organic compounds
4-(3-Bromopropyloxy)-1-hydroxy-9,10-anthraquinone
aDepartment of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
*Correspondence e-mail: kitamura.c@mat.usp.ac.jp
In the molecule of the title compound, C17H13BrO4, the anthraquinone ring system is slightly bent, with a dihedral angle of 169.99 (7)° between the planes of the two benzene rings. The side chain (O—C—C—C—Br) has a gauche–gauche conformation, as indicated by the O—C—C—C and C—C—C—Br torsion angles of −66.9 (2) and −65.8 (2)°, respectively. In addition, there is an intramolecular O—H⋯O hydrogen bond enclosing an S(6) ring motif. The hydrogen-bond donor is bifurcated; in the crystal, a pair of O—H⋯O hydrogen bonds connects two molecules, forming an inversion dimer with an R22(12) ring motif.
Keywords: crystal structure; anthraquinone; hydrogen bonds.
CCDC reference: 1478251
Structure description
A large number of anthraquinone derivatives have been manufactured as dyes and pigments. We have recently investigated alkoxy-substituted anthraquinone molecules (Kitamura et al. 2015a,b; Ohta et al. 2012a,b). As a continuation of our efforts to synthesize new anthraquinone derivatives, we report here the of the title compound.
The molecular structure of the title compound is shown in Fig. 1. The anthraquinone ring is slightly bent with a dihedral angle of 169.99 (7)° between the two terminal benzene rings due to repulsion between two O atoms in peri positions on the anthracene ring. The side chain (O–C–C–C–Br) has a gauche-gauche conformation, as indicated by the O2—C15—C16—C17 and C15—C16—C17—Br1 torsion angles of −66.9 (2) and −65.8 (2)°, respectively. In addition, there is an intramolecular O1–H1⋯O4 hydrogen bond enclosing an S(6) ring motif (Table 1).
|
The crystal packing of the title compound is shown in Figs. 2 and 3. The sole hydrogen-bond donor is bifurcated, as a pair of O1—H1⋯O4i [symmetry code: (i) −x − , −y + , −z + 1] hydrogen bonds connect two molecules, forming an inversion dimer that generates a (12) ring motif (Table 1 and Fig. 2). The molecules adopt a herringbone-like arrangement without π–π stacking (Fig. 3).
Synthesis and crystallization
A mixture of 1,4-dihydroxy-9,10-anthraquinone (243 mg, 1.01 mmol), 1,3-dibromopropane (1.02 g, 5.07 mmol), and potassium carbonate (142 mg, 1.02 mmol) in DMF (5 ml) was stirred at 80 °C for 3 h. After cooling to room temperature, water (50 ml) was added to the mixture, then the resulting solid was extracted with dichloromethane. The organic extract was washed with 1 M NaOH and brine successively, and dried over Na2SO4. After filtration and evaporation, on silica gel with eluents of dichloromethane–hexane (2:1 to 3:1) afforded the title compound as an orange solid in 50% yield. Suitable single crystals for X-ray diffraction were obtained by slow evaporation from a dichloromethane solution. 1H NMR (CDCl3, 400 MHz) δ 2.41–2.47 (m, 2H), 3.86 (t, J = 6.2 Hz, 2H), 4.28 (t, J = 5.6 Hz, 2H), 7.32 (d, J = 9.5 Hz, 1H), 7.42 (d, J = 9.5 Hz, 1H), 7.75–7.83 (m, 2H), 8.26–8.30 (m, 2H), 13.03 (s, 1H).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1478251
10.1107/S2414314616007537/pk4005sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616007537/pk4005Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616007537/pk4005Isup3.cml
A mixture of 1,4-dihydroxy-9,10-anthraquinone (243 mg, 1.01 mmol), 1,3-dibromopropane (1.02 g, 5.07 mmol), and potassium carbonate (142 mg, 1.02 mmol) in DMF (5 ml) was stirred at 80 °C for 3 h. After cooling to room temperature, water (50 ml) was added to the mixture, then the resulting solid was extracted with dichloromethane. The organic extract was washed with 1 M NaOH and brine successively, and dried over Na2SO4. After filtration and evaporation, δ 2.41–2.47 (m, 2H), 3.86 (t, J = 6.2 Hz, 2H), 4.28 (t, J = 5.6 Hz, 2H), 7.32 (d, J = 9.5 Hz, 1H), 7.42 (d, J = 9.5 Hz, 1H), 7.75–7.83 (m, 2H), 8.26–8.30 (m, 2H), 13.03 (s, 1H).
on silica gel with eluents of dichloromethane–hexane (2:1 to 3:1) afforded the title compound as an orange solid in 50% yield. Suitable single crystals for X-ray diffraction were obtained by slow evaporation from a dichloromethane solution. 1H NMR (CDCl3, 400 MHz)A large number of anthraquinone derivatives have been manufactured as dyes and pigments. We have recently investigated alkoxy-substituted anthraquinone molecules (Kitamura et al. 2015a,b; Ohta et al. 2012a,b). As a continuation of our efforts to synthesize new anthraquinone derivatives, we report here the
of the title compound.The molecular structure of the title compound is shown in Fig. 1. The anthraquinone ring is slightly bent with a dihedral angle of 169.99 (7)° between the two terminal benzene rings due to repulsion between two O atoms in peri positions on the anthracene ring. The side chain (O–C–C–C–Br) has a gauche-gauche conformation, as indicated by the O2—C15—C16—C17 and C15—C16—C17—Br1 torsion angles of -66.9 (2) and -65.8 (2)°, respectively. In addition, there is an intramolecular O1–H1···O4 hydrogen bond enclosing an S(6) ring motif (Table 1).
The crystal packing of the title compound is shown in Figs. 2 and 3. The sole hydrogen-bond donor is bifurcated, as a pair of O1—H1···O4i [symmetry code: (i) -x - 1/2, -y + 5/2, -z + 1] hydrogen bonds connect two molecules, forming a centrosymmetric dimer that generates a R22(12) ring motif (Table 1 and Fig. 2). The molecules adopt a herringbone-like arrangement without π–π stacking (Fig. 3).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme, with 50% probability displacement ellipsoids. | |
Fig. 2. A pair of molecules connected by hydrogen bonds (dashed lines). | |
Fig. 3. The crystal packing of the title compound. Hydrogen bonds are shown as blue lines. |
C17H13BrO4 | F(000) = 1456 |
Mr = 361.17 | Dx = 1.705 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 10102 reflections |
a = 29.889 (2) Å | θ = 3.1–27.5° |
b = 4.8479 (3) Å | µ = 2.94 mm−1 |
c = 20.0427 (16) Å | T = 200 K |
β = 104.337 (2)° | Prism, orange |
V = 2813.7 (3) Å3 | 0.53 × 0.23 × 0.13 mm |
Z = 8 |
Rigaku R-AXIS RAPID diffractometer | 3215 independent reflections |
Radiation source: fine-focus sealed x-ray tube | 2628 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 10 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −38→38 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −5→6 |
Tmin = 0.634, Tmax = 0.825 | l = −26→25 |
12835 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.03 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0391P)2 + 2.572P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
3215 reflections | Δρmax = 0.29 e Å−3 |
203 parameters | Δρmin = −0.69 e Å−3 |
C17H13BrO4 | V = 2813.7 (3) Å3 |
Mr = 361.17 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 29.889 (2) Å | µ = 2.94 mm−1 |
b = 4.8479 (3) Å | T = 200 K |
c = 20.0427 (16) Å | 0.53 × 0.23 × 0.13 mm |
β = 104.337 (2)° |
Rigaku R-AXIS RAPID diffractometer | 3215 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2628 reflections with I > 2σ(I) |
Tmin = 0.634, Tmax = 0.825 | Rint = 0.028 |
12835 measured reflections |
R[F2 > 2σ(F2)] = 0.03 | 0 restraints |
wR(F2) = 0.080 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.29 e Å−3 |
3215 reflections | Δρmin = −0.69 e Å−3 |
203 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All the H atoms except for the OH group were positioned geometrically and refined using a riding model. The H atom of the OH group was located in a difference Fourier map and freely refined [O1—H1 = 0.67 (3) Å]. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.18216 (7) | 0.7307 (4) | 0.48851 (10) | 0.0231 (4) | |
C2 | −0.16048 (7) | 0.5298 (4) | 0.45775 (10) | 0.0271 (4) | |
H2 | −0.1698 | 0.5048 | 0.4093 | 0.033* | |
C3 | −0.12604 (7) | 0.3680 (4) | 0.49621 (11) | 0.0264 (4) | |
H3 | −0.1118 | 0.233 | 0.4739 | 0.032* | |
C4 | −0.11142 (7) | 0.3985 (4) | 0.56807 (10) | 0.0235 (4) | |
C5 | −0.13341 (7) | 0.5936 (4) | 0.60097 (10) | 0.0211 (4) | |
C6 | −0.11938 (7) | 0.6333 (4) | 0.67703 (10) | 0.0251 (4) | |
C7 | −0.14927 (7) | 0.8127 (4) | 0.70852 (10) | 0.0218 (4) | |
C8 | −0.14180 (8) | 0.8172 (4) | 0.78014 (10) | 0.0267 (4) | |
H8 | −0.1183 | 0.7057 | 0.808 | 0.032* | |
C9 | −0.16879 (8) | 0.9849 (4) | 0.81046 (10) | 0.0290 (5) | |
H9 | −0.1643 | 0.9839 | 0.8591 | 0.035* | |
C10 | −0.20230 (8) | 1.1541 (5) | 0.77035 (11) | 0.0299 (5) | |
H10 | −0.2203 | 1.2703 | 0.7917 | 0.036* | |
C11 | −0.20967 (7) | 1.1542 (4) | 0.69926 (11) | 0.0255 (4) | |
H11 | −0.2323 | 1.2722 | 0.6718 | 0.031* | |
C12 | −0.18360 (7) | 0.9795 (4) | 0.66838 (10) | 0.0215 (4) | |
C13 | −0.19313 (6) | 0.9690 (4) | 0.59259 (9) | 0.0211 (4) | |
C14 | −0.16913 (7) | 0.7614 (4) | 0.56037 (10) | 0.0204 (4) | |
C15 | −0.05195 (7) | 0.0603 (4) | 0.57274 (12) | 0.0294 (5) | |
H15A | −0.0392 | 0.1641 | 0.5392 | 0.035* | |
H15B | −0.0726 | −0.0857 | 0.5478 | 0.035* | |
C16 | −0.01362 (8) | −0.0647 (5) | 0.62740 (13) | 0.0371 (5) | |
H16A | 0.0012 | −0.2119 | 0.6062 | 0.045* | |
H16B | −0.0271 | −0.152 | 0.6626 | 0.045* | |
C17 | 0.02288 (8) | 0.1368 (6) | 0.66265 (12) | 0.0375 (5) | |
H17A | 0.0447 | 0.044 | 0.7014 | 0.045* | |
H17B | 0.0082 | 0.2912 | 0.6817 | 0.045* | |
O1 | −0.21479 (6) | 0.8858 (4) | 0.44614 (8) | 0.0289 (3) | |
O2 | −0.07696 (5) | 0.2429 (3) | 0.60734 (8) | 0.0290 (3) | |
O3 | −0.08479 (6) | 0.5313 (4) | 0.71384 (8) | 0.0456 (5) | |
O4 | −0.22127 (5) | 1.1299 (3) | 0.55713 (7) | 0.0279 (3) | |
Br1 | 0.05677 (2) | 0.28203 (5) | 0.59770 (2) | 0.03874 (10) | |
H1 | −0.2231 (10) | 0.970 (6) | 0.4668 (16) | 0.046 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0230 (10) | 0.0262 (10) | 0.0209 (9) | −0.0059 (9) | 0.0069 (8) | 0.0016 (8) |
C2 | 0.0336 (11) | 0.0290 (10) | 0.0202 (9) | −0.0061 (10) | 0.0096 (8) | −0.0035 (8) |
C3 | 0.0299 (11) | 0.0256 (10) | 0.0276 (10) | −0.0046 (9) | 0.0145 (8) | −0.0075 (8) |
C4 | 0.0233 (10) | 0.0239 (9) | 0.0258 (10) | −0.0019 (9) | 0.0106 (8) | −0.0001 (8) |
C5 | 0.0217 (9) | 0.0229 (9) | 0.0208 (9) | −0.0028 (9) | 0.0093 (7) | 0.0000 (8) |
C6 | 0.0263 (10) | 0.0276 (10) | 0.0224 (10) | 0.0029 (9) | 0.0079 (8) | −0.0001 (8) |
C7 | 0.0232 (10) | 0.0226 (9) | 0.0210 (9) | −0.0018 (8) | 0.0080 (7) | 0.0000 (7) |
C8 | 0.0311 (11) | 0.0290 (10) | 0.0200 (9) | 0.0009 (9) | 0.0065 (8) | 0.0007 (8) |
C9 | 0.0361 (12) | 0.0311 (11) | 0.0211 (10) | −0.0005 (10) | 0.0096 (8) | −0.0020 (8) |
C10 | 0.0320 (12) | 0.0325 (11) | 0.0287 (11) | 0.0000 (10) | 0.0140 (9) | −0.0065 (9) |
C11 | 0.0245 (10) | 0.0261 (10) | 0.0265 (10) | 0.0015 (9) | 0.0075 (8) | −0.0004 (8) |
C12 | 0.0209 (9) | 0.0237 (9) | 0.0212 (9) | −0.0046 (8) | 0.0075 (7) | −0.0019 (7) |
C13 | 0.0199 (9) | 0.0226 (9) | 0.0216 (9) | −0.0034 (8) | 0.0066 (7) | 0.0017 (8) |
C14 | 0.0193 (9) | 0.0226 (9) | 0.0207 (9) | −0.0040 (8) | 0.0076 (7) | 0.0010 (7) |
C15 | 0.0287 (11) | 0.0244 (10) | 0.0395 (12) | 0.0017 (9) | 0.0168 (9) | −0.0062 (9) |
C16 | 0.0382 (13) | 0.0282 (11) | 0.0522 (15) | 0.0085 (11) | 0.0248 (11) | 0.0073 (10) |
C17 | 0.0317 (12) | 0.0496 (14) | 0.0338 (12) | 0.0079 (12) | 0.0132 (9) | 0.0061 (11) |
O1 | 0.0346 (9) | 0.0318 (8) | 0.0200 (7) | 0.0025 (8) | 0.0059 (6) | 0.0018 (7) |
O2 | 0.0273 (8) | 0.0313 (8) | 0.0298 (8) | 0.0099 (7) | 0.0098 (6) | −0.0027 (6) |
O3 | 0.0430 (10) | 0.0651 (12) | 0.0256 (8) | 0.0297 (9) | 0.0026 (7) | −0.0026 (8) |
O4 | 0.0293 (8) | 0.0304 (7) | 0.0238 (7) | 0.0054 (7) | 0.0064 (6) | 0.0034 (6) |
Br1 | 0.03190 (15) | 0.04575 (16) | 0.04142 (15) | −0.00323 (11) | 0.01446 (10) | −0.00340 (10) |
C1—O1 | 1.352 (3) | C10—C11 | 1.387 (3) |
C1—C2 | 1.395 (3) | C10—H10 | 0.95 |
C1—C14 | 1.404 (3) | C11—C12 | 1.395 (3) |
C2—C3 | 1.370 (3) | C11—H11 | 0.95 |
C2—H2 | 0.95 | C12—C13 | 1.475 (3) |
C3—C4 | 1.406 (3) | C13—O4 | 1.235 (2) |
C3—H3 | 0.95 | C13—C14 | 1.475 (3) |
C4—O2 | 1.359 (3) | C15—O2 | 1.443 (2) |
C4—C5 | 1.406 (3) | C15—C16 | 1.503 (3) |
C5—C14 | 1.426 (3) | C15—H15A | 0.99 |
C5—C6 | 1.490 (3) | C15—H15B | 0.99 |
C6—O3 | 1.216 (3) | C16—C17 | 1.504 (4) |
C6—C7 | 1.494 (3) | C16—H16A | 0.99 |
C7—C12 | 1.395 (3) | C16—H16B | 0.99 |
C7—C8 | 1.397 (3) | C17—Br1 | 1.967 (2) |
C8—C9 | 1.387 (3) | C17—H17A | 0.99 |
C8—H8 | 0.95 | C17—H17B | 0.99 |
C9—C10 | 1.387 (3) | O1—H1 | 0.67 (3) |
C9—H9 | 0.95 | ||
O1—C1—C2 | 116.91 (18) | C10—C11—H11 | 120.3 |
O1—C1—C14 | 124.01 (19) | C12—C11—H11 | 120.3 |
C2—C1—C14 | 119.08 (19) | C11—C12—C7 | 120.53 (18) |
C3—C2—C1 | 121.18 (19) | C11—C12—C13 | 119.41 (18) |
C3—C2—H2 | 119.4 | C7—C12—C13 | 120.06 (18) |
C1—C2—H2 | 119.4 | O4—C13—C14 | 120.99 (17) |
C2—C3—C4 | 121.08 (19) | O4—C13—C12 | 120.08 (18) |
C2—C3—H3 | 119.5 | C14—C13—C12 | 118.92 (17) |
C4—C3—H3 | 119.5 | C1—C14—C5 | 120.23 (18) |
O2—C4—C5 | 118.49 (17) | C1—C14—C13 | 118.69 (18) |
O2—C4—C3 | 122.27 (18) | C5—C14—C13 | 121.07 (17) |
C5—C4—C3 | 119.23 (19) | O2—C15—C16 | 106.80 (18) |
C4—C5—C14 | 119.15 (17) | O2—C15—H15A | 110.4 |
C4—C5—C6 | 121.38 (18) | C16—C15—H15A | 110.4 |
C14—C5—C6 | 119.45 (17) | O2—C15—H15B | 110.4 |
O3—C6—C5 | 123.34 (19) | C16—C15—H15B | 110.4 |
O3—C6—C7 | 119.20 (18) | H15A—C15—H15B | 108.6 |
C5—C6—C7 | 117.45 (17) | C15—C16—C17 | 114.46 (19) |
C12—C7—C8 | 119.42 (19) | C15—C16—H16A | 108.6 |
C12—C7—C6 | 121.69 (17) | C17—C16—H16A | 108.6 |
C8—C7—C6 | 118.88 (18) | C15—C16—H16B | 108.6 |
C9—C8—C7 | 119.80 (19) | C17—C16—H16B | 108.6 |
C9—C8—H8 | 120.1 | H16A—C16—H16B | 107.6 |
C7—C8—H8 | 120.1 | C16—C17—Br1 | 110.74 (16) |
C10—C9—C8 | 120.50 (19) | C16—C17—H17A | 109.5 |
C10—C9—H9 | 119.7 | Br1—C17—H17A | 109.5 |
C8—C9—H9 | 119.7 | C16—C17—H17B | 109.5 |
C9—C10—C11 | 120.3 (2) | Br1—C17—H17B | 109.5 |
C9—C10—H10 | 119.9 | H17A—C17—H17B | 108.1 |
C11—C10—H10 | 119.9 | C1—O1—H1 | 106 (3) |
C10—C11—C12 | 119.43 (19) | C4—O2—C15 | 118.08 (16) |
O1—C1—C2—C3 | 178.06 (19) | C6—C7—C12—C11 | −177.15 (19) |
C14—C1—C2—C3 | −1.7 (3) | C8—C7—C12—C13 | −177.60 (18) |
C1—C2—C3—C4 | 0.1 (3) | C6—C7—C12—C13 | 3.9 (3) |
C2—C3—C4—O2 | −179.21 (19) | C11—C12—C13—O4 | 6.0 (3) |
C2—C3—C4—C5 | 1.6 (3) | C7—C12—C13—O4 | −175.04 (18) |
O2—C4—C5—C14 | 179.03 (17) | C11—C12—C13—C14 | −173.10 (18) |
C3—C4—C5—C14 | −1.8 (3) | C7—C12—C13—C14 | 5.9 (3) |
O2—C4—C5—C6 | 0.6 (3) | O1—C1—C14—C5 | −178.24 (18) |
C3—C4—C5—C6 | 179.75 (19) | C2—C1—C14—C5 | 1.5 (3) |
C4—C5—C6—O3 | 10.5 (3) | O1—C1—C14—C13 | 1.9 (3) |
C14—C5—C6—O3 | −168.0 (2) | C2—C1—C14—C13 | −178.33 (18) |
C4—C5—C6—C7 | −170.74 (18) | C4—C5—C14—C1 | 0.2 (3) |
C14—C5—C6—C7 | 10.8 (3) | C6—C5—C14—C1 | 178.72 (18) |
O3—C6—C7—C12 | 166.6 (2) | C4—C5—C14—C13 | −179.93 (17) |
C5—C6—C7—C12 | −12.2 (3) | C6—C5—C14—C13 | −1.4 (3) |
O3—C6—C7—C8 | −11.9 (3) | O4—C13—C14—C1 | −6.3 (3) |
C5—C6—C7—C8 | 169.24 (19) | C12—C13—C14—C1 | 172.72 (17) |
C12—C7—C8—C9 | 0.6 (3) | O4—C13—C14—C5 | 173.83 (18) |
C6—C7—C8—C9 | 179.19 (19) | C12—C13—C14—C5 | −7.1 (3) |
C7—C8—C9—C10 | −1.8 (3) | O2—C15—C16—C17 | −66.9 (2) |
C8—C9—C10—C11 | 1.0 (3) | C15—C16—C17—Br1 | −65.8 (2) |
C9—C10—C11—C12 | 1.0 (3) | C5—C4—O2—C15 | −174.77 (17) |
C10—C11—C12—C7 | −2.2 (3) | C3—C4—O2—C15 | 6.1 (3) |
C10—C11—C12—C13 | 176.79 (19) | C16—C15—O2—C4 | 174.93 (18) |
C8—C7—C12—C11 | 1.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.67 (3) | 1.96 (3) | 2.569 (2) | 152 (3) |
O1—H1···O4i | 0.67 (3) | 2.52 (3) | 3.018 (2) | 133 (3) |
Symmetry code: (i) −x−1/2, −y+5/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.67 (3) | 1.96 (3) | 2.569 (2) | 152 (3) |
O1—H1···O4i | 0.67 (3) | 2.52 (3) | 3.018 (2) | 133 (3) |
Symmetry code: (i) −x−1/2, −y+5/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C17H13BrO4 |
Mr | 361.17 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 200 |
a, b, c (Å) | 29.889 (2), 4.8479 (3), 20.0427 (16) |
β (°) | 104.337 (2) |
V (Å3) | 2813.7 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.94 |
Crystal size (mm) | 0.53 × 0.23 × 0.13 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.634, 0.825 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12835, 3215, 2628 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.03, 0.080, 1.10 |
No. of reflections | 3215 |
No. of parameters | 203 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.69 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012).
Acknowledgements
This work was financially supported by JSPS KAKENHI grant No. 15K05482.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K. & Kawase, T. (2015a). Acta Cryst. E71, o504–o505. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713–715. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ohta, A., Hattori, K., Kobayashi, T., Naito, H., Kawase, T. & Kitamura, C. (2012a). Acta Cryst. E68, o2843. CSD CrossRef IUCr Journals Google Scholar
Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674–676. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.