organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4,6-Di­chloro-1H-indole-2,3-dione

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 April 2016; accepted 24 April 2016; online 4 May 2016)

The title compound, C8H3Cl2NO2, has a single, almost planar, mol­ecule in the asymmetric unit, with the non-H atoms having a mean deviation from planarity of 0.027 Å. In the crystal, N—H⋯O hydrogen bonds form infinite C(4) chains along [100]. No ππ inter­actions were observed in the structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Herein we report the crystal structure of 4,6-di­chloro­isatin (Fig. 1[link]), which has a near planar mol­ecule in the asymmetric unit, with non-H atoms possessing a mean deviation from planarity of 0.027 Å. The distances and angles are consistent with those reported for 1H-indole-2,3-dione (Goldschmidt & Llewellyn, 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius

In the crystal, the mol­ecules are linked through N1—H1⋯O1 hydrogen bonds (Table 1[link]) to form infinite chains along [100] (Fig. 2[link]). No other inter­molecular hydrogen bonding or ππ inter­actions are observed. In addition to N—H⋯O hydrogen bonding, the monosubstituted 4-chloro­isatin possesses C—H⋯Cl close contacts (Juma et al., 2016[Juma, R. M., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160689.]) and 6-chloro­isatin possesses C—H⋯O inter­actions (Golen & Manke, 2016[Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160690.]), neither of which are observed in the title compound.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (2) 1.98 (2) 2.809 (3) 161 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Mol­ecular packing of the title compound along the b axis, with hydrogen bonding shown as dashed lines.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 4,6-di­chloro-1H-indole-2,3-dione was used for the crystallization. Orange blocks were grown from the slow evaporation of an acetone solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H3Cl2NO2
Mr 216.01
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 120
a, b, c (Å) 8.6253 (19), 7.1250 (16), 26.289 (6)
V3) 1615.6 (6)
Z 8
Radiation type Cu Kα
μ (mm−1) 6.92
Crystal size (mm) 0.25 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker Venture D8 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.])
Tmin, Tmax 0.190, 0.386
No. of measured, independent and observed [I > 2σ(I)] reflections 13414, 1604, 1531
Rint 0.057
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.10
No. of reflections 1604
No. of parameters 122
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.26
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Experimental top

A commercial sample (Matrix Scientific) of 4,6-dichloro-1H-indole-2,3-dione was used for the crystallization. Orange blocks were grown from the slow evaporation of an acetone solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Herein we report the crystal structure of 4,6-dichloroisatin (Fig. 1), which has a near planar molecule in the asymmetric unit, with non-H atoms possessing a mean deviation from planarity of 0.027 Å. The distances and angles are consistent with those reported for 1H-indole-2,3-dione (Goldschmidt & Llewellyn, 1950). In the crystal, the molecules are linked through N1—H1···O1 hydrogen bonds to form infinite chains along [100] (Fig. 2). No other intermolecular hydrogen bonding or ππ interactions are observed. In addition to N—H···O hydrogen bonding, the monosubstituted 4-chloroisatin possesses C—H···Cl close contacts (Juma et al., 2016) and 6-chloroisatin possesses C—H···O interactions (Golen & Manke, 2016), neither of which are observed in the title compound.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius
[Figure 2] Fig. 2. Molecular packing of the title compound along the b axis, with hydrogen bonding shown as dashed lines.
4,6-Dichloro-1H-indole-2,3-dione top
Crystal data top
C8H3Cl2NO2F(000) = 864
Mr = 216.01Dx = 1.776 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 8528 reflections
a = 8.6253 (19) Åθ = 3.4–72.4°
b = 7.1250 (16) ŵ = 6.92 mm1
c = 26.289 (6) ÅT = 120 K
V = 1615.6 (6) Å3Block, orange
Z = 80.25 × 0.2 × 0.1 mm
Data collection top
Bruker Venture D8 CMOS
diffractometer
1604 independent reflections
Radiation source: Cu1531 reflections with I > 2σ(I)
HELIOS MX monochromatorRint = 0.057
φ and ω scansθmax = 72.7°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1010
Tmin = 0.190, Tmax = 0.386k = 88
13414 measured reflectionsl = 3232
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0427P)2 + 2.2094P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.34 e Å3
1604 reflectionsΔρmin = 0.26 e Å3
122 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0017 (3)
Crystal data top
C8H3Cl2NO2V = 1615.6 (6) Å3
Mr = 216.01Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 8.6253 (19) ŵ = 6.92 mm1
b = 7.1250 (16) ÅT = 120 K
c = 26.289 (6) Å0.25 × 0.2 × 0.1 mm
Data collection top
Bruker Venture D8 CMOS
diffractometer
1604 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1531 reflections with I > 2σ(I)
Tmin = 0.190, Tmax = 0.386Rint = 0.057
13414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.34 e Å3
1604 reflectionsΔρmin = 0.26 e Å3
122 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29514 (7)0.91432 (9)0.57109 (2)0.0280 (2)
Cl20.90946 (7)0.85524 (8)0.54527 (2)0.0266 (2)
O10.4268 (2)0.5417 (3)0.76169 (6)0.0307 (4)
O20.2373 (2)0.7287 (3)0.68422 (6)0.0340 (5)
N10.6227 (2)0.6103 (3)0.70490 (7)0.0233 (4)
H10.706 (2)0.586 (4)0.7219 (10)0.028*
C80.6327 (3)0.6988 (3)0.65726 (8)0.0199 (5)
C40.4730 (3)0.8391 (3)0.59277 (9)0.0211 (5)
C30.4861 (3)0.7546 (3)0.64011 (8)0.0216 (5)
C70.7662 (3)0.7288 (3)0.62975 (8)0.0219 (5)
H70.86540.69460.64240.026*
C60.7471 (3)0.8124 (3)0.58219 (8)0.0208 (5)
C50.6037 (3)0.8662 (3)0.56284 (9)0.0225 (5)
H50.59540.92020.52990.027*
C20.3748 (3)0.7047 (4)0.68032 (9)0.0240 (5)
C10.4750 (3)0.6071 (4)0.72214 (9)0.0255 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0227 (3)0.0336 (4)0.0277 (3)0.0046 (2)0.0042 (2)0.0030 (2)
Cl20.0233 (3)0.0291 (3)0.0273 (3)0.0025 (2)0.0057 (2)0.0015 (2)
O10.0293 (9)0.0422 (11)0.0205 (8)0.0017 (8)0.0032 (7)0.0037 (8)
O20.0229 (9)0.0498 (12)0.0291 (9)0.0048 (8)0.0039 (7)0.0043 (8)
N10.0212 (10)0.0314 (11)0.0172 (9)0.0039 (8)0.0006 (7)0.0013 (8)
C80.0226 (11)0.0206 (11)0.0165 (10)0.0002 (9)0.0002 (8)0.0037 (8)
C40.0211 (11)0.0206 (11)0.0215 (11)0.0019 (9)0.0024 (9)0.0029 (9)
C30.0223 (11)0.0226 (11)0.0198 (10)0.0017 (9)0.0013 (9)0.0030 (9)
C70.0210 (11)0.0227 (11)0.0220 (10)0.0005 (9)0.0005 (9)0.0041 (9)
C60.0217 (11)0.0198 (11)0.0210 (10)0.0020 (9)0.0036 (9)0.0034 (8)
C50.0307 (13)0.0187 (11)0.0181 (10)0.0037 (10)0.0028 (9)0.0006 (8)
C20.0225 (12)0.0286 (12)0.0208 (11)0.0019 (10)0.0014 (9)0.0022 (9)
C10.0273 (12)0.0296 (13)0.0195 (11)0.0030 (10)0.0010 (9)0.0023 (9)
Geometric parameters (Å, º) top
Cl1—C41.722 (2)C4—C31.387 (3)
Cl2—C61.731 (2)C4—C51.388 (3)
O1—C11.213 (3)C3—C21.471 (3)
O2—C21.202 (3)C7—H70.9500
N1—H10.865 (17)C7—C61.395 (3)
N1—C81.405 (3)C6—C51.391 (3)
N1—C11.352 (3)C5—H50.9500
C8—C31.400 (3)C2—C11.562 (3)
C8—C71.377 (3)
C8—N1—H1120 (2)C6—C7—H7122.0
C1—N1—H1127.4 (19)C7—C6—Cl2118.82 (19)
C1—N1—C8111.3 (2)C5—C6—Cl2117.76 (17)
C3—C8—N1111.1 (2)C5—C6—C7123.4 (2)
C7—C8—N1126.1 (2)C4—C5—C6118.4 (2)
C7—C8—C3122.8 (2)C4—C5—H5120.8
C3—C4—Cl1120.31 (18)C6—C5—H5120.8
C3—C4—C5120.2 (2)O2—C2—C3132.1 (2)
C5—C4—Cl1119.49 (18)O2—C2—C1123.3 (2)
C8—C3—C2106.8 (2)C3—C2—C1104.6 (2)
C4—C3—C8119.1 (2)O1—C1—N1128.1 (2)
C4—C3—C2134.1 (2)O1—C1—C2125.8 (2)
C8—C7—H7122.0N1—C1—C2106.14 (19)
C8—C7—C6116.0 (2)
Cl1—C4—C3—C8178.52 (17)C8—C7—C6—C50.8 (3)
Cl1—C4—C3—C21.4 (4)C4—C3—C2—O22.5 (5)
Cl1—C4—C5—C6176.95 (17)C4—C3—C2—C1178.3 (3)
Cl2—C6—C5—C4177.68 (17)C3—C8—C7—C62.5 (3)
O2—C2—C1—O11.9 (4)C3—C4—C5—C62.1 (3)
O2—C2—C1—N1178.5 (3)C3—C2—C1—O1178.7 (2)
N1—C8—C3—C4177.9 (2)C3—C2—C1—N10.8 (3)
N1—C8—C3—C22.2 (3)C7—C8—C3—C41.9 (4)
N1—C8—C7—C6177.3 (2)C7—C8—C3—C2178.0 (2)
C8—N1—C1—O1180.0 (2)C7—C6—C5—C41.5 (4)
C8—N1—C1—C20.5 (3)C5—C4—C3—C80.5 (3)
C8—C3—C2—O2177.5 (3)C5—C4—C3—C2179.6 (2)
C8—C3—C2—C11.8 (3)C1—N1—C8—C31.7 (3)
C8—C7—C6—Cl2179.91 (17)C1—N1—C8—C7178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)1.98 (2)2.809 (3)161 (3)
Symmetry code: (i) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.865 (17)1.977 (19)2.809 (3)161 (3)
Symmetry code: (i) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H3Cl2NO2
Mr216.01
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)8.6253 (19), 7.1250 (16), 26.289 (6)
V3)1615.6 (6)
Z8
Radiation typeCu Kα
µ (mm1)6.92
Crystal size (mm)0.25 × 0.2 × 0.1
Data collection
DiffractometerBruker Venture D8 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.190, 0.386
No. of measured, independent and
observed [I > 2σ(I)] reflections
13414, 1604, 1531
Rint0.057
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.10
No. of reflections1604
No. of parameters122
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.26

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009), OLEX2 and publCIF (Westrip, 2010).

 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160690.  Google Scholar
First citationJuma, R. M., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160689.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds