organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Bromo-2-(4-chloro­phen­yl)-3-methyl-3H-imidazo[4,5-b]pyridine

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Iimmouzzer, BP 2202, Fez, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, and dLaboratoire d'Ingénierie des Matériaux et d'Environnement: Modélisation et Application (LIMEMA), Ibn Tofail University, Kénitra, Morocco
*Correspondence e-mail: youssef_kandri_rodi@yahoo.fr

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 4 May 2016; accepted 7 May 2016; online 13 May 2016)

In the title compound, C13H9BrClN3, the imidazo­pyridine fused-ring system is almost planar, with r.m.s. deviation of 0.006 (19) Å, and makes a dihedral angle of 29.32 (8)° with the mean plane of the 4-chloro­phenyl group. In the crystal, C—H⋯N hydrogen bonds link the mol­ecules into chains propagating in the [100] direction. Weak inter­molecular ππ inter­actions between the five- and six-membered rings of the 3H-imidazo[4,5-b]pyridine moieties of neighbouring mol­ecules [centroid–centroid distance = 3.8648 (12) Å] further consolidate the packing into layers parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imidazo­pyridine derivatives are a very important class of nitro­gen-containing fused heterocyclic compounds. Many imidazo­pyridines have a significant inhibitory effect on many target enzymes (Palmer et al. 2007[Palmer, A. M., Grobbel, B., Jecke, C., Brehm, C., Zimmermann, P. J., Buhr, W., Feth, M. P., Simon, W. A. & Kromer, W. (2007). J. Med. Chem. 50, 6240-6264.]; Katritzky et al. 2003[Katritzky, A. R., Xu, Y. J. & Tu, H. (2003). J. Org. Chem. 68, 4935-4937.]), as well as anti-viral, anti-bacterial, anti-microbial and anti-cytokinin activity. Some of them can be used to treat peptic ulcers, diabetes and mental illness (Scribner et al. 2007[Scribner, A., Dennis, R., Hong, J., Lee, S., McIntyre, D., Perrey, D., Feng, D., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2007). Eur. J. Med. Chem. 42, 1334-1357.], Liang et al. 2007[Liang, G. B., Qian, X., Feng, D., Fisher, M., Brown, C. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2007). Bioorg. Med. Chem. Lett. 17, 3558-3561.]). Hence, the synthesis of imidazo[4,5-b]pyridine derivatives is currently of great inter­est. Many synthetic strategies have been developed to obtain a variety of substituted structures of this class. The most popular synthetic approach generally involves the cyclo­condensation of 2,3-pyridinedi­amine with carb­oxy­lic acid derivatives or with aldehydes (Dubey et al. 2004[Dubey, P. K., Kumar, R. V., Kulkarni, S. M., Sunder, H. G., Smith, G. & Kennard, C. H. L. (2004). Indian J. Chem. Sect. B, 43, 952-956.]). In this work we report the synthesis of 6-bromo-2-(4-chloro­phen­yl)-3-methyl-3H-imidazo[4,5-b]pyridine according to the method employed for 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine (Ouzidan et al. 2010[Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.]).

In the title compound (Fig. 1[link]), the imidazo­pyridine fused ring system is quasiplanar, with a maximum deviation of 0.006 (19) Å, and forms a dihedral angle of 29.32 (8)° with the mean plane of the 4-chloro­phenyl group. In the crystal, C—H⋯N hydrogen bonds (Table 1[link]) link the mol­ecules into chains propagating in [100]. The chains are further linked by ππ inter­actions between the five- and six-membered rings of the 3H-imidazo[4,5-b]pyridine moieties of neighbouring mol­ecules [centroid–centroid distance = 3.8648 (12) Å], forming layers parallel to the ab plane (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N3i 0.95 2.51 3.321 (3) 143
C2—H2⋯N1ii 0.95 2.57 3.411 (3) 148
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2]
Figure 2
The packing viewed down the b axis. C—H⋯N inter­actions are shown as dotted lines.
[Figure 3]
Figure 3
The packing viewed down the a axis. C—H⋯N inter­actions are shown as dotted lines.

Synthesis and crystallization

The a solution of 0.2 g (0.64 mmol) of 6-bromo-2-(4-chloro­phen­yl)-3H-imidazo[4,5-b]pyridine dissolved in 25 ml of DMF, was added potassium carbonate (K2CO3; 0.11 g, 0.84 mmol). The mixture was stirred magnetically for 5 minutes and then 0.02 g (0.07 mmol) of tetra-n-butyl­ammonium bromide (TBAB) and 0.05 ml (0.77 mmol) of methyl iodide was added. Stirring was continued at room temperature for 6 h. After removing salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The remaining salts were extracted with distilled water and the resulting mixture is chromatographed on silica gel column (eluent: ethyl acetate/hexane,1:3). Yellow crystals were isolated when the solvent was allowed to evaporate, yield = 72%

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H9BrClN3
Mr 322.59
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 12.1163 (2), 9.7911 (2), 20.9428 (4)
V3) 2484.48 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 6.35
Crystal size (mm) 0.28 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.37, 0.52
No. of measured, independent and observed [I > 2σ(I)] reflections 17929, 2433, 2111
Rint 0.042
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.03
No. of reflections 2433
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

The a solution of 0.2 g (0.64 mmol) of 6-bromo-2-(4-chlorophenyl)-3H-imidazo[4,5-b]pyridine dissolved in 25 ml of DMF, was added potassium carbonate (K2CO3; 0.11 g, 0.84 mmol). The mixture was stirred magnetically for 5 minutes and then 0.02 g (0.07 mmol) of tetra-n-butylammonium bromide (TBAB) and 0.05 ml (0.77 mmol) of methyl iodide was added. Stirring was continued at room temperature for 6 h. After removing salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in dichloromethane. The remaining salts were extracted with distilled water and the resulting mixture is chromatographed on silica gel column (eluent: ethyl acetate/hexane,1:3). Yellow crystals were isolated when the solvent was allowed to evaporate, yield = 72%

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Imidazopyridine derivatives are a very important class of nitrogen-containing fused heterocyclic compounds. Many imidazopyridines have a significant inhibitory effect on many target enzymes (Palmer et al. 2007; Katritzky et al. 2003), as well as anti-viral, anti-bacterial, anti-microbial and anti-cytokinin activity. Some of them can be used to treat peptic ulcers, diabetes and mental illness (Scribner et al. 2007, Liang et al. 2007). Hence, the synthesis of imidazo[4,5-b]pyridine derivatives is currently of great interest. Many synthetic strategies have been developed to obtain a variety of substituted structures of this class. The most popular synthetic approach generally involves the cyclocondensation of 2,3-pyridinediamine with carboxylic acid derivatives or with aldehydes (Dubey et al. 2004). In this work we report the synthesis of 6-bromo-2-(4-chlorophenyl)-3-methyl-3H-imidazo[4,5-b]pyridine according to the method employed for 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine (Ouzidan et al. 2010).

In the title compound (Fig. 1), the imidazopyridine fused ring system is quasiplanar, with a maximum deviation of 0.006 (19) Å, and forms a dihedral angle of 29.32 (8)° with the mean plane of the 4-chlorophenyl group. In the crystal, C—H···N hydrogen bonds (Table 1) link the molecules into chains propagating in [100]. The chains are further linked by ππ interactions between the five- and six-membered rings of the 3H-imidazo[4,5-b]pyridine moieties of neighbouring molecules [centroid–centroid distance = 3.8648 (12) Å], forming layers parallel to the ab plane (Figs. 2 and 3).

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing viewed down the b axis. C—H···N interactions are shown as dotted lines.
[Figure 3] Fig. 3. The packing viewed down the a axis. C—H···N interactions are shown as dotted lines.
6-Bromo-2-(4-chlorophenyl)-3-methyl-3H-imidazo[4,5-b]pyridine top
Crystal data top
C13H9BrClN3Dx = 1.725 Mg m3
Mr = 322.59Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9992 reflections
a = 12.1163 (2) Åθ = 4.2–72.4°
b = 9.7911 (2) ŵ = 6.35 mm1
c = 20.9428 (4) ÅT = 150 K
V = 2484.48 (8) Å3Thick plate, light yellow
Z = 80.28 × 0.18 × 0.12 mm
F(000) = 1280
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2433 independent reflections
Radiation source: INCOATEC IµS micro–focus source2111 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 4.2°
ω scansh = 1412
Absorption correction: numerical
(SADABS; Bruker, 2015)
k = 1210
Tmin = 0.37, Tmax = 0.52l = 2425
17929 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.6642P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
2433 reflectionsΔρmax = 0.38 e Å3
165 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00050 (5)
Crystal data top
C13H9BrClN3V = 2484.48 (8) Å3
Mr = 322.59Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 12.1163 (2) ŵ = 6.35 mm1
b = 9.7911 (2) ÅT = 150 K
c = 20.9428 (4) Å0.28 × 0.18 × 0.12 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2433 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2015)
2111 reflections with I > 2σ(I)
Tmin = 0.37, Tmax = 0.52Rint = 0.042
17929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
2433 reflectionsΔρmin = 0.44 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74454 (2)0.96264 (2)0.62272 (2)0.02958 (10)
Cl10.49454 (6)0.15942 (7)0.21428 (3)0.05102 (19)
N10.90119 (14)0.69452 (18)0.50012 (8)0.0259 (4)
N20.81367 (14)0.54647 (17)0.42228 (8)0.0233 (4)
N30.63564 (13)0.60528 (18)0.43957 (8)0.0255 (4)
C10.70284 (17)0.6795 (2)0.47964 (10)0.0235 (4)
C20.67830 (17)0.7774 (2)0.52549 (10)0.0244 (4)
H20.60490.80580.53420.029*
C30.76839 (16)0.8304 (2)0.55755 (10)0.0246 (4)
C40.87671 (17)0.7888 (2)0.54435 (10)0.0265 (4)
H40.93540.82930.56780.032*
C50.81385 (16)0.6445 (2)0.46971 (9)0.0232 (4)
C60.91170 (17)0.4733 (2)0.40010 (11)0.0283 (4)
H6A0.93900.51570.36080.042*
H6B0.89260.37770.39170.042*
H6C0.96910.47740.43300.042*
C70.70395 (17)0.5267 (2)0.40658 (10)0.0244 (4)
C80.66153 (17)0.4291 (2)0.35938 (10)0.0248 (4)
C90.71738 (19)0.3912 (2)0.30403 (11)0.0321 (5)
H90.79050.42280.29690.039*
C100.6667 (2)0.3072 (2)0.25921 (12)0.0376 (5)
H100.70470.28150.22140.045*
C110.55998 (19)0.2614 (2)0.27032 (11)0.0335 (5)
C120.50354 (18)0.2972 (2)0.32544 (11)0.0293 (5)
H120.43070.26470.33260.035*
C130.55415 (17)0.3804 (2)0.36966 (10)0.0264 (4)
H130.51590.40510.40750.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02748 (16)0.02992 (15)0.03136 (15)0.00062 (8)0.00260 (8)0.00404 (9)
Cl10.0467 (4)0.0564 (4)0.0499 (4)0.0141 (3)0.0010 (3)0.0251 (3)
N10.0163 (8)0.0318 (9)0.0297 (9)0.0019 (6)0.0011 (7)0.0026 (7)
N20.0162 (8)0.0270 (9)0.0268 (8)0.0017 (6)0.0011 (6)0.0019 (7)
N30.0166 (8)0.0309 (9)0.0291 (9)0.0009 (7)0.0031 (7)0.0038 (7)
C10.0176 (10)0.0262 (10)0.0268 (10)0.0005 (8)0.0020 (8)0.0022 (8)
C20.0167 (10)0.0295 (11)0.0271 (10)0.0023 (8)0.0005 (8)0.0025 (8)
C30.0218 (10)0.0257 (10)0.0262 (10)0.0002 (8)0.0013 (8)0.0028 (8)
C40.0189 (10)0.0310 (11)0.0295 (10)0.0033 (8)0.0037 (8)0.0014 (8)
C50.0183 (10)0.0254 (10)0.0260 (9)0.0015 (8)0.0013 (7)0.0048 (8)
C60.0189 (10)0.0306 (11)0.0354 (11)0.0034 (8)0.0028 (8)0.0002 (9)
C70.0168 (10)0.0283 (10)0.0280 (10)0.0009 (8)0.0022 (8)0.0027 (8)
C80.0202 (10)0.0259 (10)0.0281 (10)0.0024 (8)0.0037 (8)0.0019 (8)
C90.0248 (11)0.0366 (12)0.0350 (12)0.0018 (9)0.0006 (9)0.0042 (10)
C100.0339 (13)0.0427 (13)0.0362 (12)0.0008 (10)0.0026 (10)0.0083 (10)
C110.0338 (13)0.0290 (11)0.0376 (12)0.0023 (9)0.0040 (10)0.0074 (9)
C120.0231 (11)0.0299 (11)0.0348 (11)0.0032 (8)0.0014 (9)0.0014 (9)
C130.0237 (11)0.0275 (10)0.0281 (10)0.0004 (8)0.0009 (8)0.0031 (8)
Geometric parameters (Å, º) top
Br1—C31.903 (2)C6—H6A0.9800
Cl1—C111.733 (2)C6—H6B0.9800
N1—C51.329 (3)C6—H6C0.9800
N1—C41.341 (3)C7—C81.468 (3)
N2—C51.381 (3)C8—C91.393 (3)
N2—C71.383 (3)C8—C131.402 (3)
N2—C61.463 (3)C9—C101.391 (3)
N3—C71.325 (3)C9—H90.9500
N3—C11.377 (3)C10—C111.388 (3)
C1—C21.389 (3)C10—H100.9500
C1—C51.404 (3)C11—C121.387 (3)
C2—C31.383 (3)C12—C131.378 (3)
C2—H20.9500C12—H120.9500
C3—C41.402 (3)C13—H130.9500
C4—H40.9500
C5—N1—C4114.13 (18)H6A—C6—H6C109.5
C5—N2—C7105.66 (16)H6B—C6—H6C109.5
C5—N2—C6124.56 (17)N3—C7—N2113.28 (18)
C7—N2—C6129.52 (18)N3—C7—C8120.71 (18)
C7—N3—C1104.77 (16)N2—C7—C8126.01 (19)
N3—C1—C2131.22 (19)C9—C8—C13119.2 (2)
N3—C1—C5110.34 (18)C9—C8—C7124.34 (19)
C2—C1—C5118.44 (19)C13—C8—C7116.28 (19)
C3—C2—C1115.20 (19)C10—C9—C8120.3 (2)
C3—C2—H2122.4C10—C9—H9119.8
C1—C2—H2122.4C8—C9—H9119.8
C2—C3—C4122.31 (19)C11—C10—C9119.3 (2)
C2—C3—Br1118.93 (15)C11—C10—H10120.4
C4—C3—Br1118.75 (15)C9—C10—H10120.4
N1—C4—C3122.90 (19)C12—C11—C10121.1 (2)
N1—C4—H4118.6C12—C11—Cl1118.94 (17)
C3—C4—H4118.6C10—C11—Cl1119.92 (19)
N1—C5—N2127.03 (18)C13—C12—C11119.3 (2)
N1—C5—C1127.02 (19)C13—C12—H12120.3
N2—C5—C1105.94 (17)C11—C12—H12120.3
N2—C6—H6A109.5C12—C13—C8120.7 (2)
N2—C6—H6B109.5C12—C13—H13119.6
H6A—C6—H6B109.5C8—C13—H13119.6
N2—C6—H6C109.5
C7—N3—C1—C2179.5 (2)C1—N3—C7—C8178.44 (19)
C7—N3—C1—C50.4 (2)C5—N2—C7—N30.8 (2)
N3—C1—C2—C3179.4 (2)C6—N2—C7—N3175.10 (19)
C5—C1—C2—C30.5 (3)C5—N2—C7—C8178.35 (19)
C1—C2—C3—C40.4 (3)C6—N2—C7—C84.1 (3)
C1—C2—C3—Br1178.73 (15)N3—C7—C8—C9148.4 (2)
C5—N1—C4—C30.3 (3)N2—C7—C8—C932.5 (3)
C2—C3—C4—N10.4 (3)N3—C7—C8—C1326.8 (3)
Br1—C3—C4—N1178.78 (16)N2—C7—C8—C13152.37 (19)
C4—N1—C5—N2179.77 (19)C13—C8—C9—C100.7 (3)
C4—N1—C5—C10.4 (3)C7—C8—C9—C10174.3 (2)
C7—N2—C5—N1178.96 (19)C8—C9—C10—C110.2 (4)
C6—N2—C5—N14.3 (3)C9—C10—C11—C120.4 (4)
C7—N2—C5—C10.5 (2)C9—C10—C11—Cl1178.75 (19)
C6—N2—C5—C1175.13 (18)C10—C11—C12—C130.4 (4)
N3—C1—C5—N1179.42 (19)Cl1—C11—C12—C13178.75 (17)
C2—C1—C5—N10.5 (3)C11—C12—C13—C80.1 (3)
N3—C1—C5—N20.1 (2)C9—C8—C13—C120.7 (3)
C2—C1—C5—N2179.97 (18)C7—C8—C13—C12174.72 (19)
C1—N3—C7—N20.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N3i0.952.513.321 (3)143
C2—H2···N1ii0.952.573.411 (3)148
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N3i0.952.513.321 (3)143
C2—H2···N1ii0.952.573.411 (3)148
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H9BrClN3
Mr322.59
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)12.1163 (2), 9.7911 (2), 20.9428 (4)
V3)2484.48 (8)
Z8
Radiation typeCu Kα
µ (mm1)6.35
Crystal size (mm)0.28 × 0.18 × 0.12
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionNumerical
(SADABS; Bruker, 2015)
Tmin, Tmax0.37, 0.52
No. of measured, independent and
observed [I > 2σ(I)] reflections
17929, 2433, 2111
Rint0.042
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.03
No. of reflections2433
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.44

Computer programs: APEX2 (Bruker, 2015), SAINT (Bruker, 2015), SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDubey, P. K., Kumar, R. V., Kulkarni, S. M., Sunder, H. G., Smith, G. & Kennard, C. H. L. (2004). Indian J. Chem. Sect. B, 43, 952–956.  Google Scholar
First citationKatritzky, A. R., Xu, Y. J. & Tu, H. (2003). J. Org. Chem. 68, 4935–4937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiang, G. B., Qian, X., Feng, D., Fisher, M., Brown, C. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2007). Bioorg. Med. Chem. Lett. 17, 3558–3561.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOuzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalmer, A. M., Grobbel, B., Jecke, C., Brehm, C., Zimmermann, P. J., Buhr, W., Feth, M. P., Simon, W. A. & Kromer, W. (2007). J. Med. Chem. 50, 6240–6264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScribner, A., Dennis, R., Hong, J., Lee, S., McIntyre, D., Perrey, D., Feng, D., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2007). Eur. J. Med. Chem. 42, 1334–1357.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds