organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl-N-(4-methyl­pyridin-2-yl)-N-(3,4,5,6-tetra­hydro-2H-pyran-4-yl)pyridin-2-amine

aInstitute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: pierre.koch@uni-tuebingen.de

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 14 May 2016; accepted 17 May 2016; online 20 May 2016)

In the title compound, C17H21N3O, the pyridine rings make a dihedral angle of 84.44 (5)°. In the crystal, a C—H⋯N inter­action forms a chain of mol­ecules propagating along the twofold screw axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was obtained as a side product in the palladium-catalysed reaction of 2-bromo-4-methyl­pyridine and tetra­hydro-2H-pyran-4-amine hydro­chloride (Laufer & Koch, 2008[Laufer, S. & Koch, P. (2008). Org. Biomol. Chem. 6, 437-439.]; Koch et al., 2008[Koch, P., Bäuerlein, C., Jank, H. & Laufer, S. (2008). J. Med. Chem. 51, 5630-5640.]). The title compound is shown in Fig. 1[link]. One pyridine ring is nearly perpendicular to the other pyridine ring, the dihedral angle between them being 84.44 (5)°. The mol­ecular conformation features a short intra­molecular C—H⋯N contact (Table 1[link]). In the crystal, an inter­molecular inter­action between H14B and N16 forms a chain of mol­ecules along the twofold screw axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N9 1.00 2.33 2.7852 (13) 107
C14—H14B⋯N16i 0.98 2.61 3.4881 (16) 149
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization

2-Bromo-4-methyl­pyridine (0.20 g, 1.2 mmol), tetra­hydro-2H-pyran-4-amine hydro­chloride (0.19 g, 1.4 mmol), t-BuONa (0.27 g, 2.8 mmol), Pd2(dba)3 (21 mg, 0.023 mmol) and BINAP (29 mg, 0.046 mmol) were dissolved in dry toluene (30 ml) under an argon atmosphere. The mixture was stirred 2 h at 343 K. The mixture was allowed to cool to 298 K before n-hexane was added. The formed precipitate was filtered off and the filtrate concentrated to dryness. Once again, n-hexane was added to the residue and the precipitate was filtered off. The filtrate was concentrated in vacuo and the crude product was purified by flash chromatography (SiO2, from n-hexa­ne/EtOAc 1:1 to EtOAc 100%) to afford 20 mg of the title compound as a colorless solid. Suitable crystals for X-ray diffraction were obtained by slow evaporation at 298 K of a solution of n-hexa­ne–ethyl acetate (1:1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H21N3O
Mr 283.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 14.5487 (9), 10.1675 (6), 10.4269 (6)
β (°) 100.1035 (17)
V3) 1518.47 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.50 × 0.40 × 0.24
 
Data collection
Diffractometer Bruker SMART CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 65777, 3668, 3310
Rint 0.024
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.05
No. of reflections 3668
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.25
Computer programs: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 and XP (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Structural commentary top

The title compound, 4-methyl-N-(4-methyl­pyridin-2-yl)-N-(tetra­hydro-2H- pyran-4-yl)-pyridin-2-amine (I), was obtained as a side product in the palladium-catalyzed reaction of 2-bromo-4-methyl­pyridine and tetra­hydro-2H-pyran-4-amine hydro­chloride (Laufer & Koch 2008, Koch et al. 2008).

The analysis of the crystal structure of compound I is shown in Figure 1. One pyridine ring is nearly perpendicular to the other pyridine ring, the dihedral angles between them is 84.44 (5)°. The conformation is stabilized by an Intra­molecular hydrogen bond (C2–H2···N9 2.33Å). An inter­molecular inter­action between H14B and N16 forms a chain of molecules along the twofold screw axis (C14–H14B···N16 2.61Å).

Synthesis and crystallization top

2-Bromo-4-methyl­pyridine (0.20 g, 1.2 mmol), tetra­hydro-2H-pyran-4-amine hydro­chloride (0.19 g, 1.4 mmol), t-BuONa (0.27 g, 2.8 mmol), Pd2(dba)3 (21 mg, 0.023 mmol), BINAP (29 mg, 0.046 mmol), and toluene (30 mL) were dissolved in dry toluene under argon atmosphere. The mixture was stirred 2 h at 343 K. The mixture was allowed to cool to room temperature before n-hexane was added. The formed precipitate was filtered off and the filtrate concentrated to dryness. Once again, n-hexane was added to the residue and the precipitate was filtered off. The filtrate was concentrated in vacuo and the crude product was purified by flash-chromatography (SiO2, from n-hexane/EtOAc 1:1 to EtOAc 100%) to afford 20 mg of of I as a colorless solid. Suitable crystals of compound I for X-ray were obtained by slow evaporation at 298 K of a solution of n-hexane - ethyl acetate (1-1).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Nevertheless, they were ideally positioned and refined as riding on their parent atoms, with aromatic C—H = 0.95 Å, tertiary C—H = 1.00 Å, methyl­ene C—H = 0.99 Å and methyl C—H = 0.98 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise.

Related literature top

For preparation of the title compound, see: Koch et al. (2008).

Experimental top

2-Bromo-4-methylpyridine (0.20 g, 1.2 mmol), tetrahydro-2H-pyran-4-amine hydrochloride (0.19 g, 1.4 mmol), t-BuONa (0.27 g, 2.8 mmol), Pd2(dba)3 (21 mg, 0.023 mmol) and BINAP (29 mg, 0.046 mmol) were dissolved in dry toluene (30 ml) under an argon atmosphere. The mixture was stirred 2 h at 343 K. The mixture was allowed to cool to 298 K before n-hexane was added. The formed precipitate was filtered off and the filtrate concentrated to dryness. Once again, n-hexane was added to the residue and the precipitate was filtered off. The filtrate was concentrated in vacuo and the crude product was purified by flash chromatography (SiO2, from n-hexane/EtOAc 1:1 to EtOAc 100%) to afford 20 mg of the title compound as a colorless solid. Suitable crystals for X-ray diffraction were obtained by slow evaporation at 298 K of a solution of n-hexane– ethyl acetate (1:1).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound was obtained as a side product in the palladium-catalysed reaction of 2-bromo-4-methylpyridine and tetrahydro-2H-pyran-4-amine hydrochloride (Laufer & Koch, 2008; Koch et al., 2008). The title compound is shown in Fig. 1. One pyridine ring is nearly perpendicular to the other pyridine ring, the dihedral angle between them being 84.44 (5)°. The molecular conformation is stabilized by an intramolecular C—H···N hydrogen bond (Table 1). In the crystal, an intermolecular interaction between H14B and N16 forms a chain of molecules along the twofold screw axis.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.
4-Methyl-N-(4-methylpyridin-2-yl)-N-(3,4,5,6-tetrahydro-2H-pyran-4-yl)pyridin-2-amine top
Crystal data top
C17H21N3OF(000) = 608
Mr = 283.37Dx = 1.240 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 14.5487 (9) ÅCell parameters from 9759 reflections
b = 10.1675 (6) Åθ = 2.2–36.2°
c = 10.4269 (6) ŵ = 0.08 mm1
β = 100.1035 (17)°T = 173 K
V = 1518.47 (16) Å3Block, colorless
Z = 40.50 × 0.40 × 0.24 mm
Data collection top
Bruker SMART CCD
diffractometer
3310 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.024
Graphite monochromatorθmax = 28.0°, θmin = 2.5°
CCD scanh = 1919
65777 measured reflectionsk = 1313
3668 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.067P)2 + 0.4545P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3668 reflectionsΔρmax = 0.29 e Å3
192 parametersΔρmin = 0.25 e Å3
Crystal data top
C17H21N3OV = 1518.47 (16) Å3
Mr = 283.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5487 (9) ŵ = 0.08 mm1
b = 10.1675 (6) ÅT = 173 K
c = 10.4269 (6) Å0.50 × 0.40 × 0.24 mm
β = 100.1035 (17)°
Data collection top
Bruker SMART CCD
diffractometer
3310 reflections with I > 2σ(I)
65777 measured reflectionsRint = 0.024
3668 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
3668 reflectionsΔρmin = 0.25 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24545 (6)0.35573 (9)0.11326 (9)0.0270 (2)
C20.18456 (7)0.35008 (10)0.01542 (9)0.0240 (2)
H20.20660.27570.06500.029*
C30.19032 (8)0.47553 (11)0.09352 (11)0.0311 (2)
H3A0.17470.55220.04290.037*
H3B0.25480.48720.11000.037*
C40.12302 (9)0.46855 (13)0.22235 (11)0.0363 (3)
H4A0.12630.55170.27070.044*
H4B0.14210.39610.27550.044*
O50.02931 (6)0.44727 (9)0.20449 (8)0.0362 (2)
C60.02138 (8)0.32609 (13)0.13960 (12)0.0370 (3)
H6A0.03970.25320.19280.044*
H6B0.04450.31220.13050.044*
C70.08279 (7)0.32332 (12)0.00489 (11)0.0323 (2)
H7A0.07780.23620.03570.039*
H7B0.06090.39080.05130.039*
C80.30513 (6)0.25363 (9)0.15970 (9)0.0215 (2)
N90.30153 (6)0.14462 (8)0.08667 (8)0.02608 (19)
C100.36135 (8)0.04730 (10)0.13208 (11)0.0319 (2)
H100.36050.02960.08020.038*
C110.42372 (8)0.05082 (11)0.24818 (11)0.0319 (2)
H110.46480.02070.27420.038*
C120.42478 (7)0.16324 (10)0.32680 (10)0.0258 (2)
C130.36555 (7)0.26533 (10)0.28109 (9)0.0238 (2)
H130.36540.34340.33110.029*
C140.48623 (8)0.17290 (13)0.45881 (11)0.0359 (3)
H14A0.50020.26550.47980.054*
H14B0.54450.12500.45770.054*
H14C0.45390.13450.52470.054*
C150.25355 (7)0.47598 (10)0.18586 (10)0.0244 (2)
N160.32140 (7)0.55840 (10)0.16619 (10)0.0332 (2)
C170.33256 (8)0.66720 (12)0.23981 (13)0.0370 (3)
H170.38020.72720.22730.044*
C180.27875 (8)0.69742 (11)0.33315 (12)0.0331 (2)
H180.29030.77550.38350.040*
C190.20782 (7)0.61220 (11)0.35218 (10)0.0283 (2)
C200.19537 (7)0.49906 (10)0.27543 (10)0.0257 (2)
H200.14740.43830.28450.031*
C210.14761 (10)0.63831 (15)0.45276 (12)0.0435 (3)
H21A0.18390.68610.52630.065*
H21B0.12610.55460.48350.065*
H21C0.09350.69130.41400.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0261 (4)0.0235 (4)0.0280 (4)0.0056 (3)0.0045 (3)0.0052 (3)
C20.0229 (4)0.0240 (5)0.0235 (5)0.0033 (3)0.0005 (3)0.0016 (3)
C30.0308 (5)0.0327 (5)0.0297 (5)0.0025 (4)0.0051 (4)0.0041 (4)
C40.0387 (6)0.0449 (7)0.0254 (5)0.0034 (5)0.0064 (4)0.0071 (4)
O50.0315 (4)0.0450 (5)0.0302 (4)0.0100 (3)0.0001 (3)0.0081 (3)
C60.0265 (5)0.0471 (7)0.0341 (6)0.0024 (5)0.0043 (4)0.0072 (5)
C70.0255 (5)0.0410 (6)0.0284 (5)0.0032 (4)0.0007 (4)0.0091 (4)
C80.0192 (4)0.0224 (4)0.0232 (4)0.0003 (3)0.0042 (3)0.0007 (3)
N90.0285 (4)0.0227 (4)0.0257 (4)0.0018 (3)0.0014 (3)0.0017 (3)
C100.0390 (6)0.0234 (5)0.0316 (5)0.0059 (4)0.0016 (4)0.0031 (4)
C110.0356 (6)0.0265 (5)0.0316 (5)0.0094 (4)0.0009 (4)0.0021 (4)
C120.0238 (5)0.0289 (5)0.0242 (5)0.0023 (4)0.0033 (4)0.0022 (4)
C130.0225 (4)0.0251 (5)0.0233 (4)0.0013 (4)0.0029 (3)0.0020 (3)
C140.0350 (6)0.0417 (6)0.0275 (5)0.0114 (5)0.0039 (4)0.0008 (4)
C150.0226 (4)0.0222 (5)0.0261 (5)0.0044 (3)0.0017 (3)0.0020 (3)
N160.0286 (4)0.0319 (5)0.0398 (5)0.0025 (4)0.0078 (4)0.0081 (4)
C170.0331 (6)0.0301 (6)0.0482 (7)0.0065 (4)0.0087 (5)0.0080 (5)
C180.0349 (6)0.0254 (5)0.0368 (6)0.0023 (4)0.0003 (4)0.0087 (4)
C190.0290 (5)0.0304 (5)0.0239 (5)0.0072 (4)0.0001 (4)0.0021 (4)
C200.0250 (5)0.0257 (5)0.0247 (5)0.0013 (4)0.0001 (4)0.0011 (4)
C210.0454 (7)0.0548 (8)0.0320 (6)0.0017 (6)0.0115 (5)0.0107 (5)
Geometric parameters (Å, º) top
N1—C81.3850 (12)C10—H100.9500
N1—C151.4319 (12)C11—C121.4051 (15)
N1—C21.4736 (12)C11—H110.9500
C2—C31.5236 (14)C12—C131.3796 (14)
C2—C71.5281 (14)C12—C141.5072 (14)
C2—H21.0000C13—H130.9500
C3—C41.5188 (15)C14—H14A0.9800
C3—H3A0.9900C14—H14B0.9800
C3—H3B0.9900C14—H14C0.9800
C4—O51.4245 (15)C15—N161.3379 (14)
C4—H4A0.9900C15—C201.3861 (14)
C4—H4B0.9900N16—C171.3400 (15)
O5—C61.4201 (15)C17—C181.3863 (17)
C6—C71.5269 (15)C17—H170.9500
C6—H6A0.9900C18—C191.3882 (16)
C6—H6B0.9900C18—H180.9500
C7—H7A0.9900C19—C201.3948 (14)
C7—H7B0.9900C19—C211.5034 (15)
C8—N91.3406 (12)C20—H200.9500
C8—C131.4137 (13)C21—H21A0.9800
N9—C101.3476 (14)C21—H21B0.9800
C10—C111.3801 (15)C21—H21C0.9800
C8—N1—C15117.82 (8)N9—C10—H10117.5
C8—N1—C2121.94 (8)C11—C10—H10117.5
C15—N1—C2119.68 (8)C10—C11—C12118.11 (9)
N1—C2—C3111.92 (8)C10—C11—H11120.9
N1—C2—C7112.14 (8)C12—C11—H11120.9
C3—C2—C7109.41 (8)C13—C12—C11117.92 (9)
N1—C2—H2107.7C13—C12—C14120.06 (9)
C3—C2—H2107.7C11—C12—C14122.00 (9)
C7—C2—H2107.7C12—C13—C8119.91 (9)
C4—C3—C2110.25 (9)C12—C13—H13120.0
C4—C3—H3A109.6C8—C13—H13120.0
C2—C3—H3A109.6C12—C14—H14A109.5
C4—C3—H3B109.6C12—C14—H14B109.5
C2—C3—H3B109.6H14A—C14—H14B109.5
H3A—C3—H3B108.1C12—C14—H14C109.5
O5—C4—C3112.01 (9)H14A—C14—H14C109.5
O5—C4—H4A109.2H14B—C14—H14C109.5
C3—C4—H4A109.2N16—C15—C20123.47 (9)
O5—C4—H4B109.2N16—C15—N1116.64 (9)
C3—C4—H4B109.2C20—C15—N1119.83 (9)
H4A—C4—H4B107.9C15—N16—C17116.60 (10)
C6—O5—C4110.71 (9)N16—C17—C18123.96 (11)
O5—C6—C7111.78 (10)N16—C17—H17118.0
O5—C6—H6A109.3C18—C17—H17118.0
C7—C6—H6A109.3C17—C18—C19119.18 (10)
O5—C6—H6B109.3C17—C18—H18120.4
C7—C6—H6B109.3C19—C18—H18120.4
H6A—C6—H6B107.9C18—C19—C20117.24 (10)
C6—C7—C2110.40 (9)C18—C19—C21121.89 (10)
C6—C7—H7A109.6C20—C19—C21120.86 (10)
C2—C7—H7A109.6C15—C20—C19119.54 (10)
C6—C7—H7B109.6C15—C20—H20120.2
C2—C7—H7B109.6C19—C20—H20120.2
H7A—C7—H7B108.1C19—C21—H21A109.5
N9—C8—N1117.48 (8)C19—C21—H21B109.5
N9—C8—C13122.30 (9)H21A—C21—H21B109.5
N1—C8—C13120.21 (9)C19—C21—H21C109.5
C8—N9—C10116.68 (9)H21A—C21—H21C109.5
N9—C10—C11125.02 (10)H21B—C21—H21C109.5
C8—N1—C2—C3132.02 (10)C10—C11—C12—C132.15 (16)
C15—N1—C2—C339.22 (13)C10—C11—C12—C14176.26 (11)
C8—N1—C2—C7104.59 (11)C11—C12—C13—C81.15 (15)
C15—N1—C2—C784.18 (12)C14—C12—C13—C8177.30 (9)
N1—C2—C3—C4177.13 (8)N9—C8—C13—C121.28 (15)
C7—C2—C3—C452.21 (12)N1—C8—C13—C12179.97 (9)
C2—C3—C4—O557.26 (13)C8—N1—C15—N1681.25 (12)
C3—C4—O5—C661.05 (13)C2—N1—C15—N1690.35 (11)
C4—O5—C6—C760.54 (13)C8—N1—C15—C2095.89 (11)
O5—C6—C7—C256.63 (13)C2—N1—C15—C2092.52 (12)
N1—C2—C7—C6176.76 (9)C20—C15—N16—C170.90 (16)
C3—C2—C7—C651.96 (12)N1—C15—N16—C17176.12 (10)
C15—N1—C8—N9175.55 (9)C15—N16—C17—C180.18 (18)
C2—N1—C8—N94.16 (14)N16—C17—C18—C190.85 (19)
C15—N1—C8—C135.70 (14)C17—C18—C19—C200.44 (16)
C2—N1—C8—C13177.09 (9)C17—C18—C19—C21179.31 (11)
N1—C8—N9—C10178.73 (9)N16—C15—C20—C191.29 (15)
C13—C8—N9—C102.55 (14)N1—C15—C20—C19175.64 (9)
C8—N9—C10—C111.48 (17)C18—C19—C20—C150.55 (14)
N9—C10—C11—C120.88 (18)C21—C19—C20—C15178.33 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N91.002.332.7852 (13)107
C14—H14B···N16i0.982.613.4881 (16)149
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N91.002.332.7852 (13)107
C14—H14B···N16i0.982.613.4881 (16)149
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H21N3O
Mr283.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.5487 (9), 10.1675 (6), 10.4269 (6)
β (°) 100.1035 (17)
V3)1518.47 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.40 × 0.24
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
65777, 3668, 3310
Rint0.024
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.05
No. of reflections3668
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.25

Computer programs: APEX2 (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2015), XP (Sheldrick, 2015).

 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoch, P., Bäuerlein, C., Jank, H. & Laufer, S. (2008). J. Med. Chem. 51, 5630–5640.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaufer, S. & Koch, P. (2008). Org. Biomol. Chem. 6, 437–439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds