organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3-Dimeth­­oxy-2-methyl­imidazolium bis­­(tri­fluoro­methane­sulfon­yl)imide

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 May 2016; accepted 20 May 2016; online 24 May 2016)

The title mol­ecular salt, C6H11N2O2+·C2F6NO4S2, was obtained by the methyl­ation of 1-hy­droxy-2-methyl­imidazole 3-oxide and subsequent ion metathesis. In the crystal, C—H⋯O=S hydrogen bonds and O⋯π inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The ions which build this salt, both 1,3-di­alkyl­oxyimidazolium cations (Laus et al., 2010[Laus, G., Wurst, K., Kahlenberg, V., Kopacka, H., Kreutz, C. & Schottenberger, H. (2010). Z. Naturforsch. Teil B, 65, 776-782.]) and the bis­(triflimide) anion (Bentivoglio et al., 2009[Bentivoglio, G., Schwärzler, A., Wurst, K., Kahlenberg, V., Nauer, G., Bonn, G., Schottenberger, H. & Laus, G. (2009). J. Chem. Crystallogr. 39, 662-668.]; Laus et al., 2011[Laus, G., Hummel, M., Többens, D. M., Gelbrich, T., Kahlenberg, V., Wurst, K., Griesser, U. J. & Schottenberger, H. (2011). CrystEngComm, 13, 5439-5446.]), are known to exist as syn/anti conformers in the solid state. Thus, the meth­oxy substituents of the cation adopt an anti conformation with a C5—O1⋯O2—C6 torsion angle of 170.6 (4)°. The bis­(triflimide) anion also assumes an anti conformation with a C7—S1⋯S2—C8 torsion angle of 174.9 (2)°. Each cation donates three C—H⋯O=S hydrogen bonds to three anions (Fig. 2[link]). The hydrogen-bond parameters are summarized in Table 1[link]. An intriguing inter­molecular inter­action between atom O3 of the anion and the π system of the imidazolium ring is observed. The pertinent O3⋯Cg distance is 2.971 Å, where Cg is the centroid of the heterocyclic ring. This inter­action is directional with an S1=O3⋯Cg angle of 152°. The crystal packing is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.95 2.40 3.253 (6) 150
C2—H2⋯O6ii 0.95 2.27 3.155 (5) 156
C5—H5A⋯O5iii 0.98 2.44 3.276 (5) 143
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2]
Figure 2
The O3⋯π inter­action and C—H⋯O=S hydrogen bonds are shown as dashed lines (see Table 1[link]). The centroid of the imidazole ring is drawn as red sphere.
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the b axis showing the O3⋯π inter­actions.

The cation in the structure of the related 1,3-dimeth­oxy-2-methyl­imidazolium tris­(penta­fluoro­eth­yl)tri­fluoro­phosphate displayed a syn geometry (Laus et al., 2007[Laus, G., Schwärzler, A., Schuster, P., Bentivoglio, G., Hummel, M., Wurst, K., Kahlenberg, V., Lörting, T., Schütz, J., Peringer, P., Bonn, G., Nauer, G. & Schottenberger, H. (2007). Z. Naturforsch. Teil B, 62, 295-308.]). Anion⋯π inter­actions have been observed in related imidazolium salts (Froschauer et al., 2012[Froschauer, C., Kahlenberg, V., Laus, G. & Schottenberger, H. (2012). Crystals, 2, 1017-1033.]).

Synthesis and crystallization

A suspension of 1-hy­droxy-2-methyl­imidazole-3-oxide (5.09 g, 44.6 mmol) and dimethyl sulfate (9.0 ml, 100 mmol) in H2O (5.0 ml) was stirred at room temperature for 30 min. Calcium carbonate (6.35 g, 63.4 mmol) and H2O (6.0 ml) were then added to the slurry, and a slight increase of temperature was observed. The mixture was stirred for 15 h. Then hydro­chloric acid (36%; 11.0 ml, 129.2 mmol) was added in portions and stirred for 2 h, resulting in a clear solution. Lithium bis­(tri­fluoro­methane­sulfon­yl)imide (13.0 g, 44.9 mmol) was added, whereupon crystallization of the product occurred. After stirring for 1 h, the mixture was extracted with CH2Cl2 (3 × 50 ml). The combined organic phases were then washed with H2O (100 ml) and dried over Na2SO4. The solvent was removed under reduced pressure, and the product was dried at 75°C in vacuum (< 1 mbar). On cooling to room temperature the product was obtained as a colourless crystalline solid (yield 97%), mp. 66°C.

1H NMR (300 MHz, CD2Cl2): δ 2.73 (s, 3H), 4.26 (s, 6H), 7.53 (s, 2H) p.p.m. 13C NMR (75 MHz, CD2Cl2): δ 8.0, 69.7, 116.3, 120.4 (q, J = 321.1 Hz), 139.1 p.p.m. IR: ν 3142, 1594, 1459, 1333, 1183, 1136, 1111, 1048, 958, 938, 791, 762, 740, 728, 713, 647, 611, 567, 512, 407 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was found to be a racemic twin.

Table 2
Experimental details

Crystal data
Chemical formula C6H11N2O2+·C2F6NO4S2
Mr 423.32
Crystal system, space group Monoclinic, Cc
Temperature (K) 183
a, b, c (Å) 12.4858 (6), 14.0212 (6), 9.8480 (4)
β (°) 98.179 (1)
V3) 1706.51 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.18 × 0.16 × 0.12
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.851, 0.914
No. of measured, independent and observed [I > 2σ(I)] reflections 24313, 3088, 3020
Rint 0.027
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.05
No. of reflections 3088
No. of parameters 228
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.23
Absolute structure Flack x determined using 1476 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.493 (15)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Comment top

The molecular structure of the title compound is shown in Fig. 1. The ions which build this salt, both 1,3-dialkyloxyimidazolium cations (Laus et al., 2010) and the bis(triflimide) anion (Bentivoglio et al., 2009; Laus et al., 2011), are known to exist as syn/anti conformers in the solid state. Thus, the methoxy substituents of the cation adopt an anti conformation with a C5—O1···O2—C6 torsion angle of 170.6 (4)°. The bis(triflimide) anion also assumes an anti conformation with a C7—S1···S2—C8 dihedral angle of 174.9 (2)°. Each cation donates three C—H···OS hydrogen bonds to three anions (Fig. 2). The hydrogen bond parameters are summarized in Table 1. An intriguing intermolecular interaction between O3 of the anion and the π system of the imidazolium ring is observed. The pertinent O3···Cg distance is 2.971 Å, where Cg is the centroid of the heterocyclic ring. This interaction is directional with a S1O3···Cg angle of 152°, and the crystal packing is shown in Fig. 3.

The cation in the structure of the related 1,3-dimethoxy-2-methylimidazolium tris(pentafluoroethyl)trifluorophosphate displayed the syn geometry (Laus et al., 2007). Anion···π interactions have been observed in related imidazolium salts (Froschauer et al., 2012).

Experimental top

A suspension of 1-hydroxy-2-methylimidazole-3-oxide (5.09 g, 44.6 mmol) and dimethyl sulfate (9.0 ml, 100 mmol) in H2O (5.0 ml) was stirred at room temperature for 30 min. Calcium carbonate (6.35 g, 63.4 mmol) and H2O (6.0 ml) were then added to the slurry, and a slight increase of temperature was observed. The mixture was stirred for 15 h. Then hydrochloric acid (36%; 11.0 ml, 129.2 mmol) was added in portions and stirred for 2 h, resulting in a clear solution. Lithium bis(trifluoromethanesulfonyl)imide (13.0 g, 44.9 mmol) was added, whereupon crystallization of the product occurred. After stirring for 1 h, the mixture was extracted with CH2Cl2 (3× 50 ml). The combined organic phases were then washed with H2O (100 ml) and dried over Na2SO4. The solvent was removed under reduced pressure, and the product was dried at 75°C in vacuum (< 1 mbar). On cooling to room temperature the product was obtained as a colourless crystalline solid (yield 97%), mp. 66°C.

1H NMR (300 MHz, CD2Cl2): δ 2.73 (s, 3H), 4.26 (s, 6H), 7.53 (s, 2H) p.p.m. 13C NMR (75 MHz, CD2Cl2): δ 8.0, 69.7, 116.3, 120.4 (q, J = 321.1 Hz), 139.1 p.p.m. IR: ν 3142, 1594, 1459, 1333, 1183, 1136, 1111, 1048, 958, 938, 791, 762, 740, 728, 713, 647, 611, 567, 512, 407 cm-1.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The crystal studied was found to be a racemic twin.

Structure description top

The molecular structure of the title compound is shown in Fig. 1. The ions which build this salt, both 1,3-dialkyloxyimidazolium cations (Laus et al., 2010) and the bis(triflimide) anion (Bentivoglio et al., 2009; Laus et al., 2011), are known to exist as syn/anti conformers in the solid state. Thus, the methoxy substituents of the cation adopt an anti conformation with a C5—O1···O2—C6 torsion angle of 170.6 (4)°. The bis(triflimide) anion also assumes an anti conformation with a C7—S1···S2—C8 torsion angle of 174.9 (2)°. Each cation donates three C—H···OS hydrogen bonds to three anions (Fig. 2). The hydrogen-bond parameters are summarized in Table 1. An intriguing intermolecular interaction between atom O3 of the anion and the π system of the imidazolium ring is observed. The pertinent O3···Cg distance is 2.971 Å, where Cg is the centroid of the heterocyclic ring. This interaction is directional with an S1O3···Cg angle of 152°. The crystal packing is shown in Fig. 3.

The cation in the structure of the related 1,3-dimethoxy-2-methylimidazolium tris(pentafluoroethyl)trifluorophosphate displayed a syn geometry (Laus et al., 2007). Anion···π interactions have been observed in related imidazolium salts (Froschauer et al., 2012).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The O3···π interaction and C—H···OS hydrogen bonds are shown as dashed lines (see Table 1). The centroid of the imidazole ring is drawn as red sphere.
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the b axis showing the O3···π interactions.
1,3-Dimethoxy-2-methylimidazolium bis(trifluoromethanesulfonyl)imide top
Crystal data top
C6H11N2O2+·C2F6NO4S2F(000) = 856
Mr = 423.32Dx = 1.648 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 12.4858 (6) ÅCell parameters from 9895 reflections
b = 14.0212 (6) Åθ = 2.8–25.2°
c = 9.8480 (4) ŵ = 0.40 mm1
β = 98.179 (1)°T = 183 K
V = 1706.51 (13) Å3Prism, colourless
Z = 40.18 × 0.16 × 0.12 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
3088 independent reflections
Radiation source: Incoatec Microfocus3020 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.027
Detector resolution: 10.4 pixels mm-1θmax = 25.3°, θmin = 2.2°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1616
Tmin = 0.851, Tmax = 0.914l = 1111
24313 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0576P)2 + 1.0708P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.092Δρmax = 0.35 e Å3
S = 1.05Δρmin = 0.23 e Å3
3088 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
228 parametersExtinction coefficient: 0.0046 (10)
2 restraintsAbsolute structure: Flack x determined using 1476 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.493 (15)
Crystal data top
C6H11N2O2+·C2F6NO4S2V = 1706.51 (13) Å3
Mr = 423.32Z = 4
Monoclinic, CcMo Kα radiation
a = 12.4858 (6) ŵ = 0.40 mm1
b = 14.0212 (6) ÅT = 183 K
c = 9.8480 (4) Å0.18 × 0.16 × 0.12 mm
β = 98.179 (1)°
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
3088 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3020 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.914Rint = 0.027
24313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.35 e Å3
S = 1.05Δρmin = 0.23 e Å3
3088 reflectionsAbsolute structure: Flack x determined using 1476 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
228 parametersAbsolute structure parameter: 0.493 (15)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40336 (7)0.15962 (7)0.69953 (9)0.0461 (3)
S20.36096 (7)0.35188 (7)0.65521 (8)0.0441 (3)
O10.7855 (2)0.1723 (3)0.5887 (3)0.0505 (7)
O20.4893 (2)0.2163 (3)0.2448 (3)0.0572 (8)
O30.4986 (3)0.1675 (3)0.6408 (5)0.0886 (14)
O40.4032 (4)0.0997 (3)0.8175 (4)0.0898 (14)
O50.4036 (4)0.3477 (3)0.5317 (3)0.0791 (12)
O60.2665 (3)0.4073 (2)0.6611 (5)0.0843 (14)
N10.6963 (2)0.1528 (2)0.4931 (3)0.0372 (7)
N20.5662 (3)0.1719 (2)0.3361 (3)0.0402 (7)
N30.3443 (3)0.2542 (2)0.7295 (3)0.0412 (7)
C10.6403 (3)0.2208 (2)0.4199 (4)0.0325 (6)
C20.6576 (3)0.0640 (3)0.4565 (4)0.0471 (9)
H20.68480.00500.49440.057*
C30.5749 (4)0.0760 (3)0.3579 (5)0.0507 (10)
H30.53050.02760.31170.061*
C40.6552 (4)0.3241 (3)0.4334 (5)0.0528 (11)
H4A0.60180.35660.36650.079*
H4B0.72830.34100.41640.079*
H4C0.64550.34390.52630.079*
C50.7590 (4)0.1618 (4)0.7272 (4)0.0552 (11)
H5A0.82310.17590.79380.083*
H5B0.70070.20620.74060.083*
H5C0.73530.09630.74050.083*
C60.5176 (4)0.2109 (5)0.1079 (5)0.0747 (16)
H6A0.46200.24290.04360.112*
H6B0.58750.24220.10590.112*
H6C0.52270.14380.08140.112*
C70.3078 (4)0.1002 (4)0.5699 (6)0.0638 (13)
C80.4643 (4)0.4126 (4)0.7738 (5)0.0544 (11)
F10.3469 (4)0.0141 (3)0.5471 (5)0.1128 (14)
F20.2968 (4)0.1460 (3)0.4556 (4)0.1203 (18)
F30.2132 (3)0.0869 (3)0.6113 (5)0.1010 (13)
F40.4827 (3)0.4974 (3)0.7259 (4)0.0969 (12)
F50.5554 (3)0.3634 (3)0.7906 (4)0.0971 (13)
F60.4327 (3)0.4239 (3)0.8947 (3)0.0912 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0445 (5)0.0482 (5)0.0443 (5)0.0172 (4)0.0020 (4)0.0033 (4)
S20.0394 (5)0.0472 (5)0.0427 (5)0.0042 (4)0.0043 (4)0.0151 (4)
O10.0275 (11)0.090 (2)0.0318 (13)0.0063 (13)0.0019 (10)0.0038 (13)
O20.0353 (14)0.094 (2)0.0408 (15)0.0187 (15)0.0008 (11)0.0098 (15)
O30.0445 (18)0.108 (3)0.119 (3)0.0090 (18)0.029 (2)0.051 (3)
O40.146 (4)0.058 (2)0.061 (2)0.042 (2)0.002 (2)0.0087 (17)
O50.096 (3)0.104 (3)0.0363 (16)0.043 (2)0.0043 (17)0.0150 (17)
O60.0490 (18)0.0506 (18)0.147 (4)0.0084 (15)0.009 (2)0.029 (2)
N10.0255 (14)0.055 (2)0.0291 (15)0.0026 (13)0.0033 (11)0.0006 (12)
N20.0335 (15)0.0503 (17)0.0360 (16)0.0028 (13)0.0020 (13)0.0020 (13)
N30.0450 (16)0.0408 (16)0.0409 (15)0.0099 (13)0.0163 (13)0.0079 (13)
C10.0285 (14)0.0385 (15)0.0316 (14)0.0005 (13)0.0079 (11)0.0022 (14)
C20.055 (2)0.0349 (18)0.050 (2)0.0008 (16)0.0041 (17)0.0046 (16)
C30.055 (2)0.046 (2)0.050 (2)0.0146 (18)0.0018 (18)0.0099 (17)
C40.066 (3)0.041 (2)0.056 (2)0.0060 (18)0.024 (2)0.005 (2)
C50.047 (2)0.086 (3)0.0307 (18)0.007 (2)0.0031 (16)0.0013 (18)
C60.062 (3)0.126 (5)0.036 (2)0.030 (3)0.0037 (19)0.018 (3)
C70.065 (3)0.062 (3)0.068 (3)0.010 (2)0.022 (2)0.019 (2)
C80.051 (3)0.065 (3)0.046 (2)0.006 (2)0.0017 (19)0.0008 (19)
F10.122 (3)0.084 (2)0.136 (3)0.003 (2)0.027 (3)0.062 (3)
F20.148 (4)0.148 (4)0.0521 (19)0.063 (3)0.030 (2)0.006 (2)
F30.070 (2)0.097 (3)0.141 (4)0.0255 (19)0.031 (2)0.030 (2)
F40.108 (3)0.079 (2)0.100 (3)0.047 (2)0.002 (2)0.0081 (19)
F50.0476 (17)0.131 (3)0.102 (3)0.0050 (18)0.0268 (16)0.040 (2)
F60.122 (3)0.094 (2)0.0588 (17)0.018 (2)0.0192 (18)0.0246 (16)
Geometric parameters (Å, º) top
S1—O31.399 (4)C2—H20.9500
S1—O41.434 (4)C3—H30.9500
S1—N31.565 (3)C4—H4A0.9800
S1—C71.820 (5)C4—H4B0.9800
S2—O51.397 (4)C4—H4C0.9800
S2—O61.421 (4)C5—H5A0.9800
S2—N31.581 (3)C5—H5B0.9800
S2—C81.823 (5)C5—H5C0.9800
O1—N11.379 (4)C6—H6A0.9800
O1—C51.456 (5)C6—H6B0.9800
O2—N21.368 (4)C6—H6C0.9800
O2—C61.444 (5)C7—F21.286 (7)
N1—C11.332 (5)C7—F31.316 (6)
N1—C21.366 (5)C7—F11.334 (7)
N2—C11.337 (5)C8—F41.312 (6)
N2—C31.363 (5)C8—F61.315 (6)
C1—C41.465 (5)C8—F51.320 (6)
C2—C31.324 (6)
O3—S1—O4118.7 (3)C1—C4—H4A109.5
O3—S1—N3117.5 (2)C1—C4—H4B109.5
O4—S1—N3106.7 (2)H4A—C4—H4B109.5
O3—S1—C7104.9 (2)C1—C4—H4C109.5
O4—S1—C7102.9 (3)H4A—C4—H4C109.5
N3—S1—C7103.9 (2)H4B—C4—H4C109.5
O5—S2—O6118.7 (3)O1—C5—H5A109.5
O5—S2—N3117.3 (2)O1—C5—H5B109.5
O6—S2—N3106.9 (2)H5A—C5—H5B109.5
O5—S2—C8104.8 (2)O1—C5—H5C109.5
O6—S2—C8103.6 (2)H5A—C5—H5C109.5
N3—S2—C8103.7 (2)H5B—C5—H5C109.5
N1—O1—C5110.5 (3)O2—C6—H6A109.5
N2—O2—C6110.3 (3)O2—C6—H6B109.5
C1—N1—C2111.7 (3)H6A—C6—H6B109.5
C1—N1—O1122.6 (3)O2—C6—H6C109.5
C2—N1—O1125.6 (3)H6A—C6—H6C109.5
C1—N2—C3112.0 (3)H6B—C6—H6C109.5
C1—N2—O2122.1 (3)F2—C7—F3110.6 (6)
C3—N2—O2125.8 (4)F2—C7—F1107.5 (5)
S1—N3—S2123.39 (19)F3—C7—F1106.8 (5)
N1—C1—N2103.4 (3)F2—C7—S1111.3 (4)
N1—C1—C4127.5 (4)F3—C7—S1112.1 (4)
N2—C1—C4129.1 (4)F1—C7—S1108.3 (4)
C3—C2—N1106.7 (4)F4—C8—F6107.9 (4)
C3—C2—H2126.6F4—C8—F5109.1 (5)
N1—C2—H2126.6F6—C8—F5108.3 (4)
C2—C3—N2106.1 (4)F4—C8—S2109.7 (3)
C2—C3—H3126.9F6—C8—S2111.1 (3)
N2—C3—H3126.9F5—C8—S2110.8 (3)
C5—O1—N1—C1106.1 (4)C1—N2—C3—C21.0 (5)
C5—O1—N1—C277.2 (5)O2—N2—C3—C2178.3 (3)
C6—O2—N2—C1103.0 (5)O3—S1—C7—F256.0 (5)
C6—O2—N2—C380.0 (5)O4—S1—C7—F2179.1 (5)
O3—S1—N3—S221.3 (4)N3—S1—C7—F268.0 (5)
O4—S1—N3—S2157.7 (3)O3—S1—C7—F3179.5 (4)
C7—S1—N3—S294.0 (3)O4—S1—C7—F354.6 (5)
O5—S2—N3—S119.4 (4)N3—S1—C7—F356.5 (5)
O6—S2—N3—S1155.5 (3)O3—S1—C7—F161.9 (5)
C8—S2—N3—S195.4 (3)O4—S1—C7—F162.9 (4)
C2—N1—C1—N20.4 (4)N3—S1—C7—F1174.1 (4)
O1—N1—C1—N2176.7 (3)O5—S2—C8—F459.0 (4)
C2—N1—C1—C4177.5 (4)O6—S2—C8—F466.1 (4)
O1—N1—C1—C45.4 (6)N3—S2—C8—F4177.5 (3)
C3—N2—C1—N10.8 (4)O5—S2—C8—F6178.2 (4)
O2—N2—C1—N1178.2 (3)O6—S2—C8—F653.1 (4)
C3—N2—C1—C4177.0 (4)N3—S2—C8—F658.4 (4)
O2—N2—C1—C40.4 (6)O5—S2—C8—F561.5 (4)
C1—N1—C2—C30.2 (5)O6—S2—C8—F5173.5 (4)
O1—N1—C2—C3177.1 (3)N3—S2—C8—F562.0 (4)
N1—C2—C3—N20.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.403.253 (6)150
C2—H2···O6ii0.952.273.155 (5)156
C5—H5A···O5iii0.982.443.276 (5)143
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.3963.253 (6)150
C2—H2···O6ii0.952.2663.155 (5)156
C5—H5A···O5iii0.982.4373.276 (5)143
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H11N2O2+·C2F6NO4S2
Mr423.32
Crystal system, space groupMonoclinic, Cc
Temperature (K)183
a, b, c (Å)12.4858 (6), 14.0212 (6), 9.8480 (4)
β (°) 98.179 (1)
V3)1706.51 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerBruker D8 QUEST PHOTON 100
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.851, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
24313, 3088, 3020
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.05
No. of reflections3088
No. of parameters228
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.23
Absolute structureFlack x determined using 1476 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.493 (15)

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006).

 

Acknowledgements

Technical assistance by Michael Hilgärtner is acknowledged.

References

First citationBentivoglio, G., Schwärzler, A., Wurst, K., Kahlenberg, V., Nauer, G., Bonn, G., Schottenberger, H. & Laus, G. (2009). J. Chem. Crystallogr. 39, 662–668.  CSD CrossRef CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFroschauer, C., Kahlenberg, V., Laus, G. & Schottenberger, H. (2012). Crystals, 2, 1017–1033.  CSD CrossRef CAS Google Scholar
First citationLaus, G., Hummel, M., Többens, D. M., Gelbrich, T., Kahlenberg, V., Wurst, K., Griesser, U. J. & Schottenberger, H. (2011). CrystEngComm, 13, 5439–5446.  CSD CrossRef CAS Google Scholar
First citationLaus, G., Schwärzler, A., Schuster, P., Bentivoglio, G., Hummel, M., Wurst, K., Kahlenberg, V., Lörting, T., Schütz, J., Peringer, P., Bonn, G., Nauer, G. & Schottenberger, H. (2007). Z. Naturforsch. Teil B, 62, 295–308.  CAS Google Scholar
First citationLaus, G., Wurst, K., Kahlenberg, V., Kopacka, H., Kreutz, C. & Schottenberger, H. (2010). Z. Naturforsch. Teil B, 65, 776–782.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds