organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(3,5-di­fluoro­phen­yl)quinoline-4-carboxyl­ate: a second triclinic polymorph

aDepartment of Chemistry, Mangalore University, Mangaluru 574 199, India, bDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, dDepartment of Material Science, Mangalore University, Mangaluru 574 199, India, and ePURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India
*Correspondence e-mail: madanmx@mangaloreuniversity.ac.in

Edited by J. Simpson, University of Otago, New Zealand (Received 1 February 2016; accepted 3 May 2016; online 20 May 2016)

The title compound, C18H13F2NO2, is a polymorph of the structure reported by Sunitha et al. [Acta Cryst. (2015), E71, o341–o342]. Both compounds crystallize in the triclinic space group P-1. The principal difference between the two polymorphs lies in the orientation of the carboxyl­ate substituents with respect to the planes of the quinoline ring systems. In the crystal, the packing features C—H⋯O hydrogen bonds together with short C—F⋯π and ππ inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (I), Fig. 1[link], which crystallizes in the triclinic space group P[\overline{1}], is a polymorph of the structure (II) reported by Sunitha et al. (2015[Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341-o342.]), also in P[\overline{1}]. In both polymorphs, the di­fluoro­phenyl rings lie close to the planes of the quinoline ring system with dihedral angles of 10.85 (10)° for (I) and 7.65 (7)° for (II). In contrast however, the carboxyl­ate substituent in (I) projects away from one face of the quinoline ring system, with the angle between the best fit plane through O12/C10–C15 inclined to the quinoline plane by 42.17 (9)°, while for (II) the carboxyl­ate lies close to the quinoline plane, with a corresponding dihedral angle of ca 5.87 (8)°. The torsion angle between the carboxyl­ate substituent and the quinoline ring system C10—C11—O13—C14 is 176.44 (16)°, indicating a + anti-periplanar conformation. This is opposite to the − anti-periplanar conformation found for (II) (Sunitha et al., 2015[Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341-o342.]). Intra­molecular C2—H2⋯O12 and C21—H21⋯N7 hydrogen bonds, Table 1[link], also affect the overall mol­ecular conformation. The structure of a closely related mol­ecule, 2-(4-chloro­phen­yl)-6-methyl-4-(3-methyl­phen­yl)quinoline was reported by Prabhuswamy et al. (2012[Prabhuswamy, M., Swaroop, T. R., Madan Kumar, S., Rangappa, K. S. & Lokanath, N. K. (2012). Acta Cryst. E68, o3250.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O12 0.93 2.41 2.986 (2) 120
C21—H21⋯N7 0.93 2.47 2.778 (3) 100
C19—H19⋯O12i 0.93 2.47 3.399 (3) 175
Symmetry code: (i) x+1, y-1, z.
[Figure 1]
Figure 1
A view of the title mol­ecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level and intra­molecular hydrogen bonds are shown as dashed lines.

In the crystal, mol­ecules are linked through C19—H19⋯O12 hydrogen bonds into chains parallel to the ab diagonal, Table 1[link] and Fig. 2[link]. A variety of ππ inter­actions are observed: Cg1⋯Cg1ii = 3.8199 (11), Cg1⋯Cg2ii = 3.6825 (12) and Cg1⋯Cg3iii = 3.8722 (13) Å, Cg1, Cg2 and Cg3 are the centroids of the N7/C1/C6/C8–C10; C1–C6 and C16–C21 rings, respectively; symmetry codes: (ii) −x, 2 − y, 1 − z; (iii) 1 − x, 2 − y, 1 − z). C20—F23⋯Cg1iii [F⋯Cg1 = 3.6366 (17) Å] and C20—F23⋯Cg3iv [F⋯Cg3 = 3.3445 (18) Å; symmetry code: (iv) 1 − x, 1 − y, 1 − z] interactions also occur.

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are drawn as dashed lines.

Synthesis and crystallization

Synthesis was performed using a literature method (Sunitha et al., 2015[Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341-o342.]). Recrystallization was carried out using the slow evaporation technique from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H13F2NO2
Mr 313.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.9998 (8), 9.0314 (6), 10.2747 (5)
α, β, γ (°) 67.15 (2), 72.45 (3), 82.91 (3)
V3) 733.76 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.6 × 0.5 × 0.3
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.936, 0.968
No. of measured, independent and observed [I > 2σ(I)] reflections 4288, 3269, 2198
Rint 0.038
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.172, 1.05
No. of reflections 3269
No. of parameters 209
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.20
Computer programs: CrystalClear SM-Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM-Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Synthesis and crystallization top

Synthesis was performed using a literature method (Sunitha et al., 2015). Recrystallization was carried out using the slow evaporation technique from ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1

Experimental top

Synthesis was performed using a literature method (Sunitha et al., 2015). Recrystallization was carried out using the slow evaporation technique from ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound (I), Fig. 1, which crystallizes in the triclinic space group P1, is a polymorph of the structure (II) reported by Sunitha et al. (2015), also in P1. In both polymorphs, the difluorophenyl rings lie close to the planes of the quinoline ring system with dihedral angles of 10.85 (10)° for (I) and 7.65 (7)° for (II). In contrast however, the carboxylate substituent in (I) projects away from one face of the quinoline ring system, with the angle between the best fit plane through O12/C10–C15 inclined to the quinoline plane by 42.17 (9)°, while for (II) the carboxylate lies close to the quinoline plane, with a corresponding dihedral angle of ca 5.87°. The torsion angle between the carboxylate substituent and the quinoline ring system C10—C11—O13—C14 is 176.44 (16)°, suggesting a + anti-periplanar conformation. This is opposite to the - anti-periplanar conformation found for (II) (Sunitha et al., 2015). Intramolecular C2—H2···O12 and C21—H21···N7 hydrogen bonds, Table 1, also affect the overall molecular conformation. The structure of a closely related molecule, 2-(4-chlorophenyl)-6-methyl-4-(3-methylphenyl)quinoline was reported by Prabhuswamy et al., 2012).

In the crystal, molecules are linked through C19—H19···O12 hydrogen bonds into chains parallel to the ab diagonal, Table 1 and Fig. 2. A variety of ππ interactions, [Cg1···Cg1ii = 3.8199 (11), Cg1···Cg2ii = 3.6825 (12) and Cg1···Cg3iii = 3.8722 (13) Å, Cg1, Cg2 and Cg3 are the centroids of the N7/C1/C6/C8–C10; C1–C6 and C16–C21 rings, respectively; symmetry codes: (ii) -x, 2 - y, 1 - z; (iii) 1 - x, 2 - y, 1 - z) also occur along with C20—F23···Cg1iii [F···Cg1 = 3.6366 (17) Å] and C20—F23···Cg3iv [F···Cg3 = 3.3445 (18) Å; symmetry code: ( iv) 1 - x, 1 - y, 1 - z] contacts.

Computing details top

Data collection: CrystalClear SM-Expert (Rigaku, 2011); cell refinement: CrystalClear SM-Expert (Rigaku, 2011); data reduction: CrystalClear SM-Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level and intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are drawn as dashed lines.
Ethyl 2-(3,5-difluorophenyl)quinoline-4-carboxylate top
Crystal data top
C18H13F2NO2Z = 2
Mr = 313.29F(000) = 324
Triclinic, P1Dx = 1.418 Mg m3
a = 8.9998 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0314 (6) ÅCell parameters from 3269 reflections
c = 10.2747 (5) Åθ = 27.5–3.1°
α = 67.15 (2)°µ = 0.11 mm1
β = 72.45 (3)°T = 293 K
γ = 82.91 (3)°Block, colourless
V = 733.76 (18) Å30.6 × 0.5 × 0.3 mm
Data collection top
Rigaku Saturn724+
diffractometer
2198 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.038
profile data from ω–scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(NUMABS; Rigaku 1999)
h = 1111
Tmin = 0.936, Tmax = 0.968k = 118
4288 measured reflectionsl = 138
3269 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0867P)2 + 0.0798P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3269 reflectionsΔρmax = 0.25 e Å3
209 parametersΔρmin = 0.20 e Å3
Crystal data top
C18H13F2NO2γ = 82.91 (3)°
Mr = 313.29V = 733.76 (18) Å3
Triclinic, P1Z = 2
a = 8.9998 (8) ÅMo Kα radiation
b = 9.0314 (6) ŵ = 0.11 mm1
c = 10.2747 (5) ÅT = 293 K
α = 67.15 (2)°0.6 × 0.5 × 0.3 mm
β = 72.45 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
3269 independent reflections
Absorption correction: multi-scan
(NUMABS; Rigaku 1999)
2198 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.968Rint = 0.038
4288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
3269 reflectionsΔρmin = 0.20 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F220.6825 (2)0.7904 (2)0.07067 (16)0.1001 (6)
F230.67056 (16)0.53755 (15)0.56697 (16)0.0718 (4)
O120.01987 (17)1.4064 (2)0.24797 (16)0.0649 (5)
O130.23514 (16)1.42864 (17)0.13543 (14)0.0531 (4)
N70.24653 (18)0.94165 (18)0.57154 (16)0.0421 (4)
C10.0774 (2)1.1781 (2)0.51318 (19)0.0376 (4)
C20.0454 (2)1.2713 (2)0.5691 (2)0.0480 (5)
H20.08011.36390.50470.058*
C30.1123 (3)1.2258 (3)0.7167 (2)0.0539 (5)
H30.19291.28740.75190.065*
C40.0618 (3)1.0881 (3)0.8155 (2)0.0555 (5)
H40.10861.05880.91590.067*
C50.0558 (2)0.9962 (2)0.7659 (2)0.0503 (5)
H50.08820.90440.83290.060*
C60.1290 (2)1.0385 (2)0.61443 (19)0.0401 (4)
C80.3163 (2)0.9798 (2)0.43039 (19)0.0388 (4)
C90.2746 (2)1.1196 (2)0.3221 (2)0.0405 (4)
H90.32811.14490.22340.049*
C100.1566 (2)1.2166 (2)0.36229 (19)0.0383 (4)
C110.1116 (2)1.3604 (2)0.2447 (2)0.0426 (4)
C140.2048 (3)1.5635 (3)0.0110 (2)0.0608 (6)
H14A0.12441.63260.04500.073*
H14B0.16981.52530.05090.073*
C150.3529 (3)1.6536 (4)0.0731 (3)0.0974 (11)
H15A0.33481.74810.15210.146*
H15B0.42921.58650.11250.146*
H15C0.39031.68420.00900.146*
C160.4429 (2)0.8708 (2)0.3884 (2)0.0408 (4)
C170.5062 (3)0.8827 (2)0.2435 (2)0.0534 (5)
H170.46990.96010.16860.064*
C180.6236 (3)0.7778 (3)0.2130 (3)0.0606 (6)
C190.6821 (2)0.6602 (3)0.3172 (3)0.0588 (6)
H190.76110.59050.29350.071*
C200.6169 (2)0.6520 (2)0.4584 (3)0.0509 (5)
C210.4994 (2)0.7514 (2)0.4975 (2)0.0453 (5)
H210.45780.73950.59550.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F220.1142 (14)0.0950 (12)0.0644 (9)0.0349 (10)0.0037 (9)0.0335 (8)
F230.0743 (9)0.0543 (8)0.0933 (10)0.0268 (7)0.0468 (8)0.0246 (7)
O120.0491 (9)0.0713 (11)0.0610 (10)0.0189 (8)0.0218 (7)0.0113 (8)
O130.0508 (8)0.0528 (9)0.0406 (7)0.0100 (6)0.0154 (6)0.0027 (6)
N70.0473 (9)0.0345 (8)0.0422 (8)0.0038 (7)0.0157 (7)0.0108 (6)
C10.0384 (9)0.0362 (9)0.0413 (9)0.0023 (7)0.0148 (7)0.0157 (7)
C20.0486 (11)0.0452 (11)0.0513 (11)0.0086 (9)0.0183 (9)0.0185 (9)
C30.0526 (12)0.0622 (13)0.0511 (11)0.0097 (10)0.0134 (9)0.0291 (10)
C40.0596 (13)0.0638 (14)0.0414 (11)0.0027 (11)0.0096 (9)0.0220 (10)
C50.0609 (13)0.0481 (12)0.0389 (10)0.0031 (10)0.0164 (9)0.0121 (8)
C60.0433 (10)0.0377 (9)0.0419 (10)0.0013 (8)0.0162 (8)0.0146 (8)
C80.0400 (10)0.0338 (9)0.0426 (10)0.0035 (7)0.0139 (8)0.0135 (7)
C90.0433 (10)0.0388 (10)0.0378 (9)0.0040 (8)0.0136 (8)0.0120 (8)
C100.0406 (10)0.0347 (9)0.0402 (9)0.0028 (7)0.0160 (7)0.0120 (7)
C110.0477 (11)0.0410 (10)0.0410 (10)0.0097 (8)0.0185 (8)0.0156 (8)
C140.0688 (15)0.0597 (14)0.0434 (11)0.0182 (11)0.0256 (10)0.0059 (10)
C150.0709 (18)0.095 (2)0.0630 (16)0.0102 (16)0.0056 (13)0.0247 (15)
C160.0382 (9)0.0333 (9)0.0508 (10)0.0025 (7)0.0128 (8)0.0159 (8)
C170.0556 (12)0.0439 (11)0.0512 (12)0.0080 (9)0.0117 (9)0.0124 (9)
C180.0615 (14)0.0524 (13)0.0585 (13)0.0042 (11)0.0012 (10)0.0235 (10)
C190.0447 (12)0.0472 (12)0.0803 (16)0.0114 (9)0.0109 (11)0.0278 (11)
C200.0447 (11)0.0358 (10)0.0756 (14)0.0069 (8)0.0284 (10)0.0175 (9)
C210.0456 (11)0.0398 (10)0.0535 (11)0.0032 (8)0.0189 (9)0.0176 (9)
Geometric parameters (Å, º) top
F22—C181.360 (3)C8—C161.487 (2)
F23—C201.361 (2)C9—H90.9300
O12—C111.200 (2)C9—C101.361 (2)
O13—C111.325 (2)C10—C111.503 (2)
O13—C141.453 (2)C14—H14A0.9700
N7—C61.367 (2)C14—H14B0.9700
N7—C81.316 (2)C14—C151.487 (4)
C1—C21.422 (3)C15—H15A0.9600
C1—C61.420 (2)C15—H15B0.9600
C1—C101.417 (3)C15—H15C0.9600
C2—H20.9300C16—C171.390 (3)
C2—C31.362 (3)C16—C211.395 (3)
C3—H30.9300C17—H170.9300
C3—C41.394 (3)C17—C181.377 (3)
C4—H40.9300C18—C191.368 (3)
C4—C51.362 (3)C19—H190.9300
C5—H50.9300C19—C201.367 (3)
C5—C61.408 (3)C20—C211.370 (3)
C8—C91.420 (2)C21—H210.9300
C11—O13—C14116.37 (15)O13—C11—C10111.54 (15)
C8—N7—C6118.80 (15)O13—C14—H14A110.2
C6—C1—C2118.52 (17)O13—C14—H14B110.2
C10—C1—C2124.76 (16)O13—C14—C15107.47 (18)
C10—C1—C6116.69 (16)H14A—C14—H14B108.5
C1—C2—H2119.8C15—C14—H14A110.2
C3—C2—C1120.33 (18)C15—C14—H14B110.2
C3—C2—H2119.8C14—C15—H15A109.5
C2—C3—H3119.5C14—C15—H15B109.5
C2—C3—C4120.9 (2)C14—C15—H15C109.5
C4—C3—H3119.5H15A—C15—H15B109.5
C3—C4—H4119.8H15A—C15—H15C109.5
C5—C4—C3120.36 (19)H15B—C15—H15C109.5
C5—C4—H4119.8C17—C16—C8122.06 (17)
C4—C5—H5119.6C17—C16—C21118.63 (18)
C4—C5—C6120.87 (18)C21—C16—C8119.30 (17)
C6—C5—H5119.6C16—C17—H17120.6
N7—C6—C1122.89 (16)C18—C17—C16118.79 (19)
N7—C6—C5118.10 (16)C18—C17—H17120.6
C5—C6—C1119.01 (18)F22—C18—C17117.8 (2)
N7—C8—C9121.95 (17)F22—C18—C19118.2 (2)
N7—C8—C16117.07 (16)C19—C18—C17124.0 (2)
C9—C8—C16120.97 (16)C18—C19—H19122.2
C8—C9—H9119.9C20—C19—C18115.57 (19)
C10—C9—C8120.18 (17)C20—C19—H19122.2
C10—C9—H9119.9F23—C20—C19118.31 (19)
C1—C10—C11121.64 (16)F23—C20—C21117.9 (2)
C9—C10—C1119.46 (16)C19—C20—C21123.82 (19)
C9—C10—C11118.89 (16)C16—C21—H21120.4
O12—C11—O13124.14 (17)C20—C21—C16119.18 (19)
O12—C11—C10124.31 (18)C20—C21—H21120.4
F22—C18—C19—C20179.1 (2)C8—C9—C10—C10.9 (3)
F23—C20—C21—C16179.44 (16)C8—C9—C10—C11177.89 (16)
N7—C8—C9—C101.8 (3)C8—C16—C17—C18179.82 (19)
N7—C8—C16—C17168.68 (18)C8—C16—C21—C20179.52 (17)
N7—C8—C16—C2110.6 (3)C9—C8—C16—C1712.0 (3)
C1—C2—C3—C40.3 (3)C9—C8—C16—C21168.72 (16)
C1—C10—C11—O1237.0 (3)C9—C10—C11—O12141.7 (2)
C1—C10—C11—O13144.05 (17)C9—C10—C11—O1337.2 (2)
C2—C1—C6—N7179.66 (16)C10—C1—C2—C3178.75 (19)
C2—C1—C6—C50.8 (3)C10—C1—C6—N71.4 (3)
C2—C1—C10—C9178.70 (17)C10—C1—C6—C5179.03 (17)
C2—C1—C10—C112.5 (3)C11—O13—C14—C15162.0 (2)
C2—C3—C4—C50.1 (3)C14—O13—C11—O122.5 (3)
C3—C4—C5—C60.3 (3)C14—O13—C11—C10176.44 (16)
C4—C5—C6—N7179.84 (18)C16—C8—C9—C10178.90 (16)
C4—C5—C6—C10.6 (3)C16—C17—C18—F22179.2 (2)
C6—N7—C8—C91.0 (3)C16—C17—C18—C190.5 (4)
C6—N7—C8—C16179.68 (15)C17—C16—C21—C201.2 (3)
C6—C1—C2—C30.7 (3)C17—C18—C19—C200.4 (4)
C6—C1—C10—C90.6 (3)C18—C19—C20—F23179.87 (19)
C6—C1—C10—C11179.39 (16)C18—C19—C20—C210.7 (3)
C8—N7—C6—C10.6 (3)C19—C20—C21—C161.1 (3)
C8—N7—C6—C5179.84 (17)C21—C16—C17—C180.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O120.932.412.986 (2)120
C21—H21···N70.932.472.778 (3)100
C19—H19···O12i0.932.473.399 (3)175
Symmetry code: (i) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O120.932.412.986 (2)120
C21—H21···N70.932.472.778 (3)100
C19—H19···O12i0.932.473.399 (3)175
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC18H13F2NO2
Mr313.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9998 (8), 9.0314 (6), 10.2747 (5)
α, β, γ (°)67.15 (2), 72.45 (3), 82.91 (3)
V3)733.76 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.6 × 0.5 × 0.3
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(NUMABS; Rigaku 1999)
Tmin, Tmax0.936, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
4288, 3269, 2198
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.172, 1.05
No. of reflections3269
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: CrystalClear SM-Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank the Department of Studies in Physics, University of Mysore, Mysore, India and DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. KK thanks IOE for financial support.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrabhuswamy, M., Swaroop, T. R., Madan Kumar, S., Rangappa, K. S. & Lokanath, N. K. (2012). Acta Cryst. E68, o3250.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM-Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341–o342.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds