organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(3-Bromo­prop­yl­oxy)-1-hy­dr­oxy-9,10-anthra­quinone

aDepartment of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
*Correspondence e-mail: kitamura.c@mat.usp.ac.jp

Edited by S. Parkin, University of Kentucky, USA (Received 27 April 2016; accepted 5 May 2016; online 10 May 2016)

In the mol­ecule of the title compound, C17H13BrO4, the anthra­quinone ring system is slightly bent, with a dihedral angle of 169.99 (7)° between the planes of the two benzene rings. The side chain (O—C—C—C—Br) has a gauchegauche conformation, as indicated by the O—C—C—C and C—C—C—Br torsion angles of −66.9 (2) and −65.8 (2)°, respectively. In addition, there is an intra­molecular O—H⋯O hydrogen bond enclosing an S(6) ring motif. The hydrogen-bond donor is bifurcated; in the crystal, a pair of O—H⋯O hydrogen bonds connects two mol­ecules, forming an inversion dimer with an R22(12) ring motif.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A large number of anthra­quinone derivatives have been manufactured as dyes and pigments. We have recently investigated alk­oxy-substituted anthra­quinone mol­ecules (Kitamura et al. 2015a[Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K. & Kawase, T. (2015a). Acta Cryst. E71, o504-o505.],b[Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713-715.]; Ohta et al. 2012a[Ohta, A., Hattori, K., Kobayashi, T., Naito, H., Kawase, T. & Kitamura, C. (2012a). Acta Cryst. E68, o2843.],b[Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674-676.]). As a continuation of our efforts to synthesize new anthra­quinone derivatives, we report here the crystal structure of the title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The anthra­quinone ring is slightly bent with a dihedral angle of 169.99 (7)° between the two terminal benzene rings due to repulsion between two O atoms in peri positions on the anthracene ring. The side chain (O–C–C–C–Br) has a gauche-gauche conformation, as indicated by the O2—C15—C16—C17 and C15—C16—C17—Br1 torsion angles of −66.9 (2) and −65.8 (2)°, respectively. In addition, there is an intra­molecular O1–H1⋯O4 hydrogen bond enclosing an S(6) ring motif (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.67 (3) 1.96 (3) 2.569 (2) 152 (3)
O1—H1⋯O4i 0.67 (3) 2.52 (3) 3.018 (2) 133 (3)
Symmetry code: (i) [-x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme, with 50% probability displacement ellipsoids.

The crystal packing of the title compound is shown in Figs. 2[link] and 3[link]. The sole hydrogen-bond donor is bifurcated, as a pair of O1—H1⋯O4i [symmetry code: (i) −x − [{1\over 2}], −y + [{5\over 2}], −z + 1] hydrogen bonds connect two mol­ecules, forming an inversion dimer that generates a [R_{2}^{2}](12) ring motif (Table 1[link] and Fig. 2[link]). The mol­ecules adopt a herringbone-like arrangement without ππ stacking (Fig. 3[link]).

[Figure 2]
Figure 2
A pair of mol­ecules connected by hydrogen bonds (dashed lines).
[Figure 3]
Figure 3
The crystal packing of the title compound. Hydrogen bonds are shown as blue lines.

Synthesis and crystallization

A mixture of 1,4-dihy­droxy-9,10-anthra­quinone (243 mg, 1.01 mmol), 1,3-di­bromo­propane (1.02 g, 5.07 mmol), and potassium carbonate (142 mg, 1.02 mmol) in DMF (5 ml) was stirred at 80 °C for 3 h. After cooling to room temperature, water (50 ml) was added to the mixture, then the resulting solid was extracted with di­chloro­methane. The organic extract was washed with 1 M NaOH and brine successively, and dried over Na2SO4. After filtration and evaporation, chromatography on silica gel with eluents of di­chloro­methane–hexane (2:1 to 3:1) afforded the title compound as an orange solid in 50% yield. Suitable single crystals for X-ray diffraction were obtained by slow evaporation from a di­chloro­methane solution. 1H NMR (CDCl3, 400 MHz) δ 2.41–2.47 (m, 2H), 3.86 (t, J = 6.2 Hz, 2H), 4.28 (t, J = 5.6 Hz, 2H), 7.32 (d, J = 9.5 Hz, 1H), 7.42 (d, J = 9.5 Hz, 1H), 7.75–7.83 (m, 2H), 8.26–8.30 (m, 2H), 13.03 (s, 1H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H13BrO4
Mr 361.17
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 29.889 (2), 4.8479 (3), 20.0427 (16)
β (°) 104.337 (2)
V3) 2813.7 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.94
Crystal size (mm) 0.53 × 0.23 × 0.13
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.634, 0.825
No. of measured, independent and observed [I > 2σ(I)] reflections 12835, 3215, 2628
Rint 0.028
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.03, 0.080, 1.10
No. of reflections 3215
No. of parameters 203
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.69
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Experimental top

A mixture of 1,4-dihydroxy-9,10-anthraquinone (243 mg, 1.01 mmol), 1,3-dibromopropane (1.02 g, 5.07 mmol), and potassium carbonate (142 mg, 1.02 mmol) in DMF (5 ml) was stirred at 80 °C for 3 h. After cooling to room temperature, water (50 ml) was added to the mixture, then the resulting solid was extracted with dichloromethane. The organic extract was washed with 1 M NaOH and brine successively, and dried over Na2SO4. After filtration and evaporation, chromatography on silica gel with eluents of dichloromethane–hexane (2:1 to 3:1) afforded the title compound as an orange solid in 50% yield. Suitable single crystals for X-ray diffraction were obtained by slow evaporation from a dichloromethane solution. 1H NMR (CDCl3, 400 MHz) δ 2.41–2.47 (m, 2H), 3.86 (t, J = 6.2 Hz, 2H), 4.28 (t, J = 5.6 Hz, 2H), 7.32 (d, J = 9.5 Hz, 1H), 7.42 (d, J = 9.5 Hz, 1H), 7.75–7.83 (m, 2H), 8.26–8.30 (m, 2H), 13.03 (s, 1H).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

A large number of anthraquinone derivatives have been manufactured as dyes and pigments. We have recently investigated alkoxy-substituted anthraquinone molecules (Kitamura et al. 2015a,b; Ohta et al. 2012a,b). As a continuation of our efforts to synthesize new anthraquinone derivatives, we report here the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The anthraquinone ring is slightly bent with a dihedral angle of 169.99 (7)° between the two terminal benzene rings due to repulsion between two O atoms in peri positions on the anthracene ring. The side chain (O–C–C–C–Br) has a gauche-gauche conformation, as indicated by the O2—C15—C16—C17 and C15—C16—C17—Br1 torsion angles of -66.9 (2) and -65.8 (2)°, respectively. In addition, there is an intramolecular O1–H1···O4 hydrogen bond enclosing an S(6) ring motif (Table 1).

The crystal packing of the title compound is shown in Figs. 2 and 3. The sole hydrogen-bond donor is bifurcated, as a pair of O1—H1···O4i [symmetry code: (i) -x - 1/2, -y + 5/2, -z + 1] hydrogen bonds connect two molecules, forming a centrosymmetric dimer that generates a R22(12) ring motif (Table 1 and Fig. 2). The molecules adopt a herringbone-like arrangement without ππ stacking (Fig. 3).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme, with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A pair of molecules connected by hydrogen bonds (dashed lines).
[Figure 3] Fig. 3. The crystal packing of the title compound. Hydrogen bonds are shown as blue lines.
4-(3-Bromopropyloxy)-1-hydroxy-9,10-anthraquinone top
Crystal data top
C17H13BrO4F(000) = 1456
Mr = 361.17Dx = 1.705 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10102 reflections
a = 29.889 (2) Åθ = 3.1–27.5°
b = 4.8479 (3) ŵ = 2.94 mm1
c = 20.0427 (16) ÅT = 200 K
β = 104.337 (2)°Prism, orange
V = 2813.7 (3) Å30.53 × 0.23 × 0.13 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3215 independent reflections
Radiation source: fine-focus sealed x-ray tube2628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 3838
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 56
Tmin = 0.634, Tmax = 0.825l = 2625
12835 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.03H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0391P)2 + 2.572P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3215 reflectionsΔρmax = 0.29 e Å3
203 parametersΔρmin = 0.69 e Å3
Crystal data top
C17H13BrO4V = 2813.7 (3) Å3
Mr = 361.17Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.889 (2) ŵ = 2.94 mm1
b = 4.8479 (3) ÅT = 200 K
c = 20.0427 (16) Å0.53 × 0.23 × 0.13 mm
β = 104.337 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3215 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2628 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.825Rint = 0.028
12835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.29 e Å3
3215 reflectionsΔρmin = 0.69 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms except for the OH group were positioned geometrically and refined using a riding model. The H atom of the OH group was located in a difference Fourier map and freely refined [O1—H1 = 0.67 (3) Å].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18216 (7)0.7307 (4)0.48851 (10)0.0231 (4)
C20.16048 (7)0.5298 (4)0.45775 (10)0.0271 (4)
H20.16980.50480.40930.033*
C30.12604 (7)0.3680 (4)0.49621 (11)0.0264 (4)
H30.11180.2330.47390.032*
C40.11142 (7)0.3985 (4)0.56807 (10)0.0235 (4)
C50.13341 (7)0.5936 (4)0.60097 (10)0.0211 (4)
C60.11938 (7)0.6333 (4)0.67703 (10)0.0251 (4)
C70.14927 (7)0.8127 (4)0.70852 (10)0.0218 (4)
C80.14180 (8)0.8172 (4)0.78014 (10)0.0267 (4)
H80.11830.70570.8080.032*
C90.16879 (8)0.9849 (4)0.81046 (10)0.0290 (5)
H90.16430.98390.85910.035*
C100.20230 (8)1.1541 (5)0.77035 (11)0.0299 (5)
H100.22031.27030.79170.036*
C110.20967 (7)1.1542 (4)0.69926 (11)0.0255 (4)
H110.23231.27220.67180.031*
C120.18360 (7)0.9795 (4)0.66838 (10)0.0215 (4)
C130.19313 (6)0.9690 (4)0.59259 (9)0.0211 (4)
C140.16913 (7)0.7614 (4)0.56037 (10)0.0204 (4)
C150.05195 (7)0.0603 (4)0.57274 (12)0.0294 (5)
H15A0.03920.16410.53920.035*
H15B0.07260.08570.54780.035*
C160.01362 (8)0.0647 (5)0.62740 (13)0.0371 (5)
H16A0.00120.21190.60620.045*
H16B0.02710.1520.66260.045*
C170.02288 (8)0.1368 (6)0.66265 (12)0.0375 (5)
H17A0.04470.0440.70140.045*
H17B0.00820.29120.68170.045*
O10.21479 (6)0.8858 (4)0.44614 (8)0.0289 (3)
O20.07696 (5)0.2429 (3)0.60734 (8)0.0290 (3)
O30.08479 (6)0.5313 (4)0.71384 (8)0.0456 (5)
O40.22127 (5)1.1299 (3)0.55713 (7)0.0279 (3)
Br10.05677 (2)0.28203 (5)0.59770 (2)0.03874 (10)
H10.2231 (10)0.970 (6)0.4668 (16)0.046 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (10)0.0262 (10)0.0209 (9)0.0059 (9)0.0069 (8)0.0016 (8)
C20.0336 (11)0.0290 (10)0.0202 (9)0.0061 (10)0.0096 (8)0.0035 (8)
C30.0299 (11)0.0256 (10)0.0276 (10)0.0046 (9)0.0145 (8)0.0075 (8)
C40.0233 (10)0.0239 (9)0.0258 (10)0.0019 (9)0.0106 (8)0.0001 (8)
C50.0217 (9)0.0229 (9)0.0208 (9)0.0028 (9)0.0093 (7)0.0000 (8)
C60.0263 (10)0.0276 (10)0.0224 (10)0.0029 (9)0.0079 (8)0.0001 (8)
C70.0232 (10)0.0226 (9)0.0210 (9)0.0018 (8)0.0080 (7)0.0000 (7)
C80.0311 (11)0.0290 (10)0.0200 (9)0.0009 (9)0.0065 (8)0.0007 (8)
C90.0361 (12)0.0311 (11)0.0211 (10)0.0005 (10)0.0096 (8)0.0020 (8)
C100.0320 (12)0.0325 (11)0.0287 (11)0.0000 (10)0.0140 (9)0.0065 (9)
C110.0245 (10)0.0261 (10)0.0265 (10)0.0015 (9)0.0075 (8)0.0004 (8)
C120.0209 (9)0.0237 (9)0.0212 (9)0.0046 (8)0.0075 (7)0.0019 (7)
C130.0199 (9)0.0226 (9)0.0216 (9)0.0034 (8)0.0066 (7)0.0017 (8)
C140.0193 (9)0.0226 (9)0.0207 (9)0.0040 (8)0.0076 (7)0.0010 (7)
C150.0287 (11)0.0244 (10)0.0395 (12)0.0017 (9)0.0168 (9)0.0062 (9)
C160.0382 (13)0.0282 (11)0.0522 (15)0.0085 (11)0.0248 (11)0.0073 (10)
C170.0317 (12)0.0496 (14)0.0338 (12)0.0079 (12)0.0132 (9)0.0061 (11)
O10.0346 (9)0.0318 (8)0.0200 (7)0.0025 (8)0.0059 (6)0.0018 (7)
O20.0273 (8)0.0313 (8)0.0298 (8)0.0099 (7)0.0098 (6)0.0027 (6)
O30.0430 (10)0.0651 (12)0.0256 (8)0.0297 (9)0.0026 (7)0.0026 (8)
O40.0293 (8)0.0304 (7)0.0238 (7)0.0054 (7)0.0064 (6)0.0034 (6)
Br10.03190 (15)0.04575 (16)0.04142 (15)0.00323 (11)0.01446 (10)0.00340 (10)
Geometric parameters (Å, º) top
C1—O11.352 (3)C10—C111.387 (3)
C1—C21.395 (3)C10—H100.95
C1—C141.404 (3)C11—C121.395 (3)
C2—C31.370 (3)C11—H110.95
C2—H20.95C12—C131.475 (3)
C3—C41.406 (3)C13—O41.235 (2)
C3—H30.95C13—C141.475 (3)
C4—O21.359 (3)C15—O21.443 (2)
C4—C51.406 (3)C15—C161.503 (3)
C5—C141.426 (3)C15—H15A0.99
C5—C61.490 (3)C15—H15B0.99
C6—O31.216 (3)C16—C171.504 (4)
C6—C71.494 (3)C16—H16A0.99
C7—C121.395 (3)C16—H16B0.99
C7—C81.397 (3)C17—Br11.967 (2)
C8—C91.387 (3)C17—H17A0.99
C8—H80.95C17—H17B0.99
C9—C101.387 (3)O1—H10.67 (3)
C9—H90.95
O1—C1—C2116.91 (18)C10—C11—H11120.3
O1—C1—C14124.01 (19)C12—C11—H11120.3
C2—C1—C14119.08 (19)C11—C12—C7120.53 (18)
C3—C2—C1121.18 (19)C11—C12—C13119.41 (18)
C3—C2—H2119.4C7—C12—C13120.06 (18)
C1—C2—H2119.4O4—C13—C14120.99 (17)
C2—C3—C4121.08 (19)O4—C13—C12120.08 (18)
C2—C3—H3119.5C14—C13—C12118.92 (17)
C4—C3—H3119.5C1—C14—C5120.23 (18)
O2—C4—C5118.49 (17)C1—C14—C13118.69 (18)
O2—C4—C3122.27 (18)C5—C14—C13121.07 (17)
C5—C4—C3119.23 (19)O2—C15—C16106.80 (18)
C4—C5—C14119.15 (17)O2—C15—H15A110.4
C4—C5—C6121.38 (18)C16—C15—H15A110.4
C14—C5—C6119.45 (17)O2—C15—H15B110.4
O3—C6—C5123.34 (19)C16—C15—H15B110.4
O3—C6—C7119.20 (18)H15A—C15—H15B108.6
C5—C6—C7117.45 (17)C15—C16—C17114.46 (19)
C12—C7—C8119.42 (19)C15—C16—H16A108.6
C12—C7—C6121.69 (17)C17—C16—H16A108.6
C8—C7—C6118.88 (18)C15—C16—H16B108.6
C9—C8—C7119.80 (19)C17—C16—H16B108.6
C9—C8—H8120.1H16A—C16—H16B107.6
C7—C8—H8120.1C16—C17—Br1110.74 (16)
C10—C9—C8120.50 (19)C16—C17—H17A109.5
C10—C9—H9119.7Br1—C17—H17A109.5
C8—C9—H9119.7C16—C17—H17B109.5
C9—C10—C11120.3 (2)Br1—C17—H17B109.5
C9—C10—H10119.9H17A—C17—H17B108.1
C11—C10—H10119.9C1—O1—H1106 (3)
C10—C11—C12119.43 (19)C4—O2—C15118.08 (16)
O1—C1—C2—C3178.06 (19)C6—C7—C12—C11177.15 (19)
C14—C1—C2—C31.7 (3)C8—C7—C12—C13177.60 (18)
C1—C2—C3—C40.1 (3)C6—C7—C12—C133.9 (3)
C2—C3—C4—O2179.21 (19)C11—C12—C13—O46.0 (3)
C2—C3—C4—C51.6 (3)C7—C12—C13—O4175.04 (18)
O2—C4—C5—C14179.03 (17)C11—C12—C13—C14173.10 (18)
C3—C4—C5—C141.8 (3)C7—C12—C13—C145.9 (3)
O2—C4—C5—C60.6 (3)O1—C1—C14—C5178.24 (18)
C3—C4—C5—C6179.75 (19)C2—C1—C14—C51.5 (3)
C4—C5—C6—O310.5 (3)O1—C1—C14—C131.9 (3)
C14—C5—C6—O3168.0 (2)C2—C1—C14—C13178.33 (18)
C4—C5—C6—C7170.74 (18)C4—C5—C14—C10.2 (3)
C14—C5—C6—C710.8 (3)C6—C5—C14—C1178.72 (18)
O3—C6—C7—C12166.6 (2)C4—C5—C14—C13179.93 (17)
C5—C6—C7—C1212.2 (3)C6—C5—C14—C131.4 (3)
O3—C6—C7—C811.9 (3)O4—C13—C14—C16.3 (3)
C5—C6—C7—C8169.24 (19)C12—C13—C14—C1172.72 (17)
C12—C7—C8—C90.6 (3)O4—C13—C14—C5173.83 (18)
C6—C7—C8—C9179.19 (19)C12—C13—C14—C57.1 (3)
C7—C8—C9—C101.8 (3)O2—C15—C16—C1766.9 (2)
C8—C9—C10—C111.0 (3)C15—C16—C17—Br165.8 (2)
C9—C10—C11—C121.0 (3)C5—C4—O2—C15174.77 (17)
C10—C11—C12—C72.2 (3)C3—C4—O2—C156.1 (3)
C10—C11—C12—C13176.79 (19)C16—C15—O2—C4174.93 (18)
C8—C7—C12—C111.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.67 (3)1.96 (3)2.569 (2)152 (3)
O1—H1···O4i0.67 (3)2.52 (3)3.018 (2)133 (3)
Symmetry code: (i) x1/2, y+5/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.67 (3)1.96 (3)2.569 (2)152 (3)
O1—H1···O4i0.67 (3)2.52 (3)3.018 (2)133 (3)
Symmetry code: (i) x1/2, y+5/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H13BrO4
Mr361.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)29.889 (2), 4.8479 (3), 20.0427 (16)
β (°) 104.337 (2)
V3)2813.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)2.94
Crystal size (mm)0.53 × 0.23 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.634, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
12835, 3215, 2628
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.03, 0.080, 1.10
No. of reflections3215
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.69

Computer programs: PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012).

 

Acknowledgements

This work was financially supported by JSPS KAKENHI grant No. 15K05482.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K. & Kawase, T. (2015a). Acta Cryst. E71, o504–o505.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713–715.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhta, A., Hattori, K., Kobayashi, T., Naito, H., Kawase, T. & Kitamura, C. (2012a). Acta Cryst. E68, o2843.  CSD CrossRef IUCr Journals Google Scholar
First citationOhta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674–676.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds