organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-6-methyl­pyridinium 2-hy­dr­oxy­benzoate

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, and dDepartment of Physics, The American College, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 26 April 2016; accepted 4 May 2016; online 10 May 2016)

In the title mol­ecular salt, C6H9N2+·C7H5O3, the cation is protonated at its pyridine N atom and and makes a dihedral angle of 16.26 (9)° with the plane of the six-membered ring of the anion. The six-membered ring makes a dihedral angle of 6.09 (3)° with the attached carboxyl­ate group. In the anion, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif and a pair of N—H⋯O hydrogen bonds generates an R22(8) ring motif. In the crystal, the anions and cations are linked via N—H⋯O hydrogen bonds to form a tetra­mer.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]; Katritzky et al., 1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]) and they are also known to exhibit non-linear optical (NLO) properties (Tomaru et al., 1991[Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583-2585.]). Herein, we report on the synthesis and the crystal structure of the title mol­ecular salt. The title compound, Fig. 1[link], contains a 2-amino-6-methyl­pyridinium cation, which is protonated at atom N1, and 2-hy­droxy­benzoate which is deprotonated at its O2 atom. The geometric parameters are comparable with those reported for similar structures (Jin et al., 2000[Jin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195-198.], 2001[Jin, Z.-M., Pan, Y.-J., Hu, M.-L. & Liang, S. (2001). J. Chem. Crystallogr. 31, 191-195.]; Quah et al., 2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2255-o2256.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, showing the atom labelling and 30% probability displacement ellipsoids.

The benzene ring (C1–C6) of the anion makes a dihedral angle of 6.09 (3)° with the attached carboxyl­ate (C7/O2/O3) group. The benzene and pyridine rings are inclined at an angle of 16.26 (9)°. In the anion, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif (Fig. 1[link]). In the crystal, the anions and cations are connected by N—H⋯O hydrogen bonds generating an R22(8) ring motif (Fig. 2[link]). Four pairs of anions and cations are linked by N—H⋯O hydrogen bonds (Table 1[link]) to form a tetra­mer with an R44(16) ring motif (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.84 (1) 1.77 (2) 2.544 (3) 152 (3)
N1—H1B⋯O2i 0.86 1.89 2.745 (3) 177
N2—H2A⋯O3i 0.86 1.93 2.781 (3) 169
N2—H2B⋯O3ii 0.86 2.00 2.836 (3) 163
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [y-{\script{1\over 4}}, -x+{\script{3\over 4}}, z-{\script{1\over 4}}].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the c axis. The hydrogen bonds (see Table 1[link]) are shown as dashed lines and C-bound H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A partial view of the crystal packing of the title compound, showing the hydrogen-bonded tetra­mer.

Synthesis and crystallization

2-Amino-6-picoline (0.54 g) and 2-hydroxybenzoic acid (0.69 g) in an equimolar ratio were mixed in acetone and the mixture was stirred for 3 h. A single crystal of the title compound suitable for X-ray diffraction was obtained by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C7H5O3
Mr 246.26
Crystal system, space group Tetragonal, I41/a
Temperature (K) 293
a, c (Å) 14.1096 (6), 24.6537 (11)
V3) 4908.1 (4)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.28 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.974, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 33461, 2705, 1564
Rint 0.041
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.191, 1.05
No. of reflections 2705
No. of parameters 169
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996) and they are also known to exhibit nonlinear optical (NLO) properties (Tomaru et al., 1991). Herein, we report on the synthesis and the crystal structure of the title molecular salt. The title compound, Fig. 1, contains a 2-amino-6-methylpyridinium cation, which is protonated at atom N1, and 2-hydroxybenzoate which is deprotonated at its O2 atom. The geometric parameters are comparable with those reported for similar structures (Jin et al., 2000; Jin et al., 2001; Quah et al., 2010).

The benzene ring (C1—C6) of the anion makes a dihedral angle of 6.09 (3)° with the attached carboxylate (C7/O2/O3) group. The benzene and pyridine rings are inclined at an angle of 16.26 (9)°. In the anion, an intramolecular O—H···O hydrogen bond generates an S(6) ring motif (Fig. 3). and an anion and a cation are connected by of N—H···O hydrogen bonds generating an R22(8) ring motif (Bernstein et al., 1995) (Fig. 3). Four pairs of anions and cations are linked by N—H···O hydrogen bonds (Table 2) to form a tetramer with an R44(16) ring motif (Fig. 2).

Experimental top

2-Amino-6-picoline (0.54 g) and 2 hydroxybenzoic acid (0.69 g) in an equimolar ratio were mixed in acetone and the mixture was stirred for 3 h. A single crystal of the title compound suitable for X-ray diffraction was obtained by slow evaporation.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996) and they are also known to exhibit non-linear optical (NLO) properties (Tomaru et al., 1991). Herein, we report on the synthesis and the crystal structure of the title molecular salt. The title compound, Fig. 1, contains a 2-amino-6-methylpyridinium cation, which is protonated at atom N1, and 2-hydroxybenzoate which is deprotonated at its O2 atom. The geometric parameters are comparable with those reported for similar structures (Jin et al., 2000, 2001; Quah et al., 2010).

The benzene ring (C1–C6) of the anion makes a dihedral angle of 6.09 (3)° with the attached carboxylate (C7/O2/O3) group. The benzene and pyridine rings are inclined at an angle of 16.26 (9)°. In the anion, an intramolecular O—H···O hydrogen bond generates an S(6) ring motif (Fig. 1). In the crystal, the anions and cations are connected by N—H···O hydrogen bonds generating an R22(8) ring motif (Fig. 3). Four pairs of anions and cations are linked by N—H···O hydrogen bonds (Table 1) to form a tetramer with an R44(16) ring motif (Fig. 3).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecular salt, showing the atom labelling and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. The hydrogen bonds (see Table 1) are shown as dashed lines and C-bound H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A partial view of the crystal packing of the title compound, showing the hydrogen-bonded tetramer.
2-Amino-6-methylpyridinium 2-hydroxybenzoate top
Crystal data top
C6H9N2+·C7H5O3Dx = 1.333 Mg m3
Mr = 246.26Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 9075 reflections
Hall symbol: -I 4adθ = 2.6–27.3°
a = 14.1096 (6) ŵ = 0.10 mm1
c = 24.6537 (11) ÅT = 293 K
V = 4908.1 (4) Å3Block, colourless
Z = 160.28 × 0.24 × 0.20 mm
F(000) = 2080
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2705 independent reflections
Radiation source: fine-focus sealed tube1564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and φ scanθmax = 27.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1718
Tmin = 0.974, Tmax = 0.981k = 1815
33461 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.079P)2 + 4.2162P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2705 reflectionsΔρmax = 0.17 e Å3
169 parametersΔρmin = 0.18 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (4)
Crystal data top
C6H9N2+·C7H5O3Z = 16
Mr = 246.26Mo Kα radiation
Tetragonal, I41/aµ = 0.10 mm1
a = 14.1096 (6) ÅT = 293 K
c = 24.6537 (11) Å0.28 × 0.24 × 0.20 mm
V = 4908.1 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2705 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1564 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.981Rint = 0.041
33461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.17 e Å3
2705 reflectionsΔρmin = 0.18 e Å3
169 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3466 (2)0.3614 (2)0.53227 (11)0.0800 (9)
H10.32870.35970.56860.096*
C20.4403 (2)0.3718 (3)0.51924 (13)0.1165 (15)
H20.48540.37790.54650.140*
C30.4674 (2)0.3733 (3)0.46571 (13)0.1088 (13)
H30.53110.37980.45680.131*
C40.4020 (2)0.3655 (2)0.42581 (12)0.0780 (8)
H40.42100.36660.38970.094*
C50.30732 (18)0.35571 (17)0.43851 (9)0.0585 (6)
C60.27839 (17)0.35353 (16)0.49277 (9)0.0544 (6)
C70.17649 (18)0.34951 (17)0.50774 (10)0.0599 (6)
C80.13374 (19)0.61715 (17)0.54553 (10)0.0614 (6)
C90.2265 (2)0.6006 (2)0.53459 (12)0.0730 (7)
H90.27120.60100.56230.088*
C100.2540 (2)0.5829 (2)0.48125 (12)0.0745 (8)
H100.31760.57170.47360.089*
C110.19078 (19)0.58161 (18)0.44066 (11)0.0670 (7)
H110.21040.56990.40530.080*
C120.09491 (17)0.59811 (17)0.45197 (10)0.0576 (6)
C130.0943 (2)0.6378 (2)0.59994 (11)0.0778 (8)
H13A0.14480.64030.62600.117*
H13B0.05040.58880.60990.117*
H13C0.06200.69770.59920.117*
N10.07022 (14)0.61524 (13)0.50402 (7)0.0560 (5)
H1B0.01150.62540.51130.067*
N20.02771 (16)0.59673 (17)0.41480 (8)0.0744 (7)
H2A0.03030.60660.42390.089*
H2B0.04190.58600.38140.089*
O10.24464 (16)0.35081 (17)0.39747 (7)0.0842 (6)
O20.11578 (12)0.35100 (14)0.46963 (7)0.0710 (5)
O30.15438 (14)0.34665 (16)0.55672 (7)0.0848 (6)
H1A0.1912 (12)0.351 (3)0.4121 (13)0.103 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0703 (18)0.121 (3)0.0491 (14)0.0083 (16)0.0032 (13)0.0042 (15)
C20.068 (2)0.210 (5)0.071 (2)0.003 (2)0.0143 (16)0.015 (2)
C30.0611 (18)0.187 (4)0.078 (2)0.001 (2)0.0049 (16)0.021 (2)
C40.0699 (18)0.105 (2)0.0590 (16)0.0030 (15)0.0115 (13)0.0068 (15)
C50.0649 (15)0.0631 (14)0.0475 (12)0.0037 (11)0.0001 (11)0.0051 (11)
C60.0623 (14)0.0560 (13)0.0449 (12)0.0022 (10)0.0010 (10)0.0011 (10)
C70.0691 (16)0.0600 (14)0.0507 (13)0.0006 (11)0.0066 (12)0.0029 (11)
C80.0746 (17)0.0528 (13)0.0567 (14)0.0034 (11)0.0060 (12)0.0019 (11)
C90.0693 (17)0.0729 (17)0.0769 (18)0.0000 (13)0.0128 (14)0.0029 (14)
C100.0637 (16)0.0726 (18)0.087 (2)0.0004 (13)0.0039 (15)0.0033 (15)
C110.0678 (16)0.0675 (16)0.0656 (15)0.0039 (12)0.0113 (13)0.0032 (12)
C120.0634 (15)0.0533 (13)0.0562 (14)0.0036 (11)0.0045 (11)0.0005 (10)
C130.101 (2)0.0790 (19)0.0537 (15)0.0022 (15)0.0050 (14)0.0003 (13)
N10.0612 (12)0.0571 (11)0.0498 (11)0.0018 (8)0.0038 (9)0.0008 (9)
N20.0680 (14)0.1037 (18)0.0515 (12)0.0038 (12)0.0052 (10)0.0041 (11)
O10.0745 (14)0.1301 (18)0.0479 (10)0.0021 (12)0.0030 (10)0.0113 (11)
O20.0595 (11)0.0935 (14)0.0599 (11)0.0034 (9)0.0014 (8)0.0029 (9)
O30.0791 (13)0.1217 (17)0.0536 (11)0.0050 (11)0.0131 (9)0.0169 (10)
Geometric parameters (Å, º) top
C1—C21.368 (4)C8—C131.481 (4)
C1—C61.374 (3)C9—C101.394 (4)
C1—H10.9300C9—H90.9300
C2—C31.374 (4)C10—C111.341 (4)
C2—H20.9300C10—H100.9300
C3—C41.353 (4)C11—C121.401 (4)
C3—H30.9300C11—H110.9300
C4—C51.379 (4)C12—N21.319 (3)
C4—H40.9300C12—N11.351 (3)
C5—O11.346 (3)C13—H13A0.9600
C5—C61.399 (3)C13—H13B0.9600
C6—C71.485 (3)C13—H13C0.9600
C7—O31.248 (3)N1—H1B0.8600
C7—O21.272 (3)N2—H2A0.8600
C8—C91.357 (4)N2—H2B0.8600
C8—N11.361 (3)O1—H1A0.835 (10)
C2—C1—C6121.3 (3)C8—C9—H9120.4
C2—C1—H1119.4C10—C9—H9120.4
C6—C1—H1119.4C11—C10—C9121.4 (3)
C1—C2—C3119.7 (3)C11—C10—H10119.3
C1—C2—H2120.1C9—C10—H10119.3
C3—C2—H2120.1C10—C11—C12119.4 (3)
C4—C3—C2120.5 (3)C10—C11—H11120.3
C4—C3—H3119.8C12—C11—H11120.3
C2—C3—H3119.7N2—C12—N1118.5 (2)
C3—C4—C5120.2 (3)N2—C12—C11123.6 (2)
C3—C4—H4119.9N1—C12—C11117.9 (2)
C5—C4—H4119.9C8—C13—H13A109.5
O1—C5—C4118.1 (2)C8—C13—H13B109.5
O1—C5—C6121.7 (2)H13A—C13—H13B109.5
C4—C5—C6120.1 (2)C8—C13—H13C109.5
C1—C6—C5118.1 (2)H13A—C13—H13C109.5
C1—C6—C7120.3 (2)H13B—C13—H13C109.5
C5—C6—C7121.4 (2)C12—N1—C8123.2 (2)
O3—C7—O2123.2 (2)C12—N1—H1B118.4
O3—C7—C6118.9 (2)C8—N1—H1B118.4
O2—C7—C6117.9 (2)C12—N2—H2A120.0
C9—C8—N1118.8 (2)C12—N2—H2B120.0
C9—C8—C13125.2 (3)H2A—N2—H2B120.0
N1—C8—C13115.9 (2)C5—O1—H1A106 (2)
C8—C9—C10119.1 (3)
C6—C1—C2—C30.8 (6)C1—C6—C7—O2173.6 (3)
C1—C2—C3—C40.6 (7)C5—C6—C7—O22.1 (3)
C2—C3—C4—C50.1 (6)N1—C8—C9—C100.5 (4)
C3—C4—C5—O1178.2 (3)C13—C8—C9—C10179.4 (3)
C3—C4—C5—C60.2 (4)C8—C9—C10—C110.2 (4)
C2—C1—C6—C50.4 (5)C9—C10—C11—C120.2 (4)
C2—C1—C6—C7175.4 (3)C10—C11—C12—N2178.9 (3)
O1—C5—C6—C1178.3 (3)C10—C11—C12—N10.3 (4)
C4—C5—C6—C10.1 (4)N2—C12—N1—C8179.2 (2)
O1—C5—C6—C72.4 (4)C11—C12—N1—C80.0 (3)
C4—C5—C6—C7175.9 (2)C9—C8—N1—C120.4 (4)
C1—C6—C7—O35.0 (4)C13—C8—N1—C12179.5 (2)
C5—C6—C7—O3179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.84 (1)1.77 (2)2.544 (3)152 (3)
N1—H1B···O2i0.861.892.745 (3)177
N2—H2A···O3i0.861.932.781 (3)169
N2—H2B···O3ii0.862.002.836 (3)163
Symmetry codes: (i) x, y+1, z+1; (ii) y1/4, x+3/4, z1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.835 (10)1.774 (18)2.544 (3)152 (3)
N1—H1B···O2i0.861.892.745 (3)177
N2—H2A···O3i0.861.932.781 (3)169
N2—H2B···O3ii0.862.002.836 (3)163
Symmetry codes: (i) x, y+1, z+1; (ii) y1/4, x+3/4, z1/4.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H5O3
Mr246.26
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)14.1096 (6), 24.6537 (11)
V3)4908.1 (4)
Z16
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.974, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
33461, 2705, 1564
Rint0.041
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.191, 1.05
No. of reflections2705
No. of parameters169
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, Z.-M., Pan, Y.-J., Hu, M.-L. & Liang, S. (2001). J. Chem. Crystallogr. 31, 191–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2255–o2256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds