organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(Pyridin-4-yl)propan-1-one oxime

aInstitute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, bDepartment of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany, and cInstitute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
*Correspondence e-mail: pierre.koch@uni-tuebingen.de

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 14 May 2016; accepted 17 May 2016; online 24 May 2016)

The asymmetric unit of the title compound, C8H10N2O, contains two crystallographically independent mol­ecules of slightly different conformation, which are linked via an inter­molecular O—H⋯N hydrogen bond. The dihedral angle between the pyridine ring and the oxime plane of mol­ecule A [2.09 (19)°] is smaller than in mol­ecule B [16.50 (18)°].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C8H10N2O, was synthesized by the reaction of 4-propionyl­pyridine and hydroxyl­amine. The asymmetric unit contains two crystallographically independent mol­ecules (A and B, Fig. 1[link]) of slightly different conformation, which are linked via an inter­molecular O—H⋯N hydrogen bond (Table 1[link]). The dihedral angle between the pyridine ring and the oxime plane of mol­ecule A [2.09 (19)°] is smaller than in mol­ecule B [16.50 (18)°]. Both mol­ecules are in an E orientation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11A—H11A⋯N4B 1.06 1.68 2.729 (2) 175
O11B—H11B⋯N4Ai 1.02 1.69 2.708 (2) 172
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the crystal, each A mol­ecule is connected with two B mol­ecules and vice versa via further O—H⋯N hydrogen bonds, resulting in a zigzag chain parallel to the c axis.

Synthesis and crystallization

An aqueous solution of sodium hydroxide (20%, 20 ml) was added to hydroxyl­amine hydro­chloride (3.70 g, 53.27 mmol) in water (50 ml). After addition of 4-propionyl­pyridine (5.72 g, 44.39 mmol) at 273 K, the reaction was stirred for 2.5 h at 298 K. Then, the product was extracted by ethyl acetate and the solvent was evaporated under reduced pressure. The title compound was obtained by crystallization in hot ethanol as white crystals in 87% yield. 1H NMR (400 MHz, DMSO-d6): δ 1.03 (t, 3J = 7.6 Hz, 3H, CH3), 2.71 (q, 3J = 7.6 Hz, 2H, CH2), 7.60 (d, 3J = 5.3 Hz, 2H, CH), 8.58 (d, 3J = 5.2 Hz, 2H, CH), 11.68 (s, 1H, OH); 13C-{1H}-NMR (100 MHz, DMSO-d6): δ 10.6, 17.7, 120.0, 142.9, 150.0, 156.2. For a similar preparation of the title compound, see Huang et al. (2008[Huang, K., Merced, F. G., Ortiz-Marciales, M., Meléndez, H. J., Correa, W. & De Jesús, M. (2008). J. Org. Chem. 73, 4017-4026.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H10N2O
Mr 150.18
Crystal system, space group Orthorhombic, P212121
Temperature (K) 213
a, b, c (Å) 7.9149 (3), 9.3676 (4), 21.6431 (8)
V3) 1604.70 (11)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.69
Crystal size (mm) 0.70 × 0.40 × 0.20
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED; Stoe & Cie, 2011[Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.684, 0.888
No. of measured, independent and observed [I > 2σ(I)] reflections 15705, 2797, 2734
Rint 0.030
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.12
No. of reflections 2797
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.15
Absolute structure Flack x determined using 1114 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])
Absolute structure parameter 0.01 (6)
Computer programs: X-AREA and X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2013 and XP (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were found in a difference map. Those bonded to C atoms were ideally positioned and refined as riding on their parent atoms, with aromatic C—H = 0.94 Å, methyl­ene C—H = 0.98 Å and methyl C—H = 0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. The positions of the H atoms bonded to O atoms were taken from a difference map and they were refined as riding on their parent atoms, with Uiso(H) = 1.5Ueq(O).

Experimental top

An aqueous solution of sodium hydroxide (20%, 20 ml) was added to hydroxylamine hydrochloride (3.70 g, 53.27 mmol) in water (50 ml). After addition of 4-propionylpyridine (5.72 g, 44.39 mmol) at 273 K, the reaction was stirred for 2.5 h at 298 K. Then, the product was extracted by ethyl acetate and the solvent was evaporated under reduced pressure. Pure compound was obtained by crystallization in hot ethanol as white crystals in 87% yield. 1H NMR (400 MHz, DMSO-d6): δ 1.03 (t, 3J = 7.6 Hz, 3H, CH3), 2.71 (q, 3J = 7.6 Hz, 2H, CH2), 7.60 (d, 3J = 5.3 Hz, 2H, CH), 8.58 (d, 3J = 5.2 Hz, 2H, CH), 11.68 (s, 1H, OH); 13C-{1H}-NMR (100 MHz, DMSO-d6): δ 10.6, 17.7, 120.0, 142.9, 150.0, 156.2. For a similar preparation of the title compound, see Huang et al. (2008).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound, C8H10N2O, was synthesized by the reaction of 4-propionylpyridine and hydroxylamine. The crystal structure contains two crystallographically independent molecules (A and B, Fig. 1) of slightly different conformation, which are linked via an intermolecular O—H···N hydrogen bond (Table 1). The dihedral angle between the pyridine ring and the oxime plane of molecule A [2.09 (19)°] is smaller than in molecule B [16.50 (18)°]. Both molecules are in an E orientation.

In the crystal, each A molecule is connected with two B molecules and vice versa via further O—H···N hydrogen bonds, resulting in a zigzag chain parallel to the c axis.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2015); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
(E)-1-(Pyridin-4-yl)propan-1-one oxime top
Crystal data top
C8H10N2ODx = 1.243 Mg m3
Mr = 150.18Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 42392 reflections
a = 7.9149 (3) Åθ = 4.1–68.6°
b = 9.3676 (4) ŵ = 0.69 mm1
c = 21.6431 (8) ÅT = 213 K
V = 1604.70 (11) Å3Plate, colourless
Z = 80.70 × 0.40 × 0.20 mm
F(000) = 640
Data collection top
Stoe IPDS 2T
diffractometer
2797 independent reflections
Radiation source: Incoatec microSource Cu2734 reflections with I > 2σ(I)
X-ray mirror monochromatorRint = 0.030
Detector resolution: 6.67 pixels mm-1θmax = 67.5°, θmin = 4.1°
rotation method scansh = 99
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
k = 1111
Tmin = 0.684, Tmax = 0.888l = 2524
15705 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2424P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.14 e Å3
2797 reflectionsΔρmin = 0.15 e Å3
201 parametersAbsolute structure: Flack x determined using 1114 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
0 restraintsAbsolute structure parameter: 0.01 (6)
Crystal data top
C8H10N2OV = 1604.70 (11) Å3
Mr = 150.18Z = 8
Orthorhombic, P212121Cu Kα radiation
a = 7.9149 (3) ŵ = 0.69 mm1
b = 9.3676 (4) ÅT = 213 K
c = 21.6431 (8) Å0.70 × 0.40 × 0.20 mm
Data collection top
Stoe IPDS 2T
diffractometer
2797 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
2734 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.888Rint = 0.030
15705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.14 e Å3
S = 1.12Δρmin = 0.15 e Å3
2797 reflectionsAbsolute structure: Flack x determined using 1114 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
201 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.4400 (3)0.8985 (2)0.69902 (8)0.0352 (4)
C2A0.4013 (3)1.0058 (2)0.74113 (10)0.0463 (5)
H2A0.48151.07660.75050.056*
C3A0.2444 (3)1.0079 (3)0.76919 (10)0.0507 (6)
H3A0.22191.08090.79790.061*
N4A0.1234 (2)0.9129 (2)0.75800 (9)0.0475 (4)
C5A0.1604 (3)0.8092 (2)0.71751 (10)0.0458 (5)
H5A0.07690.74070.70890.055*
C6A0.3135 (3)0.7972 (2)0.68773 (9)0.0409 (4)
H6A0.33290.72170.66000.049*
C7A0.6061 (3)0.8934 (2)0.66701 (8)0.0359 (4)
C8A0.7356 (3)1.0078 (2)0.67723 (9)0.0401 (5)
H8A0.84780.97020.66710.048*
H8B0.73581.03500.72090.048*
C9A0.7009 (4)1.1392 (3)0.63795 (11)0.0576 (6)
H9A0.79261.20690.64280.086*
H9B0.59581.18300.65110.086*
H9C0.69211.11140.59490.086*
N10A0.6241 (2)0.7873 (2)0.62925 (8)0.0441 (4)
O11A0.7815 (2)0.78887 (17)0.60004 (7)0.0515 (4)
H11A0.77950.69970.57020.077*
C1B0.7775 (2)0.3235 (2)0.44265 (8)0.0339 (4)
C2B0.6914 (3)0.4473 (2)0.42528 (9)0.0403 (5)
H2B0.63150.45020.38780.048*
C3B0.6946 (3)0.5650 (2)0.46333 (10)0.0462 (5)
H3B0.63660.64750.45060.055*
N4B0.7761 (2)0.56832 (19)0.51765 (8)0.0454 (4)
C5B0.8581 (3)0.4508 (2)0.53451 (10)0.0439 (5)
H5B0.91570.45120.57250.053*
C6B0.8631 (3)0.3273 (2)0.49901 (9)0.0398 (4)
H6B0.92360.24710.51280.048*
C7B0.7755 (2)0.1927 (2)0.40380 (8)0.0344 (4)
C8B0.8959 (2)0.0715 (2)0.41461 (9)0.0391 (4)
H8C0.99670.10760.43580.047*
H8D0.93160.03240.37470.047*
C9B0.8171 (3)0.0472 (2)0.45324 (11)0.0487 (5)
H9D0.71270.07830.43400.073*
H9E0.79360.01170.49450.073*
H9F0.89490.12700.45580.073*
N10B0.6582 (2)0.19141 (18)0.36239 (8)0.0404 (4)
O11B0.6592 (2)0.06524 (17)0.32787 (7)0.0495 (4)
H11B0.55720.08100.29980.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0400 (10)0.0344 (10)0.0313 (9)0.0014 (8)0.0010 (8)0.0027 (7)
C2A0.0467 (12)0.0458 (12)0.0463 (11)0.0048 (9)0.0032 (9)0.0100 (9)
C3A0.0525 (13)0.0518 (12)0.0477 (12)0.0006 (10)0.0092 (10)0.0078 (10)
N4A0.0448 (10)0.0517 (10)0.0459 (9)0.0019 (8)0.0059 (8)0.0071 (8)
C5A0.0432 (12)0.0435 (11)0.0506 (11)0.0044 (10)0.0005 (9)0.0060 (10)
C6A0.0447 (11)0.0369 (10)0.0412 (10)0.0004 (9)0.0011 (9)0.0005 (9)
C7A0.0408 (10)0.0349 (10)0.0321 (9)0.0019 (8)0.0019 (8)0.0008 (8)
C8A0.0370 (10)0.0433 (11)0.0402 (10)0.0006 (8)0.0026 (8)0.0072 (8)
C9A0.0737 (16)0.0494 (12)0.0498 (12)0.0184 (12)0.0048 (12)0.0044 (10)
N10A0.0474 (10)0.0413 (9)0.0435 (9)0.0013 (8)0.0098 (8)0.0044 (8)
O11A0.0491 (9)0.0512 (9)0.0543 (9)0.0032 (7)0.0163 (7)0.0141 (7)
C1B0.0308 (9)0.0345 (9)0.0363 (9)0.0022 (8)0.0039 (7)0.0006 (8)
C2B0.0442 (11)0.0369 (10)0.0399 (10)0.0004 (9)0.0011 (9)0.0037 (8)
C3B0.0547 (12)0.0325 (10)0.0515 (12)0.0013 (10)0.0074 (10)0.0023 (9)
N4B0.0482 (10)0.0390 (9)0.0490 (10)0.0052 (8)0.0103 (8)0.0063 (7)
C5B0.0401 (10)0.0487 (12)0.0430 (11)0.0042 (9)0.0004 (9)0.0078 (9)
C6B0.0361 (10)0.0410 (10)0.0424 (10)0.0013 (9)0.0020 (8)0.0027 (8)
C7B0.0327 (9)0.0361 (9)0.0343 (9)0.0011 (8)0.0010 (7)0.0003 (8)
C8B0.0364 (10)0.0385 (10)0.0423 (10)0.0040 (8)0.0016 (8)0.0061 (8)
C9B0.0537 (13)0.0387 (11)0.0537 (12)0.0045 (10)0.0024 (10)0.0012 (9)
N10B0.0420 (9)0.0391 (9)0.0400 (8)0.0017 (8)0.0030 (7)0.0055 (7)
O11B0.0524 (9)0.0488 (8)0.0474 (8)0.0067 (7)0.0113 (7)0.0158 (7)
Geometric parameters (Å, º) top
C1A—C2A1.391 (3)C1B—C6B1.396 (3)
C1A—C6A1.400 (3)C1B—C2B1.397 (3)
C1A—C7A1.487 (3)C1B—C7B1.486 (3)
C2A—C3A1.383 (3)C2B—C3B1.377 (3)
C2A—H2A0.9400C2B—H2B0.9400
C3A—N4A1.330 (3)C3B—N4B1.341 (3)
C3A—H3A0.9400C3B—H3B0.9400
N4A—C5A1.340 (3)N4B—C5B1.329 (3)
C5A—C6A1.377 (3)C5B—C6B1.389 (3)
C5A—H5A0.9400C5B—H5B0.9400
C6A—H6A0.9400C6B—H6B0.9400
C7A—N10A1.294 (3)C7B—N10B1.290 (2)
C7A—C8A1.499 (3)C7B—C8B1.501 (3)
C8A—C9A1.521 (3)C8B—C9B1.525 (3)
C8A—H8A0.9800C8B—H8C0.9800
C8A—H8B0.9800C8B—H8D0.9800
C9A—H9A0.9700C9B—H9D0.9700
C9A—H9B0.9700C9B—H9E0.9700
C9A—H9C0.9700C9B—H9F0.9700
N10A—O11A1.397 (2)N10B—O11B1.398 (2)
O11A—H11A1.0560O11B—H11B1.0215
C2A—C1A—C6A116.51 (19)C6B—C1B—C2B116.79 (18)
C2A—C1A—C7A121.52 (18)C6B—C1B—C7B121.40 (17)
C6A—C1A—C7A121.96 (17)C2B—C1B—C7B121.80 (17)
C3A—C2A—C1A119.7 (2)C3B—C2B—C1B119.67 (19)
C3A—C2A—H2A120.1C3B—C2B—H2B120.2
C1A—C2A—H2A120.1C1B—C2B—H2B120.2
N4A—C3A—C2A123.9 (2)N4B—C3B—C2B123.5 (2)
N4A—C3A—H3A118.1N4B—C3B—H3B118.3
C2A—C3A—H3A118.1C2B—C3B—H3B118.3
C3A—N4A—C5A116.54 (19)C5B—N4B—C3B117.15 (18)
N4A—C5A—C6A123.9 (2)N4B—C5B—C6B123.5 (2)
N4A—C5A—H5A118.1N4B—C5B—H5B118.3
C6A—C5A—H5A118.1C6B—C5B—H5B118.3
C5A—C6A—C1A119.48 (19)C5B—C6B—C1B119.41 (19)
C5A—C6A—H6A120.3C5B—C6B—H6B120.3
C1A—C6A—H6A120.3C1B—C6B—H6B120.3
N10A—C7A—C1A114.60 (17)N10B—C7B—C1B114.11 (17)
N10A—C7A—C8A124.50 (18)N10B—C7B—C8B123.93 (17)
C1A—C7A—C8A120.86 (17)C1B—C7B—C8B121.91 (16)
C7A—C8A—C9A111.87 (17)C7B—C8B—C9B112.16 (17)
C7A—C8A—H8A109.2C7B—C8B—H8C109.2
C9A—C8A—H8A109.2C9B—C8B—H8C109.2
C7A—C8A—H8B109.2C7B—C8B—H8D109.2
C9A—C8A—H8B109.2C9B—C8B—H8D109.2
H8A—C8A—H8B107.9H8C—C8B—H8D107.9
C8A—C9A—H9A109.5C8B—C9B—H9D109.5
C8A—C9A—H9B109.5C8B—C9B—H9E109.5
H9A—C9A—H9B109.5H9D—C9B—H9E109.5
C8A—C9A—H9C109.5C8B—C9B—H9F109.5
H9A—C9A—H9C109.5H9D—C9B—H9F109.5
H9B—C9A—H9C109.5H9E—C9B—H9F109.5
C7A—N10A—O11A112.09 (17)C7B—N10B—O11B112.01 (16)
N10A—O11A—H11A104.8N10B—O11B—H11B101.0
C6A—C1A—C2A—C3A0.0 (3)C6B—C1B—C2B—C3B0.2 (3)
C7A—C1A—C2A—C3A179.00 (19)C7B—C1B—C2B—C3B178.90 (18)
C1A—C2A—C3A—N4A0.8 (4)C1B—C2B—C3B—N4B0.5 (3)
C2A—C3A—N4A—C5A0.9 (3)C2B—C3B—N4B—C5B0.4 (3)
C3A—N4A—C5A—C6A0.2 (3)C3B—N4B—C5B—C6B0.1 (3)
N4A—C5A—C6A—C1A0.6 (3)N4B—C5B—C6B—C1B0.5 (3)
C2A—C1A—C6A—C5A0.7 (3)C2B—C1B—C6B—C5B0.3 (3)
C7A—C1A—C6A—C5A178.33 (18)C7B—C1B—C6B—C5B178.43 (19)
C2A—C1A—C7A—N10A179.88 (19)C6B—C1B—C7B—N10B162.62 (18)
C6A—C1A—C7A—N10A1.2 (3)C2B—C1B—C7B—N10B16.1 (3)
C2A—C1A—C7A—C8A2.5 (3)C6B—C1B—C7B—C8B14.8 (3)
C6A—C1A—C7A—C8A176.47 (18)C2B—C1B—C7B—C8B166.50 (18)
N10A—C7A—C8A—C9A95.8 (2)N10B—C7B—C8B—C9B80.2 (2)
C1A—C7A—C8A—C9A81.6 (2)C1B—C7B—C8B—C9B97.0 (2)
C1A—C7A—N10A—O11A179.33 (16)C1B—C7B—N10B—O11B178.80 (15)
C8A—C7A—N10A—O11A1.8 (3)C8B—C7B—N10B—O11B1.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11A···N4B1.061.682.729 (2)175
O11B—H11B···N4Ai1.021.692.708 (2)172
Symmetry code: (i) x+1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11A···N4B1.061.682.729 (2)175.0
O11B—H11B···N4Ai1.021.692.708 (2)172.1
Symmetry code: (i) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC8H10N2O
Mr150.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)213
a, b, c (Å)7.9149 (3), 9.3676 (4), 21.6431 (8)
V3)1604.70 (11)
Z8
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.70 × 0.40 × 0.20
Data collection
DiffractometerStoe IPDS 2T
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2011)
Tmin, Tmax0.684, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
15705, 2797, 2734
Rint0.030
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.12
No. of reflections2797
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15
Absolute structureFlack x determined using 1114 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Absolute structure parameter0.01 (6)

Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2011), SIR2004 (Burla et al., 2005), SHELXL2013 (Sheldrick, 2015), XP (Sheldrick, 2015).

 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, K., Merced, F. G., Ortiz-Marciales, M., Meléndez, H. J., Correa, W. & De Jesús, M. (2008). J. Org. Chem. 73, 4017–4026.  CrossRef PubMed CAS Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds