organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridin-1-yl)acetate

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Iimmouzzer, BP 2202, Fez, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP, 1014, Avenue Ibn Batouta, Rabat, Morocco, and dDépartement de Chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: youssef_kandri_rodi@yahoo.fr

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 8 May 2016; accepted 9 May 2016; online 13 May 2016)

In the title compound, C16H14BrN3O2, the fused-ring system is essentially planar, with the largest deviation from the mean plane being 0.0216 (15) Å for the substituted N atom of the five-membered ring, the plane of which makes dihedral angles of 28.50 (7) and 77.48 (7)° with the terminal phenyl ring and the eth­oxy­carbonyl­methyl group mean planes, respectively. In the crystal, C—H⋯N hydrogen bonds link the mol­ecules into inversion dimers. These combine with weak C—H⋯N contacts to stack the mol­ecules into columns along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imidazo[4,5-b]pyridine derivatives are often defined as precursors in the synthesis of a variety of therapeutic agents. Indeed, heterocyclic compounds containing this motif are endowed with anti­cancer activity (Guo et al., 2005[Guo, Z., Tellew, J. E., Gross, R. S., Dyck, B., Grey, J., Haddach, M., Kiankarimi, M., Lanier, M., Li, B. F., Luo, Z., McCarthy, J. R., Moorjani, M., Saunders, J., Sullivan, R., Zhang, X., Zamani-Kord, S., Grigoriadis, D. E., Crowe, P. D., Chen, T. K. & Williams, J. P. (2005). J. Med. Chem. 48, 5104-5107.]), anti­bacterial (Aridoss et al., 2006[Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 268-275.]), tuberculostatic (Bukowski & Janowiec, 1989[Bukowski, L. & Janowiec, M. (1989). Pharmazie, 44, 267-269.]) and anti­mitotic activity (Temple, 1990[Temple, C. (1990). J. Med. Chem. 33, 656-661.]).

In the previous study, we have alkyl­ated 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine at positions N4 and N3 (Ouzidan et al., 2010[Ouzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o947.], 2011[Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1684.]). In this work, we report the synthesis of ethyl 2-(6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridin-3-yl) acetate, by the reaction of ethyl 2-bromo­acetate on 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine in phase-transfer catalysis conditions.

In the title compound (Fig. 1[link]), the fused ring system is essentially planar, with the largest deviation from the mean plane being 0.0216 (15) Å for the substituted N atom of the five-membered ring. It makes dihedral angles of 28.50 (7) and 77.48 (7)°, respectively, with the terminal phenyl ring (C7–C12) and the mean plane of the eth­oxy­carbonyl­methyl group (C13, C14, O1, O2, C15 and C16).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, C9—H9⋯N1 (−x + 1, −y, −z + 1) hydrogen bonds (Table 1[link]) link the mol­ecules into inversion dimers. These combine with weak C13—H13A⋯N2(x, y + 1, z) contacts to stack the mol­ecules into columns along the b-axis direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1i 0.95 2.60 3.529 (2) 166
C13—H13A⋯N2ii 0.99 2.31 3.2755 (19) 165
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y+1, z.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

To a solution 6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridine (0.30 g, 1.1 mmol), potassium carbonate (0.20 g, 1.42 mmol) and tetra-n-butyl­ammonium bromide 0.035 g (0,11 mmol) in DMF (15 ml) was added ethyl 2-bromo­acetate (0.14 ml, 1.30 mmol). Stirring was continued at room temperature for 12 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Reddish crystals were isolated when the solvent was allowed to evaporate (yield = 28%)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H14BrN3O2
Mr 360.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 14.6923 (8), 6.1988 (3), 16.2254 (8)
β (°) 92.911 (1)
V3) 1475.82 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.80
Crystal size (mm) 0.21 × 0.15 × 0.06
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.70, 0.85
No. of measured, independent and observed [I > 2σ(I)] reflections 27419, 3981, 3236
Rint 0.044
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.06
No. of reflections 3981
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.35
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Comment top

Imidazo[4,5-b] pyridine derivatives was often defined as a precursor in the synthesis of a variety of therapeutic agents. Indeed, heterocyclic compounds containing this motif are endowed with anticancer activity (Guo et al., 2005), antibacterial (Aridoss et al., 2006), tuberculostatic (Bukowski et al., 1989) and antimitotic activity (Temple, 1990).

In the previous study we have alkylated 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine in position N4 and N3 (Ouzidan et al., 2010, 2011). In this work, we report the synthesis of ethyl 2-(6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridin-3-yl) acetate, by the reaction of ethyl 2-bromoacetate on 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine in phase transfer catalysis conditions.

In the title compound, C16H14BrN3O2, the fused ring system is essentially planar, with the largest deviation from the mean plane being 0.0216 (15) Å for the substituted N atom of the five-membered ring and makes a dihedral angle of 28.50 (7)° and 77.48 (7)° with the terminal phenyl ring (C7-C12) and the ethoxycarbonylmethyl group (C13, C14, O1, O2, C15 and C16) mean planes, respectively (Fig. 1). In the crystal, C—H···N hydrogen bonds [Symmetry code: -x+1, -y, -z+1] link the molecules into inversion dimers. These combine with weak C—H···N contacts [Symmetry code: x, y+1, z] to stack the molecules into columns along the b-axis direction (Fig. 2).

Experimental top

To a solution 6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridine (0.30 g, 1.1 mmol), potassium carbonate (0.20 g, 1.42 mmol) and tetra-n-butylammonium bromide 0.035 g (0,11 mmol) in DMF (15 ml) was added ethyl 2-bromoacetate (0.14 ml, 1.30 mmol). Stirring was continued at room temperature for 12 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Reddish crystals were isolated when the solvent was allowed to evaporate (yield = 28%)

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Imidazo[4,5-b]pyridine derivatives are often defined as precursors in the synthesis of a variety of therapeutic agents. Indeed, heterocyclic compounds containing this motif are endowed with anticancer activity (Guo et al., 2005), antibacterial (Aridoss et al., 2006), tuberculostatic (Bukowski & Janowiec, 1989) and antimitotic activity (Temple, 1990).

In the previous study, we have alkylated 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine at positions N4 and N3 (Ouzidan et al., 2010, 2011). In this work, we report the synthesis of ethyl 2-(6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridin-3-yl) acetate, by the reaction of ethyl 2-bromoacetate on 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine in phase-transfer catalysis conditions.

In the title compound (Fig. 1), the fused ring system is essentially planar, with the largest deviation from the mean plane being 0.0216 (15) Å for the substituted N atom of the five-membered ring. It makes dihedral angles of 28.50 (7) and 77.48 (7)°, respectively, with the terminal phenyl ring (C7–C12) and the mean plane of the ethoxycarbonylmethyl group (C13, C14, O1, O2, C15 and C16).

In the crystal, C9—H9···N1( -x + 1, -y, -z + 1) hydrogen bonds (Table 1) link the molecules into inversion dimers. These combine with weak C13—H13A···N2(x, y + 1, z) contacts to stack the molecules into columns along the b-axis direction (Fig. 2).

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and H atoms not involved in these interactions have been omitted for clarity.
Ethyl 2-(6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridin-1-yl)acetate top
Crystal data top
C16H14BrN3O2F(000) = 728
Mr = 360.21Dx = 1.621 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.6923 (8) ÅCell parameters from 9736 reflections
b = 6.1988 (3) Åθ = 2.5–29.1°
c = 16.2254 (8) ŵ = 2.80 mm1
β = 92.911 (1)°T = 150 K
V = 1475.82 (13) Å3Plate, colourless
Z = 40.21 × 0.15 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3981 independent reflections
Radiation source: fine-focus sealed tube3236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 1.8°
φ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 88
Tmin = 0.70, Tmax = 0.85l = 2221
27419 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
3981 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H14BrN3O2V = 1475.82 (13) Å3
Mr = 360.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.6923 (8) ŵ = 2.80 mm1
b = 6.1988 (3) ÅT = 150 K
c = 16.2254 (8) Å0.21 × 0.15 × 0.06 mm
β = 92.911 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
3236 reflections with I > 2σ(I)
Tmin = 0.70, Tmax = 0.85Rint = 0.044
27419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.06Δρmax = 0.76 e Å3
3981 reflectionsΔρmin = 0.35 e Å3
200 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 25 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.34865 (2)0.81843 (3)0.85417 (2)0.02759 (8)
O10.16616 (9)0.7148 (2)0.52092 (9)0.0307 (3)
O20.19431 (8)1.0034 (2)0.44255 (7)0.0233 (3)
N10.40277 (11)0.2935 (2)0.70896 (9)0.0248 (3)
N20.39950 (10)0.2709 (2)0.56003 (9)0.0209 (3)
N30.34936 (10)0.6079 (2)0.53338 (8)0.0180 (3)
C10.35738 (11)0.5886 (3)0.61830 (10)0.0178 (3)
C20.34280 (12)0.7307 (3)0.68207 (11)0.0201 (3)
H20.32320.87540.67340.024*
C30.35958 (12)0.6417 (3)0.75984 (10)0.0200 (3)
C40.38704 (12)0.4271 (3)0.77089 (10)0.0240 (4)
H40.39490.37380.82570.029*
C50.38838 (12)0.3781 (3)0.63395 (10)0.0197 (3)
C60.37482 (12)0.4107 (3)0.50189 (10)0.0188 (3)
C70.37627 (12)0.3570 (3)0.41311 (10)0.0187 (3)
C80.43728 (12)0.1963 (3)0.39011 (11)0.0208 (4)
H80.47710.13100.43080.025*
C90.43990 (13)0.1322 (3)0.30827 (11)0.0237 (4)
H90.48080.02200.29320.028*
C100.38293 (13)0.2289 (3)0.24859 (11)0.0257 (4)
H100.38580.18760.19240.031*
C110.32184 (14)0.3858 (3)0.27083 (11)0.0268 (4)
H110.28230.45070.22980.032*
C120.31791 (13)0.4489 (3)0.35259 (10)0.0232 (4)
H120.27520.55540.36740.028*
C130.32126 (12)0.8060 (2)0.49161 (10)0.0185 (3)
H13B0.34340.80540.43500.022*
H13A0.34930.93070.52140.022*
C140.21847 (13)0.8314 (3)0.48722 (10)0.0190 (3)
C150.09723 (12)1.0579 (3)0.44032 (11)0.0254 (4)
H15A0.07541.06330.49700.031*
H15B0.06140.94770.40860.031*
C160.08622 (15)1.2742 (3)0.39969 (15)0.0369 (5)
H16A0.12441.38020.42990.055*
H16B0.02231.31890.40000.055*
H16C0.10481.26480.34260.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03435 (13)0.02850 (12)0.01993 (10)0.00701 (8)0.00138 (7)0.00537 (7)
O10.0275 (8)0.0289 (7)0.0360 (8)0.0040 (6)0.0036 (6)0.0112 (6)
O20.0215 (7)0.0225 (6)0.0261 (6)0.0019 (5)0.0015 (5)0.0076 (5)
N10.0308 (9)0.0205 (8)0.0228 (7)0.0063 (6)0.0008 (6)0.0014 (6)
N20.0247 (8)0.0169 (7)0.0210 (7)0.0018 (6)0.0008 (6)0.0021 (6)
N30.0232 (8)0.0130 (6)0.0176 (6)0.0007 (6)0.0005 (5)0.0004 (5)
C10.0169 (8)0.0172 (8)0.0195 (7)0.0014 (6)0.0025 (6)0.0000 (6)
C20.0210 (9)0.0154 (8)0.0239 (8)0.0010 (7)0.0008 (7)0.0005 (7)
C30.0192 (9)0.0231 (9)0.0178 (8)0.0020 (7)0.0023 (6)0.0034 (6)
C40.0274 (10)0.0248 (9)0.0195 (8)0.0042 (8)0.0006 (7)0.0024 (7)
C50.0209 (9)0.0166 (8)0.0216 (8)0.0011 (7)0.0010 (7)0.0011 (6)
C60.0195 (9)0.0146 (8)0.0224 (8)0.0017 (7)0.0021 (6)0.0020 (6)
C70.0207 (9)0.0158 (8)0.0199 (8)0.0034 (6)0.0038 (7)0.0005 (6)
C80.0186 (9)0.0178 (8)0.0262 (8)0.0025 (7)0.0032 (7)0.0000 (7)
C90.0233 (10)0.0201 (8)0.0284 (9)0.0012 (7)0.0081 (7)0.0042 (7)
C100.0302 (11)0.0259 (9)0.0213 (8)0.0026 (8)0.0041 (7)0.0046 (7)
C110.0321 (11)0.0267 (9)0.0212 (8)0.0019 (8)0.0014 (7)0.0023 (7)
C120.0231 (9)0.0229 (9)0.0237 (8)0.0027 (7)0.0016 (7)0.0029 (7)
C130.0236 (9)0.0124 (7)0.0195 (7)0.0017 (6)0.0020 (6)0.0012 (6)
C140.0250 (9)0.0155 (8)0.0164 (7)0.0017 (7)0.0006 (6)0.0015 (6)
C150.0207 (9)0.0274 (10)0.0282 (9)0.0007 (7)0.0001 (7)0.0013 (8)
C160.0300 (12)0.0300 (11)0.0500 (13)0.0049 (9)0.0060 (10)0.0038 (10)
Geometric parameters (Å, º) top
Br1—C31.8955 (17)C7—C81.403 (3)
O1—C141.206 (2)C8—C91.388 (2)
O2—C141.328 (2)C8—H80.9500
O2—C151.464 (2)C9—C101.384 (3)
N1—C41.332 (2)C9—H90.9500
N1—C51.332 (2)C10—C111.384 (3)
N2—C61.318 (2)C10—H100.9500
N2—C51.388 (2)C11—C121.387 (2)
N3—C11.382 (2)C11—H110.9500
N3—C61.384 (2)C12—H120.9500
N3—C131.453 (2)C13—C141.517 (2)
C1—C21.384 (2)C13—H13B0.9900
C1—C51.401 (2)C13—H13A0.9900
C2—C31.388 (2)C15—C161.499 (3)
C2—H20.9500C15—H15A0.9900
C3—C41.399 (2)C15—H15B0.9900
C4—H40.9500C16—H16A0.9800
C6—C71.480 (2)C16—H16B0.9800
C7—C121.392 (2)C16—H16C0.9800
C14—O2—C15115.57 (14)C8—C9—H9120.0
C4—N1—C5114.75 (15)C11—C10—C9119.96 (17)
C6—N2—C5105.27 (14)C11—C10—H10120.0
C1—N3—C6106.32 (13)C9—C10—H10120.0
C1—N3—C13123.09 (14)C10—C11—C12120.44 (17)
C6—N3—C13130.58 (13)C10—C11—H11119.8
N3—C1—C2133.00 (16)C12—C11—H11119.8
N3—C1—C5105.75 (14)C11—C12—C7120.33 (17)
C2—C1—C5121.24 (16)C11—C12—H12119.8
C1—C2—C3113.57 (16)C7—C12—H12119.8
C1—C2—H2123.2N3—C13—C14111.61 (13)
C3—C2—H2123.2N3—C13—H13B109.3
C2—C3—C4122.09 (16)C14—C13—H13B109.3
C2—C3—Br1119.09 (13)N3—C13—H13A109.3
C4—C3—Br1118.79 (13)C14—C13—H13A109.3
N1—C4—C3123.70 (16)H13B—C13—H13A108.0
N1—C4—H4118.1O1—C14—O2124.75 (17)
C3—C4—H4118.1O1—C14—C13124.94 (15)
N1—C5—N2125.49 (16)O2—C14—C13110.29 (14)
N1—C5—C1124.57 (16)O2—C15—C16107.47 (15)
N2—C5—C1109.92 (15)O2—C15—H15A110.2
N2—C6—N3112.71 (14)C16—C15—H15A110.2
N2—C6—C7122.13 (15)O2—C15—H15B110.2
N3—C6—C7125.15 (15)C16—C15—H15B110.2
C12—C7—C8118.81 (16)H15A—C15—H15B108.5
C12—C7—C6123.76 (16)C15—C16—H16A109.5
C8—C7—C6117.35 (16)C15—C16—H16B109.5
C9—C8—C7120.44 (17)H16A—C16—H16B109.5
C9—C8—H8119.8C15—C16—H16C109.5
C7—C8—H8119.8H16A—C16—H16C109.5
C10—C9—C8120.00 (17)H16B—C16—H16C109.5
C10—C9—H9120.0
C6—N3—C1—C2179.06 (19)C13—N3—C6—N2177.45 (16)
C13—N3—C1—C20.4 (3)C1—N3—C6—C7179.71 (16)
C6—N3—C1—C50.42 (18)C13—N3—C6—C71.8 (3)
C13—N3—C1—C5178.19 (15)N2—C6—C7—C12150.93 (18)
N3—C1—C2—C3179.97 (18)N3—C6—C7—C1229.9 (3)
C5—C1—C2—C31.5 (2)N2—C6—C7—C825.8 (3)
C1—C2—C3—C41.0 (3)N3—C6—C7—C8153.35 (17)
C1—C2—C3—Br1176.98 (12)C12—C7—C8—C90.7 (3)
C5—N1—C4—C31.4 (3)C6—C7—C8—C9177.63 (15)
C2—C3—C4—N12.7 (3)C7—C8—C9—C100.8 (3)
Br1—C3—C4—N1175.34 (14)C8—C9—C10—C111.6 (3)
C4—N1—C5—N2179.61 (17)C9—C10—C11—C120.7 (3)
C4—N1—C5—C11.3 (3)C10—C11—C12—C70.8 (3)
C6—N2—C5—N1177.68 (18)C8—C7—C12—C111.5 (3)
C6—N2—C5—C10.9 (2)C6—C7—C12—C11178.25 (17)
N3—C1—C5—N1178.30 (17)C1—N3—C13—C1481.81 (19)
C2—C1—C5—N12.9 (3)C6—N3—C13—C1499.9 (2)
N3—C1—C5—N20.3 (2)C15—O2—C14—O14.3 (2)
C2—C1—C5—N2178.58 (16)C15—O2—C14—C13174.24 (13)
C5—N2—C6—N31.2 (2)N3—C13—C14—O17.0 (2)
C5—N2—C6—C7179.55 (16)N3—C13—C14—O2174.51 (13)
C1—N3—C6—N21.0 (2)C14—O2—C15—C16170.56 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1i0.952.603.529 (2)166
C13—H13A···N2ii0.992.313.2755 (19)165
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1i0.95002.60003.529 (2)166.00
C13—H13A···N2ii0.99002.31003.2755 (19)165.00
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H14BrN3O2
Mr360.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)14.6923 (8), 6.1988 (3), 16.2254 (8)
β (°) 92.911 (1)
V3)1475.82 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.21 × 0.15 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2015)
Tmin, Tmax0.70, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
27419, 3981, 3236
Rint0.044
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.06
No. of reflections3981
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.35

Computer programs: APEX2 (Bruker, 2015), SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 268–275.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBukowski, L. & Janowiec, M. (1989). Pharmazie, 44, 267–269.  CAS PubMed Web of Science Google Scholar
First citationGuo, Z., Tellew, J. E., Gross, R. S., Dyck, B., Grey, J., Haddach, M., Kiankarimi, M., Lanier, M., Li, B. F., Luo, Z., McCarthy, J. R., Moorjani, M., Saunders, J., Sullivan, R., Zhang, X., Zamani-Kord, S., Grigoriadis, D. E., Crowe, P. D., Chen, T. K. & Williams, J. P. (2005). J. Med. Chem. 48, 5104–5107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOuzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1684.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTemple, C. (1990). J. Med. Chem. 33, 656–661.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds