organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-2-Phenyl-N-(thio­phen-2-yl­methyl­­idene)imidazo[1,2-a]pyridin-3-amine

aLaboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences, Université Mohammed Premier, BP 524, 60000 Oujda, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: a_elaatiaoui@yahoo.fr

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 26 April 2016; accepted 28 April 2016; online 6 May 2016)

The asymmetric unit of the title compound, C18H13N3S, is build up from two independent mol­ecules slightly inclined to each other. In each mol­ecule, the imidazo[1,2-a]pyridine ring system is almost planar, with the largest deviation from the mean plane being 0.022 (1) Å in the first mol­ecule and 0.018 (1) Å in the second mol­ecule. The fused-ring system belonging to the first mol­ecule makes dihedral angles of 24.06 (7) and 40.52 (8)° with the thio­phenyl and phenyl rings, respectively. The corresponding values observed in the second mol­ecule are nearly the same, namely 25.20 (7) and 38.99 (7)°, respectively. The dihedral angle between the thio­phenyl and phenyl rings is 63.47 (9)° in the first mol­ecule and 47.49 (9)° in the second. The cohesion of the crystal structure is ensured by two C—H⋯N hydrogen bonds between mol­ecules and by three C—H⋯π inter­actions, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff bases bearing an azomethine functional group –C=N–, have gained importance in the pharmaceutical and medicinal industries due to their widespread potential biological activities such as anti­cancer (Ren et al., 2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]), anti­bacterial and anti­fungal activities (Shi et al., 2007[Shi, L., Ge, H. M., Tan, S. H., Li, H. Q., Song, Y. C., Zhu, H. L. & Tan, R. X. (2007). Eur. J. Med. Chem. 42, 558-564.]), anti­convulsant (Sridhar et al., 2002[Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129-132.]; Kaplan et al., 1980[Kaplan, J. P., Raizon, B. M., Desarmenien, M., Feltz, P., Headley, P. M., Worms, P., Lloyd, K. G. & Bartholini, G. (1980). J. Med. Chem. 23, 702-704.]), anti­tuberculosis (Patole et al., 2006[Patole, J., Shingnapurkar, D., Padhye, S. & Ratledge, C. (2006). Bioorg. Med. Chem. Lett. 16, 1514-1517.]; Hearn & Cynamon, 2004[Hearn, M. J. & Cynamon, M. H. (2004). J. Antimicrob. Chemother. 53, 185-191.]), analgesic and anti-inflammatory properties (Bhandari et al., 2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]). The present paper is a continuation of our research work devoted to the development of imidazo[1,2-a]pyridine derivatives with potential pharmacological activities (Elaatiaoui et al., 2014[Elaatiaoui, A., Koudad, M., Saddik, R., Benchat, N. & El Ammari, L. (2014). Acta Cryst. E70, o1189-o1190.], 2015[Elaatiaoui, A., Saddik, R., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o803-o804.]).

The heterobicyclic ring system in the title compound is essentially planar, with a maximum deviation of 0.022 (1) Å for atom C6 in the first mol­ecule (S1/N1–N3/C1–C18) and 0.018 (1) Å for atom N5 in the second mol­ecule (S2/N4–N6/C19–C36) (Fig. 1[link]). In the first mol­ecule, the dihedral angles between the mean plane through the fused-ring system (N2/N3/C6–C12) and the thio­phen-2-yl (S1/C1–C4) and phenyl (C13–C18) rings are of 24.06 (7) and 40.52 (8)°, respectively. Nearly the same values are observed in the second mol­ecule between the imidazo[1,2-a]pyridin system and the thio­phen-2-yl (S2/C19–C22) and the phenyl (C31–C36) rings, viz. 25.20 (7) and 38.99 (7)°, respectively. The dihedral angle between the thio­phen-2-yl and phenyl rings is 63.47 (9)° in the first mol­ecule and 47.49 (9)° in the second. A least-squares fit of the two mol­ecules is shown in Fig. 2[link].

[Figure 1]
Figure 1
Plot of the mol­ecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2]
Figure 2
Least-squares fit of the two mol­ecules in the asymmetric unit (one mol­ecule inverted); the r.m.s. deviation for all non-H atoms is 0.263 Å.

In the crystal, mol­ecules are linked together by two C—H⋯N hydrogen bonds between the mol­ecules and by C—H⋯π inter­actions, forming a three dimensional network (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C31–C36 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯N3i 0.93 2.50 3.428 (2) 175
C14—H14⋯N6ii 0.93 2.61 3.526 (2) 170
C15—H15⋯Cg1ii 0.93 2.97 3.778 (2) 146
C18—H18⋯Cg1 0.93 2.88 3.761 (2) 157
C33—H33⋯Cg2iii 0.93 2.95 3.814 (2) 155
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z.
[Figure 3]
Figure 3
Three-dimensional plot of the title compound showing mol­ecules linked by hydrogen bonds (dashed blue lines) and C—H⋯π inter­actions (dashed green lines).

Synthesis and crystallization

A solution of 2-phenyl­imidazo[1,2-a]pyridin-3-amine (0.5 g, 2.39 mmol) and thio­phene-2-carbaldehyde (0.27 g, 2.39 mmol) in 20 ml of dry diethyl ether was stirred at room temperature for 24 h using a 0.3 ml of acetic acid as catalyst. The solvent was evaporated. The resulting solid purified by column chromatography (CH2Cl2/MeOH 99/1) and crystallized from methanol to give the final yellow product (yield 86.15%, m.p. = 399 K).

Spectroscopic data: (E)-N-(2-phenyl­imidazo[1,2-a]pyridin-3-yl)-1-(thio­phen-2-yl)methanimine. Rf = 0.55 (silica, CH2Cl2/MeOH, 9/1). 1H NMR (300 MHz, DMSO, δ (p.p.m.): 9.22 (s, 1H, C17H=N); 8.61 (d, 1H, C3H, J = 6.24 Hz); 8.00 (d, 2H, C11H, C15H, J = 7.26 Hz); 7.90 (d, 1H, C6H, J = 4.95); 7.49 (t, 8H, C1H, C2H, C12H, C13H, C14H, C20H, C21H, C22H); m/z (M+1): 304. IR (KBr): ν(CH=N, imine) = 1560 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflections (0 1 1) and (0 0 1) affected by the beam-stop were removed during refinement.

Table 2
Experimental details

Crystal data
Chemical formula C18H13N3S
Mr 303.37
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.6524 (17), 10.1168 (17), 16.655 (3)
α, β, γ (°) 101.299 (8), 106.315 (9), 95.628 (8)
V3) 1510.3 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.44 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.641, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 66495, 8471, 5839
Rint 0.042
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.02
No. of reflections 8471
No. of parameters 397
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Comment top

Schiff bases bearing an azomethine functional group –CN–, have gained importance in pharmaceutical and medicinal industries due to their widespread potential biological activities such as anticancer (Ren et al., 2002), antibacterial and antifungal activities (Shi et al., 2007), anticonvulsant (Sridhar et al., 2002, Kaplan et al., 1980), antituberculosis (Patole et al., 2006 Hearn & Cynamon, 2004), analgesic and anti-inflammatory properties (Bhandari et al., 2008). The present paper is a continuation of our research work devoted to the development of the imidazo [1,2a]pyridine derivatives with potential pharmacological activities (Elaatiaoui et al., 2014; Elaatiaoui et al., 2015).

The heterobicyclic ring system in the title compound is essentially planar, with a maximum deviation of 0.022 (1)Å for C6 atom in the first molecule (S1/N1/N2/N3/ C1 to C18) and 0.018 (1)Å for N5 in the second molecule (S2/N4/N5N6 C19 to C36) (Fig. 1). In the first molecule, the dihedral angles between the mean plane through the fused rings system (N2/N3 C6 to C12) and the thiophen-2-yl (S1, C1 to C4) and the phenyl (C13 to C18) rings are of 24.06 (7)° and 40.52 (8)°, respectively. Nearly the same values are observed in the second molecule between the imidazo[1,2-a]pyridin system and the thiophen-2-yl (S2, C19 to C22) and the phenyl (C31 to C36) rings namely 25.20 (7)° and 38.99 (7)°, respectively. Moreover, the dihedral angle between the thiophen-2-yl and the phenyl rings is of 63.47 (9)° in the first molecule and 47.49 (9)° in the second.

In the crystal, molecules are linked together by two C–H···N hydrogen bonds between molecules and by C–H···π interactions, forming a three dimensional network (Fig. 3 and Table 1).

Experimental top

A solution of 2-phenylimidazo[1,2-a]pyridin-3-amine (0.5 g, 2.39 mmol) and thiophene-2-carbaldehyde (0.27 g, 2.39 mmol) in 20 ml of dry diethyl ether was stirred at room temperature for 24 h using a 0.3 ml of acetic acid as catalyst. The solvent was evaporated. The resulting solid purified by column chromatography (CH2Cl2/MeOH 99/1) and crystallized from methanol to give the final yellow–pink product (yield 86.15%, m.p. = 399 K).

Spectroscopic data of representative compound: (E)-N-(2-phenylimidazo[1,2-a]pyridin-3-yl)-1-(thiophen-2-yl)methanimine. Rf = 0.55 (silica, CH2Cl2/MeOH, 9/1). 1H NMR (300 MHz, DMSO, δ (p.p.m.): 9.22 (s, 1H, C17HN); 8.61 (d, 1H, C3H, J = 6.24 Hz); 8.00 (d, 2H, C11H, C15H, J = 7.26 Hz); 7.90 (d, 1H, C6H, J = 4.95); 7.49 (t, 8H, C1H, C2H, C12H, C13H, C14H, C20H, C21H, C22H); m/z (M+1): 304. IR (KBr): ν(CHN, imine) = 1560 cm-1.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The reflections (0 1 1) and (0 0 1) affected by the beam-stop were removed during refinement.

Structure description top

Schiff bases bearing an azomethine functional group –CN–, have gained importance in the pharmaceutical and medicinal industries due to their widespread potential biological activities such as anticancer (Ren et al., 2002), antibacterial and antifungal activities (Shi et al., 2007), anticonvulsant (Sridhar et al., 2002; Kaplan et al., 1980), antituberculosis (Patole et al., 2006; Hearn & Cynamon, 2004), analgesic and anti-inflammatory properties (Bhandari et al., 2008). The present paper is a continuation of our research work devoted to the development of imidazo[1,2-a]pyridine derivatives with potential pharmacological activities (Elaatiaoui et al., 2014, 2015).

The heterobicyclic ring system in the title compound is essentially planar, with a maximum deviation of 0.022 (1) Å for atom C6 in the first molecule (S1/N1–N3/C1–C18) and 0.018 (1) Å for atom N5 in the second molecule (S2/N4–N6/C19–C36) (Fig. 1). In the first molecule, the dihedral angles between the mean plane through the fused-ring system (N2/N3/C6–C12) and the thiophen-2-yl (S1/C1–C4) and phenyl (C13–C18) rings are of 24.06 (7) and 40.52 (8)°, respectively. Nearly the same values are observed in the second molecule between the imidazo[1,2-a]pyridin system and the thiophen-2-yl (S2/C19–C22) and the phenyl (C31–C36) rings, viz. 25.20 (7) and 38.99 (7)°, respectively. The dihedral angle between the thiophen-2-yl and phenyl rings is 63.47 (9)° in the first molecule and 47.49 (9)° in the second. A least-squares fit of the two molecules is shown in Fig. 2.

In the crystal, molecules are linked together by two C—H···N hydrogen bonds between the molecules and by C—H···π interactions, forming a three dimensional network (Fig. 3 and Table 1).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of the molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Least-squares fit of the two molecules in the asymmetric unit (one molecule inverted); the r.m.s. deviation for all non-H atoms is 0.263 Å.
[Figure 3] Fig. 3. Three-dimensional plot of the title compound showing molecules linked by hydrogen bonds (dashed blue lines) and C—H···π interaction (dashed green lines).
(E)-2-Phenyl-N-(thiophen-2-ylmethylidene)imidazo[1,2-a]pyridin-3-amine top
Crystal data top
C18H13N3SZ = 4
Mr = 303.37F(000) = 632
Triclinic, P1Dx = 1.332 Mg m3
a = 9.6524 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1168 (17) ÅCell parameters from 8471 reflections
c = 16.655 (3) Åθ = 2.1–29.6°
α = 101.299 (8)°µ = 0.21 mm1
β = 106.315 (9)°T = 296 K
γ = 95.628 (8)°Parallelepiped, yellow
V = 1510.3 (5) Å30.44 × 0.21 × 0.12 mm
Data collection top
Bruker X8 APEX
diffractometer
8471 independent reflections
Radiation source: fine-focus sealed tube5839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 29.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.641, Tmax = 0.746k = 1414
66495 measured reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.3505P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8471 reflectionsΔρmax = 0.29 e Å3
397 parametersΔρmin = 0.48 e Å3
Crystal data top
C18H13N3Sγ = 95.628 (8)°
Mr = 303.37V = 1510.3 (5) Å3
Triclinic, P1Z = 4
a = 9.6524 (17) ÅMo Kα radiation
b = 10.1168 (17) ŵ = 0.21 mm1
c = 16.655 (3) ÅT = 296 K
α = 101.299 (8)°0.44 × 0.21 × 0.12 mm
β = 106.315 (9)°
Data collection top
Bruker X8 APEX
diffractometer
8471 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5839 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.746Rint = 0.042
66495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
8471 reflectionsΔρmin = 0.48 e Å3
397 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17058 (19)1.07411 (19)0.26058 (13)0.0566 (5)
H10.09641.10460.28110.068*
C20.17571 (19)1.07047 (19)0.18053 (12)0.0553 (4)
H20.10491.09790.13920.066*
C30.29993 (18)1.02058 (17)0.16562 (11)0.0450 (4)
H30.32021.01200.11360.054*
C40.38753 (16)0.98610 (14)0.23621 (9)0.0358 (3)
C50.51463 (16)0.92090 (15)0.24091 (10)0.0394 (3)
H50.55080.90770.19430.047*
C60.68652 (15)0.80001 (14)0.31175 (9)0.0351 (3)
C70.67572 (17)0.76611 (17)0.45524 (10)0.0438 (4)
H70.61570.83080.46300.053*
C80.72008 (18)0.69263 (18)0.51458 (10)0.0487 (4)
H80.69060.70710.56370.058*
C90.81108 (18)0.59378 (17)0.50265 (10)0.0465 (4)
H90.83980.54310.54360.056*
C100.85662 (16)0.57250 (16)0.43193 (10)0.0420 (3)
H100.91710.50800.42450.050*
C110.81172 (15)0.64882 (15)0.36971 (9)0.0355 (3)
C120.76267 (15)0.73725 (14)0.25917 (9)0.0349 (3)
C130.76897 (16)0.75279 (15)0.17423 (9)0.0371 (3)
C140.78455 (18)0.87931 (16)0.15375 (11)0.0445 (4)
H140.78970.95840.19460.053*
C150.7924 (2)0.88867 (19)0.07363 (12)0.0545 (4)
H150.80210.97380.06070.065*
C160.7860 (2)0.7727 (2)0.01279 (12)0.0618 (5)
H160.79000.77910.04150.074*
C170.7738 (3)0.6472 (2)0.03267 (12)0.0695 (6)
H170.77130.56880.00800.083*
C180.7651 (2)0.63667 (18)0.11265 (11)0.0551 (5)
H180.75650.55130.12540.066*
C190.15325 (19)0.58262 (18)0.24891 (12)0.0537 (4)
H190.06700.60360.25900.064*
C200.21283 (19)0.63493 (17)0.19618 (11)0.0504 (4)
H200.17240.69640.16530.060*
C210.34351 (18)0.58659 (17)0.19260 (11)0.0469 (4)
H210.39870.61310.15910.056*
C220.38076 (16)0.49675 (15)0.24342 (9)0.0358 (3)
C230.50661 (16)0.42895 (15)0.25537 (10)0.0387 (3)
H230.57320.44540.22610.046*
C240.65015 (15)0.28079 (14)0.31498 (9)0.0354 (3)
C250.64809 (18)0.25257 (17)0.46057 (10)0.0463 (4)
H250.56690.29490.46100.056*
C260.7178 (2)0.20410 (19)0.52865 (11)0.0528 (4)
H260.68290.21110.57580.063*
C270.8433 (2)0.14293 (19)0.52856 (12)0.0547 (4)
H270.89050.11030.57580.066*
C280.89535 (18)0.13129 (17)0.46045 (11)0.0492 (4)
H280.97840.09160.46100.059*
C290.82264 (16)0.17983 (15)0.38854 (10)0.0383 (3)
C300.74535 (15)0.24182 (14)0.26932 (9)0.0357 (3)
C310.74357 (16)0.25291 (15)0.18214 (10)0.0376 (3)
C320.61448 (19)0.22930 (18)0.11395 (10)0.0498 (4)
H320.52510.20850.12330.060*
C330.6181 (2)0.2365 (2)0.03260 (11)0.0607 (5)
H330.53120.22060.01240.073*
C340.7490 (2)0.26692 (19)0.01772 (12)0.0608 (5)
H340.75100.27190.03710.073*
C350.8771 (2)0.28999 (19)0.08419 (13)0.0578 (5)
H350.96590.31110.07430.069*
C360.87527 (18)0.28216 (17)0.16590 (11)0.0480 (4)
H360.96290.29660.21030.058*
N10.57877 (13)0.88081 (12)0.30812 (8)0.0384 (3)
N20.72080 (12)0.74350 (12)0.38341 (7)0.0349 (3)
N30.83822 (13)0.64448 (13)0.29550 (8)0.0385 (3)
N40.52949 (13)0.34609 (13)0.30544 (8)0.0389 (3)
N50.69919 (13)0.23822 (12)0.39100 (8)0.0358 (3)
N60.85190 (14)0.18142 (13)0.31564 (8)0.0416 (3)
S10.31655 (5)1.01616 (5)0.32036 (3)0.04986 (13)
S20.25440 (5)0.47252 (5)0.29562 (3)0.06015 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0449 (9)0.0673 (11)0.0729 (12)0.0299 (8)0.0284 (9)0.0261 (10)
C20.0416 (9)0.0683 (11)0.0637 (11)0.0266 (8)0.0135 (8)0.0288 (9)
C30.0461 (9)0.0519 (9)0.0440 (9)0.0186 (7)0.0162 (7)0.0188 (7)
C40.0365 (7)0.0354 (7)0.0411 (8)0.0135 (6)0.0150 (6)0.0133 (6)
C50.0414 (8)0.0436 (8)0.0402 (8)0.0186 (6)0.0178 (6)0.0129 (6)
C60.0353 (7)0.0388 (7)0.0350 (7)0.0145 (6)0.0121 (6)0.0112 (6)
C70.0441 (8)0.0555 (9)0.0407 (8)0.0222 (7)0.0208 (7)0.0136 (7)
C80.0492 (9)0.0662 (11)0.0403 (8)0.0203 (8)0.0202 (7)0.0196 (8)
C90.0443 (9)0.0593 (10)0.0441 (9)0.0180 (7)0.0143 (7)0.0254 (8)
C100.0375 (8)0.0491 (9)0.0450 (8)0.0186 (7)0.0121 (6)0.0188 (7)
C110.0313 (7)0.0406 (7)0.0388 (8)0.0144 (6)0.0122 (6)0.0123 (6)
C120.0336 (7)0.0381 (7)0.0362 (7)0.0138 (6)0.0118 (6)0.0108 (6)
C130.0361 (7)0.0433 (8)0.0376 (7)0.0155 (6)0.0149 (6)0.0128 (6)
C140.0475 (9)0.0436 (8)0.0486 (9)0.0132 (7)0.0208 (7)0.0138 (7)
C150.0583 (11)0.0594 (11)0.0618 (11)0.0183 (9)0.0289 (9)0.0321 (9)
C160.0769 (13)0.0819 (13)0.0482 (10)0.0350 (11)0.0344 (10)0.0316 (10)
C170.1087 (18)0.0660 (12)0.0474 (10)0.0396 (12)0.0364 (11)0.0143 (9)
C180.0849 (13)0.0458 (9)0.0465 (9)0.0279 (9)0.0294 (9)0.0158 (8)
C190.0444 (9)0.0609 (11)0.0660 (11)0.0270 (8)0.0232 (8)0.0203 (9)
C200.0507 (9)0.0506 (9)0.0556 (10)0.0228 (8)0.0141 (8)0.0218 (8)
C210.0479 (9)0.0520 (9)0.0519 (9)0.0164 (7)0.0218 (8)0.0245 (8)
C220.0350 (7)0.0393 (7)0.0351 (7)0.0098 (6)0.0124 (6)0.0092 (6)
C230.0345 (7)0.0420 (8)0.0433 (8)0.0105 (6)0.0146 (6)0.0128 (6)
C240.0324 (7)0.0387 (7)0.0371 (7)0.0094 (6)0.0101 (6)0.0127 (6)
C250.0472 (9)0.0529 (9)0.0465 (9)0.0130 (7)0.0214 (7)0.0169 (7)
C260.0610 (11)0.0608 (10)0.0435 (9)0.0105 (9)0.0206 (8)0.0207 (8)
C270.0575 (10)0.0612 (11)0.0479 (10)0.0102 (9)0.0092 (8)0.0281 (8)
C280.0435 (9)0.0555 (10)0.0531 (10)0.0161 (7)0.0108 (7)0.0253 (8)
C290.0348 (7)0.0384 (7)0.0427 (8)0.0098 (6)0.0098 (6)0.0130 (6)
C300.0327 (7)0.0377 (7)0.0385 (8)0.0103 (6)0.0108 (6)0.0110 (6)
C310.0409 (8)0.0375 (7)0.0405 (8)0.0146 (6)0.0169 (6)0.0129 (6)
C320.0461 (9)0.0614 (10)0.0421 (9)0.0090 (8)0.0145 (7)0.0111 (8)
C330.0685 (12)0.0732 (12)0.0387 (9)0.0171 (10)0.0125 (9)0.0122 (9)
C340.0918 (15)0.0595 (11)0.0489 (10)0.0305 (10)0.0372 (10)0.0221 (9)
C350.0667 (12)0.0613 (11)0.0709 (12)0.0275 (9)0.0448 (10)0.0313 (10)
C360.0446 (9)0.0527 (9)0.0574 (10)0.0192 (7)0.0227 (8)0.0216 (8)
N10.0373 (6)0.0397 (6)0.0426 (7)0.0183 (5)0.0138 (5)0.0115 (5)
N20.0332 (6)0.0419 (7)0.0348 (6)0.0165 (5)0.0126 (5)0.0124 (5)
N30.0373 (6)0.0457 (7)0.0398 (7)0.0200 (5)0.0151 (5)0.0154 (5)
N40.0350 (6)0.0454 (7)0.0402 (7)0.0148 (5)0.0131 (5)0.0126 (6)
N50.0347 (6)0.0387 (6)0.0366 (6)0.0093 (5)0.0116 (5)0.0123 (5)
N60.0389 (7)0.0471 (7)0.0440 (7)0.0171 (6)0.0138 (6)0.0162 (6)
S10.0535 (3)0.0629 (3)0.0473 (2)0.0285 (2)0.02553 (19)0.0213 (2)
S20.0585 (3)0.0798 (3)0.0735 (3)0.0368 (2)0.0419 (2)0.0458 (3)
Geometric parameters (Å, º) top
C1—C21.341 (3)C19—C201.337 (2)
C1—S11.7096 (17)C19—S21.7105 (17)
C1—H10.9300C19—H190.9300
C2—C31.411 (2)C20—C211.409 (2)
C2—H20.9300C20—H200.9300
C3—C41.371 (2)C21—C221.366 (2)
C3—H30.9300C21—H210.9300
C4—C51.4392 (19)C22—C231.4376 (19)
C4—S11.7145 (15)C22—S21.7100 (15)
C5—N11.2801 (18)C23—N41.2860 (18)
C5—H50.9300C23—H230.9300
C6—N11.3799 (17)C24—N41.3806 (18)
C6—N21.3941 (18)C24—C301.387 (2)
C6—C121.395 (2)C24—N51.3891 (18)
C7—C81.351 (2)C25—C261.354 (2)
C7—N21.3703 (19)C25—N51.3697 (19)
C7—H70.9300C25—H250.9300
C8—C91.415 (2)C26—C271.413 (3)
C8—H80.9300C26—H260.9300
C9—C101.355 (2)C27—C281.354 (2)
C9—H90.9300C27—H270.9300
C10—C111.4088 (19)C28—C291.412 (2)
C10—H100.9300C28—H280.9300
C11—N31.3242 (18)C29—N61.324 (2)
C11—N21.3898 (17)C29—N51.3880 (18)
C12—N31.3739 (17)C30—N61.3743 (18)
C12—C131.471 (2)C30—C311.473 (2)
C13—C181.390 (2)C31—C361.388 (2)
C13—C141.393 (2)C31—C321.393 (2)
C14—C151.379 (2)C32—C331.381 (2)
C14—H140.9300C32—H320.9300
C15—C161.376 (3)C33—C341.372 (3)
C15—H150.9300C33—H330.9300
C16—C171.376 (3)C34—C351.372 (3)
C16—H160.9300C34—H340.9300
C17—C181.382 (2)C35—C361.383 (2)
C17—H170.9300C35—H350.9300
C18—H180.9300C36—H360.9300
C2—C1—S1112.04 (13)C22—C21—C20113.05 (15)
C2—C1—H1124.0C22—C21—H21123.5
S1—C1—H1124.0C20—C21—H21123.5
C1—C2—C3112.84 (15)C21—C22—C23127.71 (14)
C1—C2—H2123.6C21—C22—S2110.50 (11)
C3—C2—H2123.6C23—C22—S2121.79 (11)
C4—C3—C2112.60 (15)N4—C23—C22121.71 (14)
C4—C3—H3123.7N4—C23—H23119.1
C2—C3—H3123.7C22—C23—H23119.1
C3—C4—C5127.09 (14)N4—C24—C30138.57 (13)
C3—C4—S1110.75 (11)N4—C24—N5116.60 (13)
C5—C4—S1121.90 (11)C30—C24—N5104.83 (12)
N1—C5—C4121.22 (14)C26—C25—N5118.84 (16)
N1—C5—H5119.4C26—C25—H25120.6
C4—C5—H5119.4N5—C25—H25120.6
N1—C6—N2114.96 (12)C25—C26—C27120.38 (17)
N1—C6—C12139.56 (13)C25—C26—H26119.8
N2—C6—C12104.65 (11)C27—C26—H26119.8
C8—C7—N2118.79 (14)C28—C27—C26120.69 (15)
C8—C7—H7120.6C28—C27—H27119.7
N2—C7—H7120.6C26—C27—H27119.7
C7—C8—C9120.61 (15)C27—C28—C29119.54 (16)
C7—C8—H8119.7C27—C28—H28120.2
C9—C8—H8119.7C29—C28—H28120.2
C10—C9—C8120.48 (14)N6—C29—N5111.06 (12)
C10—C9—H9119.8N6—C29—C28131.03 (15)
C8—C9—H9119.8N5—C29—C28117.90 (14)
C9—C10—C11119.51 (14)N6—C30—C24110.99 (13)
C9—C10—H10120.2N6—C30—C31119.15 (12)
C11—C10—H10120.2C24—C30—C31129.83 (13)
N3—C11—N2111.13 (12)C36—C31—C32118.32 (15)
N3—C11—C10130.72 (13)C36—C31—C30119.20 (14)
N2—C11—C10118.12 (13)C32—C31—C30122.42 (14)
N3—C12—C6110.91 (13)C33—C32—C31120.55 (17)
N3—C12—C13118.49 (12)C33—C32—H32119.7
C6—C12—C13130.57 (12)C31—C32—H32119.7
C18—C13—C14118.35 (14)C34—C33—C32120.47 (18)
C18—C13—C12118.66 (14)C34—C33—H33119.8
C14—C13—C12122.94 (14)C32—C33—H33119.8
C15—C14—C13120.75 (16)C35—C34—C33119.64 (17)
C15—C14—H14119.6C35—C34—H34120.2
C13—C14—H14119.6C33—C34—H34120.2
C16—C15—C14120.28 (16)C34—C35—C36120.55 (17)
C16—C15—H15119.9C34—C35—H35119.7
C14—C15—H15119.9C36—C35—H35119.7
C15—C16—C17119.66 (17)C35—C36—C31120.47 (16)
C15—C16—H16120.2C35—C36—H36119.8
C17—C16—H16120.2C31—C36—H36119.8
C16—C17—C18120.48 (18)C5—N1—C6123.72 (13)
C16—C17—H17119.8C7—N2—C11122.48 (12)
C18—C17—H17119.8C7—N2—C6130.34 (12)
C17—C18—C13120.45 (16)C11—N2—C6107.15 (11)
C17—C18—H18119.8C11—N3—C12106.14 (12)
C13—C18—H18119.8C23—N4—C24120.64 (13)
C20—C19—S2111.98 (13)C25—N5—C29122.62 (13)
C20—C19—H19124.0C25—N5—C24130.14 (13)
S2—C19—H19124.0C29—N5—C24107.17 (12)
C19—C20—C21112.60 (15)C29—N6—C30105.92 (12)
C19—C20—H20123.7C1—S1—C491.78 (8)
C21—C20—H20123.7C22—S2—C1991.88 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C31–C36 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···N3i0.932.503.428 (2)175
C14—H14···N6ii0.932.613.526 (2)170
C15—H15···Cg1ii0.932.973.778 (2)146
C18—H18···Cg10.932.883.761 (2)157
C33—H33···Cg2iii0.932.953.814 (2)155
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C31–C36 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···N3i0.932.503.428 (2)174.5
C14—H14···N6ii0.932.613.526 (2)170.3
C15—H15···Cg1ii0.932.973.778 (2)146
C18—H18···Cg10.932.883.761 (2)157
C33—H33···Cg2iii0.932.953.814 (2)155
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H13N3S
Mr303.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6524 (17), 10.1168 (17), 16.655 (3)
α, β, γ (°)101.299 (8), 106.315 (9), 95.628 (8)
V3)1510.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.44 × 0.21 × 0.12
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.641, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
66495, 8471, 5839
Rint0.042
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.02
No. of reflections8471
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElaatiaoui, A., Koudad, M., Saddik, R., Benchat, N. & El Ammari, L. (2014). Acta Cryst. E70, o1189–o1190.  CSD CrossRef IUCr Journals Google Scholar
First citationElaatiaoui, A., Saddik, R., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o803–o804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHearn, M. J. & Cynamon, M. H. (2004). J. Antimicrob. Chemother. 53, 185–191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaplan, J. P., Raizon, B. M., Desarmenien, M., Feltz, P., Headley, P. M., Worms, P., Lloyd, K. G. & Bartholini, G. (1980). J. Med. Chem. 23, 702–704.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPatole, J., Shingnapurkar, D., Padhye, S. & Ratledge, C. (2006). Bioorg. Med. Chem. Lett. 16, 1514–1517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, L., Ge, H. M., Tan, S. H., Li, H. Q., Song, Y. C., Zhu, H. L. & Tan, R. X. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds