C13106.4 (2)
C14—C15—H15118.7O4—C12—H12A110.5
C16—C15—H15118.7C13—C12—H12A110.5
C3—C4—C5110.4 (2)O4—C12—H12B110.5
C3—C4—C14111.4 (2)C13—C12—H12B110.5
C5—C4—C14110.9 (2)H12A—C12—H12B108.6
C3—C4—H4108.0C21—C22—C23120.7 (3)
C5—C4—H4108.0C21—C22—H22119.7
C14—C4—H4108.0C23—C22—H22119.7
C3—C2—N1119.0 (2)C12—C13—H13A109.5
C3—C2—C7127.1 (3)C12—C13—H13B109.5
N1—C2—C7113.8 (2)H13A—C13—H13B109.5
C15—C14—C23119.0 (2)C12—C13—H13C109.5
C15—C14—C4118.7 (2)H13A—C13—H13C109.5
C23—C14—C4122.3 (2)H13B—C13—H13C109.5
C20—C19—C18120.8 (3)C22—C21—C20120.7 (3)
C20—C19—H19119.6C22—C21—H21119.7
C18—C19—H19119.6C20—C21—H21119.7
C17—C16—C15119.2 (3)C19—C20—C21120.6 (3)
C17—C16—H16120.4C19—C20—H20119.7
C15—C16—H16120.4C21—C20—H20119.7
O1—C8—O2122.1 (3)C9—C10—H10A109.5
O1—C8—C3126.4 (2)C9—C10—H10B109.5
O2—C8—C3111.5 (2)H10A—C10—H10B109.5
C6—C1—H1A109.5C9—C10—H10C109.5
C6—C1—H1B109.5H10A—C10—H10C109.5
H1A—C1—H1B109.5H10B—C10—H10C109.5
C6—C1—H1C109.5
C12—O4—C11—O33.9 (4)C3—C4—C14—C23110.4 (3)
C12—O4—C11—C5175.4 (2)C5—C4—C14—C23126.3 (3)
C5—C6—N1—C213.3 (4)C17—C18—C19—C20180.0 (3)
C1—C6—N1—C2164.6 (2)C23—C18—C19—C200.0 (4)
N1—C6—C5—C11171.3 (2)C14—C15—C16—C170.3 (4)
C1—C6—C5—C116.2 (4)C9—O2—C8—O18.6 (4)
N1—C6—C5—C49.9 (4)C9—O2—C8—C3172.3 (2)
C1—C6—C5—C4172.6 (3)C15—C16—C17—C181.8 (4)
O3—C11—C5—C66.1 (5)C19—C18—C17—C16178.5 (3)
O4—C11—C5—C6173.2 (2)C23—C18—C17—C161.6 (4)
O3—C11—C5—C4172.8 (3)N1—C2—C3—C8172.5 (2)
O4—C11—C5—C47.9 (3)C7—C2—C3—C83.1 (4)
C17—C18—C23—C22179.5 (3)N1—C2—C3—C45.0 (4)
C19—C18—C23—C220.5 (4)C7—C2—C3—C4179.4 (3)
C17—C18—C23—C140.0 (4)O1—C8—C3—C217.1 (4)
C19—C18—C23—C14179.9 (3)O2—C8—C3—C2163.9 (2)
C6—C5—C4—C326.8 (3)O1—C8—C3—C4165.3 (2)
C11—C5—C4—C3154.3 (2)O2—C8—C3—C413.7 (3)
C6—C5—C4—C1497.1 (3)C5—C4—C3—C224.4 (3)
C11—C5—C4—C1481.8 (3)C14—C4—C3—C299.2 (3)
C6—N1—C2—C315.9 (4)C5—C4—C3—C8153.2 (2)
C6—N1—C2—C7160.3 (2)C14—C4—C3—C883.2 (3)
C16—C15—C14—C231.2 (4)C8—O2—C9—C1085.1 (3)
C16—C15—C14—C4178.0 (3)C11—O4—C12—C13173.9 (3)
C22—C23—C14—C15178.1 (3)C18—C23—C22—C210.4 (4)
C18—C23—C14—C151.4 (4)C14—C23—C22—C21179.9 (3)
C22—C23—C14—C42.7 (4)C23—C22—C21—C200.1 (5)
C18—C23—C14—C4177.8 (2)C18—C19—C20—C210.5 (5)
C3—C4—C14—C1568.8 (3)C22—C21—C20—C190.6 (5)
C5—C4—C14—C1554.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.132.985 (3)164
C7—H7B···O1i0.982.583.378 (4)138
C19—H19···O1ii0.952.593.503 (4)161
C1—H1C···O2iii0.982.623.563 (3)161
Symmetry codes: (i) x, y1/2, z+2; (ii) x, y1/2, z+1; (iii) x+1, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.1292.985 (3)164
C7—H7B···O1i0.982.5793.378 (4)138
C19—H19···O1ii0.952.5873.503 (4)161
C1—H1C···O2iii0.982.6193.563 (3)161
Symmetry codes: (i) x, y1/2, z+2; (ii) x, y1/2, z+1; (iii) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC23H25NO4
Mr379.44
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.7072 (17), 9.8740 (19), 11.221 (2)
β (°) 95.307 (6)
V3)960.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.984, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7663, 3319, 3046
Rint0.048
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.05
No. of reflections3319
No. of parameters257
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 2012).

 

Acknowledgements

NLP is thankful to the University Grants Commission (UGC), India, for a UGC–JRF.

References

First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatar, P. A. & Pratibha, B. A. (2012). J. Comput. Methods Mol. Des. 2, 85–91.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2012). Acta Cryst. E68, o287–o288.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGiorgi, G., Adamo, M. F. A., Ponticelli, F. & Ventura, A. (2010). Org. Biomol. Chem. 8, 5339–5344.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLavanya, T., Manjula, S., Rajkiran, E., Pradeep kumar, T. & Madhavi, K. (2011). IJRPC. 1, 1203–1208.  CAS Google Scholar
First citationMetcalf, S. K. & Holt, E. M. (2000). Acta Cryst. C56, 1228–1231.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVrábel, V., Kožíšek, J., Marchalín, Š. & Svoboda, I. (2005). Acta Cryst. E61, o733–o735.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZonouz, A. M., Aras, M. A. & Abuali, N. (2013). Transition Met. Chem. 38, 335–340.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds