organic compounds
6-Bromo-2-methyl-1H-imidazo[4,5-b]pyridine
aLaboratoire de Chimie de la Matière Condensée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fez, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Iimmouzzer, BP 2202, Fez, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, and eDépartement de Chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: youssef_kandri_rodi@yahoo.fr
The title molecule, C7H6BrN3, crystallizes with two molecules, A and B, in the with all non-hydrogen atoms lying on a crystallographic mirror plane. In the crystal, the molecules are linked into [100] chains of alternating A and B molecules by complementary N—H⋯N and C—H⋯N hydrogen bonds. The chains are associated through offset aromatic π–π stacking [shortest centroid–centroid separation = 3.6215 (9) Å] along the b axis.
Keywords: crystal structure; 1H-imidazo[4,5-b]pyridine; hydrogen bonds.
CCDC reference: 1478650
Structure description
Heterocyclic ring systems having the imidazo[4,5-b]pyridine nucleus can be considered as structural analogues of purines and have shown diverse biological activities depending on the substituents of the heterocyclic ring. Their activities include anti-cancer (Lukasik et al., 2012), antiviral (Cristalli, et al., 1995) and antimitotic (Aridoss et al., 2006) actions.
In this study, we have reacted 3-acetyl-4-hydroxy-6-methyl-3H-pyran-2-one (dehydroacetic acid) with 5-bromopyridine-2,3-diamine to furnish the title compound 6-bromo-2-methyl-1H-imidazo[4,5-b]pyridine·The (Fig. 1) consists of two molecules, each lying on a crystallographic mirror plane.
In the crystal, complementary pairs of N2—H2⋯N4 and C3—H3⋯N5 as well as N6—H6⋯N1i and C10—H10⋯N3i [symmetry code: (i) x − 1, y, z] hydrogen bonds (Table 1) form chains running parallel to the a axis. These ribbons form stacks in the b-axis direction which are associated through offset π-stacking with an average interplanar spacing of 3.236 (1) Å (Fig. 2).
Synthesis and crystallization
Dehydroacetic acid (3-acetyl-4-hydroxy-6-methyl-3H-pyran-2-one) (0.27 g, 1.6 mmol) was added to a solution of 5-bromopyridine-2,3-diamine (0.3 g, 1.6 mmol) in ethanol (15 ml). The mixture was heated for 24 h. After the completion of reaction (as monitored by TLC), the mixture was filtered. The compound was recrystallized from ethanol–water (1:1) solution to afford colourless plates (yield = 68%).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1478650
10.1107/S2414314616007665/hb4043sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616007665/hb4043Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616007665/hb4043Isup3.cml
Dehydroacetic acid (3-acetyl-4-hydroxy-6-methyl-3H-pyran-2-one) (0.27 g, 1.6 mmol) was added to a solution of 5-bromopyridine-2,3-diamine (0.3 g, 1.6 mmol) in ethanol (15 ml). The mixture was heated for 24 h. After the completion of reaction (as monitored by TLC), the mixture was filtered. The compound was recrystallized from ethanol–water (1:1) solution to afford colourless plates (yield = 68%).
Heterocyclic ring systems having the imidazo[4,5-b]pyridine nucleus can be considered as structural analogues of purines and have shown diverse biological activities depending on the substituents of the heterocyclic ring. Their activities include anti-cancer (Lukasik et al., 2012), antiviral (Cristalli, et al., 1995) and antimitotic (Aridoss et al., 2006) actions.
In this study, we have reacted 3-acetyl-4-hydroxy-6-methyl-3H-pyran-2-one (dehydroacetic acid) with 5-bromopyridine-2,3-diamine to furnish the title compound 6-bromo-2-methyl-1H-imidazo[4,5-b]pyridine.The
(Fig. 1) consists of two molecules, each lying on a crystallographic mirror plane.In the crystal, complementary pairs of N2—H2···N4 and C3—H3···N5 as well as N6—H6···N1i and C10—H10···N3i [symmetry code: (i) x - 1, y, z] hydrogen bonds (Table 1) form chains running parallel to the a axis. These ribbons form stacks in the b-axis direction which are associated through offset π-stacking with an average of 3.236 (1) Å (Fig. 2).
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The asymmetric unit with 50% probability ellipsoids. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. Packing showing portions of two ribbons with the N—H···N interactions shown as blue dotted lines, the C—H···N interactions as black dotted lines and the offset π-stacking as purple dotted lines. |
C7H6BrN3 | F(000) = 416 |
Mr = 212.06 | Dx = 1.791 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
a = 11.0395 (12) Å | Cell parameters from 3918 reflections |
b = 6.4734 (7) Å | θ = 2.8–26.6° |
c = 11.1397 (12) Å | µ = 5.16 mm−1 |
β = 98.889 (1)° | T = 150 K |
V = 786.52 (15) Å3 | Plate, colourless |
Z = 4 | 0.18 × 0.17 × 0.06 mm |
Bruker SMART APEX CCD diffractometer | 2117 independent reflections |
Radiation source: fine-focus sealed tube | 1578 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 1.9° |
φ and ω scans | h = −14→14 |
Absorption correction: numerical (SADABS; Bruker, 2016) | k = −8→8 |
Tmin = 0.39, Tmax = 0.73 | l = −14→14 |
14675 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: mixed |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0521P)2] where P = (Fo2 + 2Fc2)/3 |
2117 reflections | (Δ/σ)max = 0.001 |
135 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
C7H6BrN3 | V = 786.52 (15) Å3 |
Mr = 212.06 | Z = 4 |
Monoclinic, P21/m | Mo Kα radiation |
a = 11.0395 (12) Å | µ = 5.16 mm−1 |
b = 6.4734 (7) Å | T = 150 K |
c = 11.1397 (12) Å | 0.18 × 0.17 × 0.06 mm |
β = 98.889 (1)° |
Bruker SMART APEX CCD diffractometer | 2117 independent reflections |
Absorption correction: numerical (SADABS; Bruker, 2016) | 1578 reflections with I > 2σ(I) |
Tmin = 0.39, Tmax = 0.73 | Rint = 0.049 |
14675 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.71 e Å−3 |
2117 reflections | Δρmin = −0.37 e Å−3 |
135 parameters |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 25 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.64714 (4) | 0.2500 | 0.95946 (3) | 0.05475 (17) | |
N1 | 0.8413 (2) | 0.2500 | 0.6732 (2) | 0.0256 (6) | |
N2 | 0.5647 (2) | 0.2500 | 0.4725 (2) | 0.0244 (6) | |
H2 | 0.4825 | 0.2500 | 0.4458 | 0.037* | |
N3 | 0.7651 (2) | 0.2500 | 0.4578 (2) | 0.0258 (6) | |
C1 | 0.6526 (3) | 0.2500 | 0.3988 (3) | 0.0250 (7) | |
C2 | 0.6247 (3) | 0.2500 | 0.5894 (3) | 0.0236 (7) | |
C3 | 0.5883 (3) | 0.2500 | 0.7027 (3) | 0.0273 (7) | |
H3 | 0.5046 | 0.2500 | 0.7137 | 0.033* | |
C4 | 0.6838 (3) | 0.2500 | 0.7984 (3) | 0.0301 (7) | |
C5 | 0.8062 (3) | 0.2500 | 0.7818 (3) | 0.0309 (8) | |
H5 | 0.8676 | 0.2500 | 0.8517 | 0.037* | |
C6 | 0.7515 (3) | 0.2500 | 0.5782 (3) | 0.0223 (6) | |
C7 | 0.6185 (3) | 0.2500 | 0.2642 (3) | 0.0316 (8) | |
H7A | 0.6869 | 0.3042 | 0.2271 | 0.047* | 0.5 |
H7B | 0.5461 | 0.3372 | 0.2411 | 0.047* | 0.5 |
H7C | 0.6001 | 0.1085 | 0.2358 | 0.047* | 0.5 |
Br2 | 0.02840 (4) | 0.2500 | 0.11797 (3) | 0.04217 (15) | |
N4 | 0.3046 (2) | 0.2500 | 0.4123 (2) | 0.0254 (6) | |
N5 | 0.2886 (2) | 0.2500 | 0.6267 (2) | 0.0263 (6) | |
N6 | 0.0824 (2) | 0.2500 | 0.6055 (2) | 0.0270 (6) | |
H6 | 0.0062 | 0.2500 | 0.6272 | 0.040* | |
C8 | 0.1909 (3) | 0.2500 | 0.6830 (3) | 0.0281 (7) | |
C9 | 0.1110 (3) | 0.2500 | 0.4897 (3) | 0.0240 (7) | |
C10 | 0.0408 (3) | 0.2500 | 0.3754 (3) | 0.0268 (7) | |
H10 | −0.0463 | 0.2500 | 0.3627 | 0.032* | |
C11 | 0.1099 (3) | 0.2500 | 0.2813 (3) | 0.0271 (7) | |
C12 | 0.2380 (3) | 0.2500 | 0.3016 (3) | 0.0253 (7) | |
H12 | 0.2798 | 0.2500 | 0.2332 | 0.030* | |
C13 | 0.2401 (3) | 0.2500 | 0.5052 (3) | 0.0239 (7) | |
C14 | 0.1952 (3) | 0.2500 | 0.8164 (3) | 0.0385 (9) | |
H14A | 0.1729 | 0.3872 | 0.8430 | 0.058* | 0.5 |
H14B | 0.2783 | 0.2155 | 0.8559 | 0.058* | 0.5 |
H14C | 0.1374 | 0.1473 | 0.8387 | 0.058* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0464 (3) | 0.0974 (4) | 0.0221 (2) | 0.000 | 0.01081 (17) | 0.000 |
N1 | 0.0195 (13) | 0.0290 (15) | 0.0279 (14) | 0.000 | 0.0027 (11) | 0.000 |
N2 | 0.0184 (13) | 0.0324 (15) | 0.0224 (13) | 0.000 | 0.0034 (10) | 0.000 |
N3 | 0.0242 (14) | 0.0291 (15) | 0.0257 (13) | 0.000 | 0.0088 (11) | 0.000 |
C1 | 0.0231 (16) | 0.0255 (17) | 0.0279 (17) | 0.000 | 0.0091 (13) | 0.000 |
C2 | 0.0205 (16) | 0.0252 (17) | 0.0249 (16) | 0.000 | 0.0031 (13) | 0.000 |
C3 | 0.0225 (16) | 0.0320 (19) | 0.0280 (17) | 0.000 | 0.0053 (13) | 0.000 |
C4 | 0.0294 (18) | 0.039 (2) | 0.0229 (16) | 0.000 | 0.0077 (14) | 0.000 |
C5 | 0.0282 (18) | 0.034 (2) | 0.0300 (17) | 0.000 | 0.0025 (14) | 0.000 |
C6 | 0.0217 (15) | 0.0204 (16) | 0.0260 (15) | 0.000 | 0.0072 (12) | 0.000 |
C7 | 0.0313 (18) | 0.042 (2) | 0.0211 (16) | 0.000 | 0.0040 (13) | 0.000 |
Br2 | 0.0371 (2) | 0.0574 (3) | 0.0297 (2) | 0.000 | −0.00230 (15) | 0.000 |
N4 | 0.0199 (13) | 0.0258 (14) | 0.0317 (15) | 0.000 | 0.0077 (11) | 0.000 |
N5 | 0.0211 (14) | 0.0285 (15) | 0.0298 (14) | 0.000 | 0.0054 (11) | 0.000 |
N6 | 0.0201 (14) | 0.0311 (16) | 0.0306 (15) | 0.000 | 0.0069 (11) | 0.000 |
C8 | 0.0241 (17) | 0.0274 (18) | 0.0334 (18) | 0.000 | 0.0058 (14) | 0.000 |
C9 | 0.0193 (15) | 0.0234 (17) | 0.0308 (16) | 0.000 | 0.0080 (13) | 0.000 |
C10 | 0.0200 (15) | 0.0236 (17) | 0.0364 (19) | 0.000 | 0.0028 (14) | 0.000 |
C11 | 0.0252 (16) | 0.0258 (18) | 0.0294 (17) | 0.000 | 0.0014 (13) | 0.000 |
C12 | 0.0249 (16) | 0.0243 (17) | 0.0277 (16) | 0.000 | 0.0070 (13) | 0.000 |
C13 | 0.0212 (15) | 0.0230 (17) | 0.0274 (16) | 0.000 | 0.0033 (13) | 0.000 |
C14 | 0.039 (2) | 0.047 (2) | 0.0298 (18) | 0.000 | 0.0057 (16) | 0.000 |
Br1—C4 | 1.899 (3) | Br2—C11 | 1.901 (3) |
N1—C5 | 1.326 (4) | N4—C12 | 1.335 (4) |
N1—C6 | 1.333 (4) | N4—C13 | 1.344 (4) |
N2—C1 | 1.365 (4) | N5—C8 | 1.329 (4) |
N2—C2 | 1.367 (4) | N5—C13 | 1.376 (4) |
N2—H2 | 0.9100 | N6—C8 | 1.363 (4) |
N3—C1 | 1.313 (4) | N6—C9 | 1.375 (4) |
N3—C6 | 1.372 (4) | N6—H6 | 0.9100 |
C1—C7 | 1.488 (4) | C8—C14 | 1.480 (5) |
C2—C3 | 1.383 (4) | C9—C10 | 1.384 (4) |
C2—C6 | 1.425 (4) | C9—C13 | 1.409 (4) |
C3—C4 | 1.378 (5) | C10—C11 | 1.389 (4) |
C3—H3 | 0.9500 | C10—H10 | 0.9500 |
C4—C5 | 1.392 (4) | C11—C12 | 1.397 (4) |
C5—H5 | 0.9500 | C12—H12 | 0.9500 |
C7—H7A | 0.9800 | C14—H14A | 0.9800 |
C7—H7B | 0.9800 | C14—H14B | 0.9800 |
C7—H7C | 0.9800 | C14—H14C | 0.9800 |
C5—N1—C6 | 116.0 (3) | C12—N4—C13 | 115.4 (3) |
C1—N2—C2 | 106.8 (3) | C8—N5—C13 | 104.1 (3) |
C1—N2—H2 | 124.6 | C8—N6—C9 | 106.7 (3) |
C2—N2—H2 | 128.6 | C8—N6—H6 | 126.1 |
C1—N3—C6 | 104.6 (2) | C9—N6—H6 | 127.2 |
N3—C1—N2 | 113.8 (3) | N5—C8—N6 | 113.5 (3) |
N3—C1—C7 | 125.2 (3) | N5—C8—C14 | 124.8 (3) |
N2—C1—C7 | 120.9 (3) | N6—C8—C14 | 121.6 (3) |
N2—C2—C3 | 134.7 (3) | N6—C9—C10 | 133.3 (3) |
N2—C2—C6 | 104.8 (3) | N6—C9—C13 | 105.0 (3) |
C3—C2—C6 | 120.5 (3) | C10—C9—C13 | 121.7 (3) |
C4—C3—C2 | 114.2 (3) | C9—C10—C11 | 113.6 (3) |
C4—C3—H3 | 122.9 | C9—C10—H10 | 123.2 |
C2—C3—H3 | 122.9 | C11—C10—H10 | 123.2 |
C3—C4—C5 | 122.7 (3) | C10—C11—C12 | 122.5 (3) |
C3—C4—Br1 | 118.8 (2) | C10—C11—Br2 | 119.3 (2) |
C5—C4—Br1 | 118.6 (2) | C12—C11—Br2 | 118.2 (2) |
N1—C5—C4 | 123.2 (3) | N4—C12—C11 | 123.3 (3) |
N1—C5—H5 | 118.4 | N4—C12—H12 | 118.3 |
C4—C5—H5 | 118.4 | C11—C12—H12 | 118.3 |
N1—C6—N3 | 126.6 (3) | N4—C13—N5 | 125.8 (3) |
N1—C6—C2 | 123.4 (3) | N4—C13—C9 | 123.5 (3) |
N3—C6—C2 | 110.0 (3) | N5—C13—C9 | 110.7 (3) |
C1—C7—H7A | 109.5 | C8—C14—H14A | 109.5 |
C1—C7—H7B | 109.5 | C8—C14—H14B | 109.5 |
H7A—C7—H7B | 109.5 | H14A—C14—H14B | 109.5 |
C1—C7—H7C | 109.5 | C8—C14—H14C | 109.5 |
H7A—C7—H7C | 109.5 | H14A—C14—H14C | 109.5 |
H7B—C7—H7C | 109.5 | H14B—C14—H14C | 109.5 |
C6—N3—C1—N2 | 0.000 (1) | C13—N5—C8—N6 | 0.000 (1) |
C6—N3—C1—C7 | 180.000 (1) | C13—N5—C8—C14 | 180.000 (1) |
C2—N2—C1—N3 | 0.000 (1) | C9—N6—C8—N5 | 0.000 (1) |
C2—N2—C1—C7 | 180.000 (1) | C9—N6—C8—C14 | 180.000 (1) |
C1—N2—C2—C3 | 180.000 (1) | C8—N6—C9—C10 | 180.000 (1) |
C1—N2—C2—C6 | 0.000 (1) | C8—N6—C9—C13 | 0.000 (1) |
N2—C2—C3—C4 | 180.000 (1) | N6—C9—C10—C11 | 180.000 (1) |
C6—C2—C3—C4 | 0.000 (1) | C13—C9—C10—C11 | 0.000 (1) |
C2—C3—C4—C5 | 0.000 (1) | C9—C10—C11—C12 | 0.000 (1) |
C2—C3—C4—Br1 | 180.000 (1) | C9—C10—C11—Br2 | 180.000 (1) |
C6—N1—C5—C4 | 0.000 (1) | C13—N4—C12—C11 | 0.000 (1) |
C3—C4—C5—N1 | 0.000 (1) | C10—C11—C12—N4 | 0.000 (1) |
Br1—C4—C5—N1 | 180.000 (1) | Br2—C11—C12—N4 | 180.000 (1) |
C5—N1—C6—N3 | 180.000 (1) | C12—N4—C13—N5 | 180.000 (1) |
C5—N1—C6—C2 | 0.000 (1) | C12—N4—C13—C9 | 0.000 (1) |
C1—N3—C6—N1 | 180.000 (1) | C8—N5—C13—N4 | 180.000 (1) |
C1—N3—C6—C2 | 0.000 (1) | C8—N5—C13—C9 | 0.000 (1) |
N2—C2—C6—N1 | 180.000 (1) | N6—C9—C13—N4 | 180.000 (1) |
C3—C2—C6—N1 | 0.000 (1) | C10—C9—C13—N4 | 0.000 (1) |
N2—C2—C6—N3 | 0.000 (1) | N6—C9—C13—N5 | 0.000 (1) |
C3—C2—C6—N3 | 180.000 (1) | C10—C9—C13—N5 | 180.000 (1) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N4 | 0.91 | 1.94 | 2.845 (4) | 172 |
C3—H3···N5 | 0.95 | 2.43 | 3.286 (4) | 150 |
N6—H6···N1i | 0.91 | 1.97 | 2.876 (4) | 180 |
C10—H10···N3i | 0.95 | 2.48 | 3.312 (4) | 146 |
Symmetry code: (i) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N4 | 0.91 | 1.94 | 2.845 (4) | 172.0 |
C3—H3···N5 | 0.95 | 2.43 | 3.286 (4) | 150 |
N6—H6···N1i | 0.91 | 1.97 | 2.876 (4) | 180 |
C10—H10···N3i | 0.95 | 2.48 | 3.312 (4) | 146 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C7H6BrN3 |
Mr | 212.06 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 150 |
a, b, c (Å) | 11.0395 (12), 6.4734 (7), 11.1397 (12) |
β (°) | 98.889 (1) |
V (Å3) | 786.52 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.16 |
Crystal size (mm) | 0.18 × 0.17 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Numerical (SADABS; Bruker, 2016) |
Tmin, Tmax | 0.39, 0.73 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14675, 2117, 1578 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.090, 0.99 |
No. of reflections | 2117 |
No. of parameters | 135 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.71, −0.37 |
Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009), publCIF (Westrip, 2010).
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 268–275. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cristalli, G., Vittori, S., Eleuteri, A., Volpini, R., Camaioni, E., Lupidi, G., Mahmood, N., Bevilacqua, F. & Palù, G. (1995). J. Med. Chem. 38, 4019–4025. CrossRef CAS PubMed Google Scholar
Lukasik, P. M., Elabar, S., Lam, F., Shao, H., Liu, X., Abbas, A. Y. & Wang, S. (2012). Eur. J. Med. Chem. 57, 311–322. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.