organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[(E)-4-Methyl­benzyl­­idene]pyridine-4-carbo­hydrazide monohydrate

aLaboratory of Drug Design and Development, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil, bFaculty of Pharmaceutical Sciences, University of Campinas, PO Box 6029 – 13083-859, Campinas, SP, Brazil, and cLaboratory of Single Crystal X-Ray Diffraction, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil
*Correspondence e-mail: wanda.almeida@fcf.unicamp.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 April 2016; accepted 4 May 2016; online 10 May 2016)

In the title hydrate, C14H13N3O·H2O, the C=N double bond adopts an E conformation and the dihedral angle between the aromatic rings is 16.36 (10)°. In the crystal, N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds link the components into (001) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-Acyl­hydrazone (NAH) derivatives show various biological properties including anti­tumor (Maia et al., 2014[Maia, R. D., do C., Tesch, R. & Fraga, C. A. M. (2014). Expert Opin. Ther. Pat. 24, 1161-1170.]), anti­malarial (Melnyk et al., 2006[Melnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31-35.]) and anti-inflammatory (Moldovan et al., 2011[Moldovan, C. M., Oniga, O., Pârvu, A., Tiperciuc, B., Verite, P., Pîrnău, A., Crişan, O., Bojiţă, M. & Pop, R. (2011). Eur. J. Med. Chem. 46, 526-534.]) activities and, therefore, are potential therapeutic agents.

The method of synthesis of the title compound was a condensation reaction between a hydrazide and an aldehyde, and the asymmetric unit of the crystal structure is made up of one mol­ecule of N′-[(E)-(4-methyl­phen­yl) methyl­idene] pyridine-4-carbohydrazide and one water mol­ecule (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with 50% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines

The title compound presents an (E) conformation relative to the C8=N2 bond, with the pyridine ring and the central spacer unit (C4–C8–N2–N1–C9–C10) being essentially planar (r.m.s. deviations of 0.006 and 0.066 Å, respectively), as in other reported NAH derivatives (Bhat et al., 2012[Bhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o1002.]; de Souza et al., 2007[Souza, M. V. N. de, Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o166-o168.]; Shafiq et al., 2009[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2899.]). The dihedral angle between the pyridine ring and the spacer unit is 16.36 (10)° and the structure shows the following torsion angles: C5—C4—C8—N2 = −169.34 (18)°, C4—C8—N2—N1 = −172.76 (15)°, C8—N2—N1—C9 = −173.08 (17)°, N2—N1—C9—C10 = −172.66 (16)° and N1—C9—C10—C11 = −33.6 (3)°.

In the crystal, hydrogen bonds occur between the NAH and water mol­ecules (Table 1[link]). The N1—H1⋯O2 bond is nearly linear (173°) as is observed in analogous monohydrated NAH structures bearing different phenyl substituents (Bhat et al., 2012[Bhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o1002.]; de Souza et al., 2007[Souza, M. V. N. de, Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o166-o168.]). The present compound has O2—H2A⋯N3 and N1—H1⋯O2 hydrogen bonds forming a chain in the [010] direction, while another chain is built along [100] from O2—H2B⋯N2, O2—H2B⋯O1 and N1—H1⋯O2 hydrogen bonds (Fig. 2[link]). Taken together, (001) sheets arise.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.85 (2) 1.93 (2) 2.775 (2) 173 (2)
O2—H2A⋯N3ii 0.87 (3) 1.97 (3) 2.832 (2) 169 (2)
O2—H2B⋯O1 0.84 (3) 2.25 (3) 2.919 (2) 136 (2)
O2—H2B⋯N2 0.84 (3) 2.44 (3) 3.184 (2) 147 (2)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound, showing hydrogen-bonding inter­actions as dashed lines.

Synthesis and crystallization

An equimolar mixture of isonicotinic acid hydrazide and 4-methyl­benzaldehyde were refluxed in ethanol for 10 h, followed by solvent removal in a rotatory evaporator. The residue was washed three times with a hot 1:1 mixture of hexa­ne–ethyl acetate and the residual solvent was removed by filtration. Light brown needles (m.p. 192–194°C) were obtained by recrystallization from reagent-grade ethanol (ethanol/water, 97:3 v/v) solution.

1H NMR (d6-DMSO, 500 MHz) d 12.04 (s, 1H, H1); 8.46 (s, 1H, H8); 8.79 (dd, J = 1.6 and 4.5 Hz, 2H, H12 and H13); 7.85 (dd, J = 1.6 and 4.5 Hz, 2H, H11 and H14); 7.66 (d, J = 8 Hz, 2H, H3 and H5); 7.30 (d, J = 8 Hz, 2H, H2 and H6); 2.37 (s, 3H, H7).

13C NMR (d6-DMSO, 125 MHz) d 161.9 (C9), 150.78 (C12, C13), 149.53 (C8), 141.02 (C10), 140.77 (C4), 131.84 (C1), 129.99 (C3, C5), 127.71 (C2, C6), 122.05 (C11, C14), 21.53 (C7).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H13N3O·H2O
Mr 257.29
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 6.3268 (8), 7.2868 (10), 28.272 (4)
V3) 1303.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.23 × 0.11
 
Data collection
Diffractometer Bruker APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.701, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 13953, 2546, 2426
Rint 0.023
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.06
No. of reflections 2546
No. of parameters 182
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.17, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), OLEX2 (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Structure description top

N-Acyl­hydrazone (NAH) derivatives show various biological properties including anti­tumor (Maia et al., 2014), anti­malarial (Melnyk et al., 2006) and anti-inflammatory (Moldovan et al., 2011) activities and, therefore, are potential therapeutic agents.

The method of synthesis of the title compound was a condensation reaction between a hydrazide and an aldehyde, and the asymmetric unit of the crystal structure is made up of one molecule of N'-[(E)-(4-methyl­phenyl) methyl­idene] pyridine-4-carbohydrazide and one water molecule (Fig. 1).

The title compound presents an (E) conformation relative to the C8=N2 bond, with the pyridine ring and the central spacer unit (C4—C8—N2—N1—C9—C10) being essentially planar (rms deviations of 0.006 Å and 0.066 Å, respectively), as in other reported NAH derivatives (Bhat et al., 2012; de Souza et al., 2007; Shafiq et al., 2009). The dihedral angle between the pyridine ring and the spacer unit is 16.36 (10)° and the structure shows the following torsion angles: C5—C4—C8—N2 (-169.34 (18)°), C4—C8—N2—N1 (-172.76 (15)°), C8—N2—N1—C9 (-173.08 (17)°), N2—N1—C9—C10 (-172.66 (16)°), N1—C9—C10—C11 (-33.6 (3)°).

In the crystal, hydrogen bonds occur between the NAH and water molecules (Tab. 1). The N1—H1···O2 bond is nearly linear (173°) as it is observed in analogous monohydrated NAH structures bearing different phenyl substituents (Bhat et al., 2012; de Souza et al., 2007). The present compound has O2—H2A···N3 and N1—H1···O2 hydrogen bonds forming a chain in the [010] direction, while another chain is built along [100] from O2—H2B···N2, O2—H2B···O1 and N1—H1···O2 hydrogen bonds (Fig. 2). Taken together, (001) sheets arise.

Synthesis and crystallization xperimental top

An equimolar mixture of isonicotinic acid hydrazide and 4-methyl­benzaldehyde were refluxed in ethanol for 10 hours, followed by solvent removal in a rotatory evaporator. The residue was washed three times with a hot 1:1 mixture of hexane-ethyl acetate and the residual solvent was removed by filtration. Light brown needles (mp 192 - 194 °C) were obtained by recrystallization from reagent-grade ethanol (ethanol/water, 97:3 - v/v) solution.

1H NMR (d6-DMSO, 500 MHz) d 12.04 (s, 1H, H1); 8.46 (s, 1H, H8); 8.79 (dd, J = 1.6 and 4.5 Hz, 2H, H12 and H13); 7.85 (dd, J = 1.6 and 4.5 Hz, 2H, H11 and H14); 7.66 (d, J = 8Hz, 2H, H3 and H5); 7.30 (d, J = 8 Hz, 2H, H2 and H6); 2.37 (s, 3H, H7);

13C NMR (d6-DMSO, 125 MHz) d 161.9 (C9), 150.78 (C12, C13), 149.53 (C8), 141.02 (C10), 140.77 (C4), 131.84 (C1), 129.99 (C3, C5), 127.71 (C2, C6), 122.05 (C11, C14), 21.53 (C7).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms attached to N and O atoms were placed in the difference Fourier map and refined freely (O – H = 0.87 (3) and 0.84 (3) Å and N – H = 0.85 (2)Å), with Uiso(H) = 1.5Ueq(O) and Uiso(H) = 1.2Ueq(N). H atoms in C—H bond were located in idealized positions and treated by riding model, with Uiso(H) = 1.5Ueq(C) (C – H = 0.96 Å) or Uiso(H) = 1.2Ueq(C) (C – H = 0.93 Å). A rotating-group model was applied to the methyl group.

Related literature top

For chemical and structural details, therapeutic profile and perspective of the application of N-acylhydrazones, see: Maia, Tesch & Fraga et al. (2014), Melnyk et al. (2006) and Moldovan et al. (2011). For other reported NAH derivatives, see Bhat et al. (2012), de Souza et al. (2007) and Shafiq et al. (2009).

Experimental top

An equimolar mixture of isonicotinic acid hydrazide and 4-methylbenzaldehyde were refluxed in ethanol for 10 h, followed by solvent removal in a rotatory evaporator. The residue was washed three times with a hot 1:1 mixture of hexane–ethyl acetate and the residual solvent was removed by filtration. Light brown needles (m.p. 192-194°C) were obtained by recrystallization from reagent-grade ethanol (ethanol/water, 97:3 v/v) solution.

1H NMR (d6-DMSO, 500 MHz) d 12.04 (s, 1H, H1); 8.46 (s, 1H, H8); 8.79 (dd, J = 1.6 and 4.5 Hz, 2H, H12 and H13); 7.85 (dd, J = 1.6 and 4.5 Hz, 2H, H11 and H14); 7.66 (d, J = 8 Hz, 2H, H3 and H5); 7.30 (d, J = 8 Hz, 2H, H2 and H6); 2.37 (s, 3H, H7);

13C NMR (d6-DMSO, 125 MHz) d 161.9 (C9), 150.78 (C12, C13), 149.53 (C8), 141.02 (C10), 140.77 (C4), 131.84 (C1), 129.99 (C3, C5), 127.71 (C2, C6), 122.05 (C11, C14), 21.53 (C7).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

N-Acylhydrazone (NAH) derivatives show various biological properties including antitumor (Maia et al., 2014), antimalarial (Melnyk et al., 2006) and anti-inflammatory (Moldovan et al., 2011) activities and, therefore, are potential therapeutic agents.

The method of synthesis of the title compound was a condensation reaction between a hydrazide and an aldehyde, and the asymmetric unit of the crystal structure is made up of one molecule of N'-[(E)-(4-methylphenyl) methylidene] pyridine-4-carbohydrazide and one water molecule (Fig. 1).

The title compound presents an (E) conformation relative to the C8=N2 bond, with the pyridine ring and the central spacer unit (C4–C8–N2–N1–C9–C10) being essentially planar (r.m.s. deviations of 0.006 and 0.066 Å, respectively), as in other reported NAH derivatives (Bhat et al., 2012; de Souza et al., 2007; Shafiq et al., 2009). The dihedral angle between the pyridine ring and the spacer unit is 16.36 (10)° and the structure shows the following torsion angles: C5—C4—C8—N2 = -169.34 (18)°, C4—C8—N2—N1 = -172.76 (15)°, C8—N2—N1—C9 = -173.08 (17)°, N2—N1—C9—C10 = -172.66 (16)° and N1—C9—C10—C11 = -33.6 (3)°.

In the crystal, hydrogen bonds occur between the NAH and water molecules (Table 1). The N1—H1···O2 bond is nearly linear (173°) as is observed in analogous monohydrated NAH structures bearing different phenyl substituents (Bhat et al., 2012; de Souza et al., 2007). The present compound has O2—H2A···N3 and N1—H1···O2 hydrogen bonds forming a chain in the [010] direction, while another chain is built along [100] from O2—H2B···N2, O2—H2B···O1 and N1—H1···O2 hydrogen bonds (Fig. 2). Taken together, (001) sheets arise.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2003) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines
[Figure 2] Fig. 2. Crystal packing of the title compound, showing hydrogen-bonding interactions as dashed lines.
N'-[(E)-4-Methylbenzylidene]pyridine-4-carbohydrazide monohydrate top
Crystal data top
C14H13N3O·H2ODx = 1.311 Mg m3
Mr = 257.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6782 reflections
a = 6.3268 (8) Åθ = 2.9–28.1°
b = 7.2868 (10) ŵ = 0.09 mm1
c = 28.272 (4) ÅT = 150 K
V = 1303.4 (3) Å3Block, light brown
Z = 40.30 × 0.23 × 0.11 mm
F(000) = 544
Data collection top
Bruker APEX CCD
diffractometer
2546 independent reflections
Radiation source: fine-focus sealed tube2426 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.023
phi and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 75
Tmin = 0.701, Tmax = 0.746k = 88
13953 measured reflectionsl = 3434
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H-atom parameters not refined
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.2529P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2546 reflectionsΔρmax = 0.17 e Å3
182 parametersΔρmin = 0.15 e Å3
Crystal data top
C14H13N3O·H2OV = 1303.4 (3) Å3
Mr = 257.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3268 (8) ŵ = 0.09 mm1
b = 7.2868 (10) ÅT = 150 K
c = 28.272 (4) Å0.30 × 0.23 × 0.11 mm
Data collection top
Bruker APEX CCD
diffractometer
2546 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
2426 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.746Rint = 0.023
13953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters not refined
S = 1.06Δρmax = 0.17 e Å3
2546 reflectionsΔρmin = 0.15 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6820 (2)0.1768 (2)0.82914 (5)0.0324 (4)
N10.3922 (3)0.2683 (2)0.87038 (5)0.0191 (3)
H10.264 (4)0.305 (3)0.8707 (7)0.023*
N20.5160 (2)0.3223 (2)0.90852 (5)0.0198 (3)
N30.1151 (3)0.0996 (3)0.70795 (6)0.0287 (4)
C10.7141 (3)0.6081 (3)1.06567 (7)0.0243 (4)
C20.8199 (3)0.5942 (3)1.02236 (7)0.0239 (4)
H20.95610.64101.01950.029*
C30.7252 (3)0.5121 (3)0.98366 (7)0.0208 (4)
H30.79810.50450.95520.025*
C40.5213 (3)0.4408 (2)0.98708 (6)0.0189 (4)
C50.4149 (3)0.4541 (3)1.03019 (6)0.0221 (4)
H50.27870.40731.03310.027*
C60.5113 (3)0.5370 (3)1.06885 (7)0.0248 (4)
H60.43850.54481.09740.030*
C70.8197 (4)0.6995 (3)1.10712 (7)0.0340 (5)
H7A0.94380.63161.11580.051*
H7B0.72370.70291.13340.051*
H7C0.85890.82251.09860.051*
C80.4135 (3)0.3616 (2)0.94615 (6)0.0194 (4)
H80.26890.33960.94750.023*
C90.4911 (3)0.2065 (3)0.83144 (6)0.0209 (4)
C100.3516 (3)0.1727 (3)0.78939 (7)0.0198 (4)
C110.1448 (3)0.1115 (3)0.79248 (7)0.0213 (4)
H110.08090.09500.82180.026*
C120.0350 (3)0.0753 (3)0.75110 (7)0.0246 (4)
H120.10270.03140.75360.030*
C130.3135 (3)0.1616 (3)0.70536 (7)0.0308 (5)
H130.37140.18100.67550.037*
C140.4377 (3)0.1987 (3)0.74447 (7)0.0265 (4)
H140.57580.24010.74090.032*
O20.9875 (2)0.4131 (2)0.87689 (5)0.0234 (3)
H2A0.972 (4)0.478 (3)0.8513 (9)0.035*
H2B0.878 (4)0.348 (4)0.8789 (8)0.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0160 (7)0.0502 (10)0.0311 (7)0.0006 (7)0.0008 (6)0.0098 (7)
N10.0147 (7)0.0234 (9)0.0190 (8)0.0002 (6)0.0037 (6)0.0016 (6)
N20.0182 (7)0.0210 (8)0.0201 (8)0.0004 (6)0.0052 (6)0.0000 (6)
N30.0286 (9)0.0357 (10)0.0218 (8)0.0023 (8)0.0022 (7)0.0051 (8)
C10.0321 (10)0.0163 (9)0.0244 (9)0.0019 (8)0.0099 (8)0.0015 (7)
C20.0220 (9)0.0185 (10)0.0312 (10)0.0016 (9)0.0060 (8)0.0010 (8)
C30.0222 (9)0.0188 (10)0.0214 (9)0.0003 (8)0.0003 (7)0.0012 (7)
C40.0209 (9)0.0151 (9)0.0206 (9)0.0029 (8)0.0033 (7)0.0018 (7)
C50.0202 (8)0.0216 (10)0.0246 (9)0.0001 (8)0.0011 (8)0.0034 (8)
C60.0329 (10)0.0230 (10)0.0185 (8)0.0023 (9)0.0006 (8)0.0011 (7)
C70.0471 (13)0.0257 (11)0.0292 (11)0.0039 (10)0.0114 (10)0.0015 (9)
C80.0187 (8)0.0182 (10)0.0212 (9)0.0002 (7)0.0039 (7)0.0036 (7)
C90.0178 (9)0.0216 (9)0.0232 (9)0.0013 (8)0.0001 (7)0.0005 (7)
C100.0197 (9)0.0181 (9)0.0215 (9)0.0016 (7)0.0002 (7)0.0020 (8)
C110.0200 (9)0.0240 (10)0.0199 (9)0.0001 (7)0.0020 (7)0.0009 (8)
C120.0198 (9)0.0282 (10)0.0259 (9)0.0023 (8)0.0001 (8)0.0048 (9)
C130.0333 (10)0.0412 (13)0.0179 (9)0.0055 (9)0.0050 (9)0.0001 (9)
C140.0216 (9)0.0311 (11)0.0268 (10)0.0054 (8)0.0043 (8)0.0000 (9)
O20.0171 (6)0.0320 (8)0.0211 (7)0.0004 (6)0.0024 (5)0.0034 (6)
Geometric parameters (Å, º) top
O1—C91.228 (2)C5—H50.9300
N1—C91.344 (2)C6—H60.9300
N1—N21.390 (2)C7—H7A0.9600
N1—H10.85 (2)C7—H7B0.9600
N2—C81.278 (2)C7—H7C0.9600
N3—C121.333 (3)C8—H80.9300
N3—C131.337 (3)C9—C101.501 (3)
C1—C61.387 (3)C10—C111.385 (3)
C1—C21.399 (3)C10—C141.395 (3)
C1—C71.504 (3)C11—C121.386 (3)
C2—C31.383 (3)C11—H110.9300
C2—H20.9300C12—H120.9300
C3—C41.394 (3)C13—C141.383 (3)
C3—H30.9300C13—H130.9300
C4—C51.396 (3)C14—H140.9300
C4—C81.462 (2)O2—H2A0.87 (3)
C5—C61.390 (3)O2—H2B0.84 (3)
C9—N1—N2117.89 (15)C1—C7—H7C109.5
C9—N1—H1123.9 (14)H7A—C7—H7C109.5
N2—N1—H1115.9 (14)H7B—C7—H7C109.5
C8—N2—N1115.04 (15)N2—C8—C4120.71 (17)
C12—N3—C13116.90 (17)N2—C8—H8119.6
C6—C1—C2118.19 (18)C4—C8—H8119.6
C6—C1—C7121.7 (2)O1—C9—N1124.07 (18)
C2—C1—C7120.07 (19)O1—C9—C10120.47 (17)
C3—C2—C1121.08 (18)N1—C9—C10115.46 (16)
C3—C2—H2119.5C11—C10—C14118.06 (17)
C1—C2—H2119.5C11—C10—C9123.94 (17)
C2—C3—C4120.45 (18)C14—C10—C9117.97 (16)
C2—C3—H3119.8C10—C11—C12118.80 (18)
C4—C3—H3119.8C10—C11—H11120.6
C3—C4—C5118.76 (17)C12—C11—H11120.6
C3—C4—C8121.58 (17)N3—C12—C11123.81 (17)
C5—C4—C8119.58 (16)N3—C12—H12118.1
C6—C5—C4120.34 (18)C11—C12—H12118.1
C6—C5—H5119.8N3—C13—C14123.77 (19)
C4—C5—H5119.8N3—C13—H13118.1
C1—C6—C5121.17 (19)C14—C13—H13118.1
C1—C6—H6119.4C13—C14—C10118.65 (17)
C5—C6—H6119.4C13—C14—H14120.7
C1—C7—H7A109.5C10—C14—H14120.7
C1—C7—H7B109.5H2A—O2—H2B106 (2)
H7A—C7—H7B109.5
C9—N1—N2—C8173.08 (17)N2—N1—C9—O17.9 (3)
C6—C1—C2—C30.1 (3)N2—N1—C9—C10172.66 (16)
C7—C1—C2—C3179.5 (2)O1—C9—C10—C11145.9 (2)
C1—C2—C3—C40.1 (3)N1—C9—C10—C1133.6 (3)
C2—C3—C4—C50.1 (3)O1—C9—C10—C1432.0 (3)
C2—C3—C4—C8176.90 (18)N1—C9—C10—C14148.60 (19)
C3—C4—C5—C60.0 (3)C14—C10—C11—C121.4 (3)
C8—C4—C5—C6176.91 (17)C9—C10—C11—C12176.45 (18)
C2—C1—C6—C50.1 (3)C13—N3—C12—C110.4 (3)
C7—C1—C6—C5179.5 (2)C10—C11—C12—N31.5 (3)
C4—C5—C6—C10.0 (3)C12—N3—C13—C140.8 (3)
N1—N2—C8—C4172.76 (15)N3—C13—C14—C100.9 (3)
C3—C4—C8—N213.9 (3)C11—C10—C14—C130.2 (3)
C5—C4—C8—N2169.34 (18)C9—C10—C14—C13177.69 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.85 (2)1.93 (2)2.775 (2)173 (2)
O2—H2A···N3ii0.87 (3)1.97 (3)2.832 (2)169 (2)
O2—H2B···O10.84 (3)2.25 (3)2.919 (2)136 (2)
O2—H2B···N20.84 (3)2.44 (3)3.184 (2)147 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.85 (2)1.93 (2)2.775 (2)173 (2)
O2—H2A···N3ii0.87 (3)1.97 (3)2.832 (2)169 (2)
O2—H2B···O10.84 (3)2.25 (3)2.919 (2)136 (2)
O2—H2B···N20.84 (3)2.44 (3)3.184 (2)147 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O·H2O
Mr257.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)6.3268 (8), 7.2868 (10), 28.272 (4)
V3)1303.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.23 × 0.11
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.701, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
13953, 2546, 2426
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.06
No. of reflections2546
No. of parameters182
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2003) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors are grateful to the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP 2009/51602–5 and 2013/18203–5) for financial support and to the Programa Institucional de Bolsas de Iniciação Científica of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (PIBIC-CNPq) for a fellowship for IPK.

References

First citationBhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o1002.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaia, R. D., do C., Tesch, R. & Fraga, C. A. M. (2014). Expert Opin. Ther. Pat. 24, 1161–1170.  Google Scholar
First citationMelnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoldovan, C. M., Oniga, O., Pârvu, A., Tiperciuc, B., Verite, P., Pîrnău, A., Crişan, O., Bojiţă, M. & Pop, R. (2011). Eur. J. Med. Chem. 46, 526–534.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2899.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o166–o168.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds