metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[μ-2-(tri­methyl­silyl­amido)-6-(tri­methyl­silyl­amino)­pyridine-κ3N1,N2:N2]bis­­[(di­ethyl ether-κO)lithium(I)]

aDepartment of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA, and bDepartment of Chemistry, The University of Tennessee, Knoxville, TN 37996, USA
*Correspondence e-mail: gary.guillet@armstrong.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 1 February 2016; accepted 26 April 2016; online 4 May 2016)

The title complex, [Li2(C11H22N3Si2)2(C4H10O)2], crystallizes in the P-1 space group with one molecule of a centrosymmetric dimeric complex in the unit cell. The lithium cation is coordinated in a bidentate fashion by the pyridyl N atom and a silylamido N atom of one 2,6-bis(trimethylsilylamido)pyridine ligand and by a monodentate, bridging silylamido N atom of another. A diethyl ether mol­ecule completes the tetra­hedral coordination environment for each lithium atom. Neither intra- nor inter­molecular hydrogen bonding nor ππ stacking are observed in the crystal, likely indicating that weak electrostatic inter­actions are the dominant feature leading to the supra­molecular structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title complex (Fig. 1[link]) represents the first dinuclear lithium cluster reported with the 2,6-bis­(tri­methyl­silyl­amido)­pyridine ligand. This ligand is known to support clusters of differing nuclearities including a related tetra­lithium complex containing tetra­hydro­furan (THF) ligands (Glatz & Kempe, 2008a[Glatz, G. & Kempe, R. (2008a). Z. Kristallogr. New Cryst. Struct. 223, 307-308.]), a hexa­lithium complex with benzo­nitrile ligands (Skvortsov et al., 2013[Skvortsov, G. G., Fukin, G. K., Ketkov, S. Yu., Cherkasov, A. V., Lyssenko, K. A. & Trifonov, A. A. (2013). Eur. J. Inorg. Chem. pp. 4173-4183.]), as well as a mononuclear complex (Rave et al., 2016[Rave, J. A., Garcia, D. A., Hillesheim, P. C. & Guillet, G. L. (2016). IUCrData, 1, x160338.]). However, the ether-containing complex has not been investigated.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, omitting H atoms for clarity. Displacement ellipsoids are drawn at the 50% probability level. Only atoms in the asymmetric unit and symmetry-related N2′ atom are labelled (symmetry code for N2′: −x, 1 − y, 1 − z).

In the asymmetric unit, the lithium cation is coordinated by a bidentate 2,6-bis­(tri­methyl­silyl­amido)­pyridine ligand via the pyridiyl nitro­gen (N1) with a bond length of 2.082 (5) Å and two bridging silyl­amido N atoms (N2 and N2′) with bond lengths of 2.098 (5) Å and 2.088 (5) Å, respectively. The related THF complex has Li—N distances that range from 2.054 Å to 2.178 Å, while in this structure they range from 2.082 Å to 2.098 Å. The Li—O bond distances are 1.931 and 1.915 (5) Å for the THF and the title ether complex, respectively. The 2,6-bis­(tri­methyl­silyl­amido)­pyridine ligand has been shown to support CoII clusters (Glatz & Kempe, 2008b[Glatz, G. & Kempe, R. (2008b). Z. Kristallogr. New Cryst. Struct. 223, 313-315.]) and CuI clusters (Glatz & Kempe, 2008c[Glatz, G. & Kempe, R. (2008c). Z. Kristallogr. New Cryst. Struct. 223, 309-310.]), while two dinuclear chromium complexes with the triisopropyl congener have been reported (Huang et al., 2012[Huang, Y.-L., Lu, D.-Y., Yu, H.-C., Yu, J. K., Hsu, C.-W., Kuo, T.-S., Lee, G.-H., Wang, Y. & Tsai, Y.-C. (2012). Angew. Chem. Int. Ed. 51, 7781-7785.]), indicating this lithium complex may find utility as a synthon for transition metal clusters.

Synthesis and crystallization

2,6-bis­(tri­methyl­silyl­amido)­pyridine was synthesized accord­ing to a previous report (Danièle et al., 2001[Danièle, S., Drost, C., Gehrhus, B., Hawkins, S. M., Hitchcock, P. B., Lappert, M. F., Merle, P. G. & Bott, S. G. (2001). J. Chem. Soc. Dalton Trans. pp. 3179-3188.]). The title complex was synthesized under an inert atmosphere by the addition of 4.27 mL of 2.45 M n-BuLi in cyclo­hexa­ne (10.5 mmol) to 0.513 g of 2,6-di­amino­pyridine (4.70 mmol) in tetra­hydro­furan at −30°C. The reaction was stirred overnight at room temperature. To the resulting slurry, chloro­tri­methyl­silane was added dropwise (1.02 g, 9.39 mmol) over a period of five minutes and the reaction was stirred for an additional 24 h. The reaction was filtered over a fritted filter to remove lithium chloride and the solvent was removed under reduced pressure yielding a yellow oil. Approximately 3 mL of hexa­nes was added to the residue and it was then filtered over celite to remove any residual lithium chloride. The solvent was again removed under reduced pressure. The residue was taken up in a small volume of diethyl ether and the solution was placed in a freezer at −30°C. Single crystals of the title complex formed over two days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atom bound to N3 is disordered over two sites, H3A and H3B, with occupancies 0.46 (6) and 0.54 (6). The two disordered H atoms were located as residual electron density peaks, and were refined freely. However, the N3—H3A and N3—H3B distances were restrained to be equal with a standard deviation of 0.02 Å.

Table 1
Experimental details

Crystal data
Chemical formula [Li2(C11H22N3Si2)2(C4H10O)2]
Mr 667.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 9.870 (7), 10.624 (8), 11.319 (7)
α, β, γ (°) 74.34 (2), 81.35 (2), 68.246 (19)
V3) 1059.7 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.3 × 0.27 × 0.22
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.849, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11265, 4805, 2876
Rint 0.056
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.158, 1.03
No. of reflections 4805
No. of parameters 209
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.25
Computer programs: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Experimental top

2,6-bis(trimethylsilylamido)pyridine was synthesized according to a previous report (Danièle et al., 2001). The title complex was synthesized under an inert atmosphere by the addition of 4.27 ml of 2.45 M n-BuLi in cyclohexanes (10.5 mmol) to 0.513 g of 2,6-diaminopyridine (4.70 mmol) in tetrahydrofuran at -30°C. The reaction was stirred overnight at room temperature. To the resulting slurry, chlorotrimethylsilane was added dropwise (1.02 g, 9.39 mmol) over a period of five minutes and the reaction was stirred for an additional 24 h. The reaction was filtered over a fritted filter to remove lithium chloride and the solvent was removed under reduced pressure yielding a yellow oil. Approximately 3 mL of hexanes was added to the residue and it was then filtered over celite to remove any residual lithium chloride. The solvent was again removed under reduced pressure. The residue was taken up in a small volume of diethyl ether and the solution was placed in a freezer at -30°C. Single crystals of the title complex formed over two days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atom bound to N3 is disordered over two sites, H3A and H3B, with occupancies 0.46 (6) and 0.54 (6). The two disordered H atoms were located as residual electron density peaks, and were refined freely. However, the N3—H3A and N3—H3B distances were restrained to be equal with a standard deviation of 0.02 Å.

Structure description top

The title complex (Fig. 1) represents the first dinuclear cluster with lithium reported with the 2,6-bis(trimethylsilylamido)pyridine ligand. This ligand is known to support clusters of differing nuclearities as a related tetralithium complex containing tetrahydrofuran (THF) ligands (Glatz & Kempe, 2008a), a hexalithium complex containing benzonitrile (Skvortsov et al., 2013), as well as a mononuclear complex (Rave et al., 2016) have all been previously observed. However, the ether complex has not been investigated.

In the asymmetric unit, the lithium cation is coordinated by a bidentate 2,6-bis(trimethylsilylamido)pyridine ligand via the pyridiyl nitrogen (N1) with a bond length of 2.082 (5) Å and two bridging silylamido N atoms (N2 and N2') with bond lengths of 2.098 (5) Å and 2.088 (5) Å, respectively. The related THF complex has Li—N distances that range from 2.054 Å to 2.178 Å, while in this structure they range from 2.082 Å to 2.098 Å. The Li—O bond distances are 1.931 and 1.915 (5) Å for the THF and the title ether complex, respectively. The 2,6-bis(trimethylsilylamido)pyridine ligand has been shown to support CoII clusters (Glatz & Kempe, 2008b) and CuI clusters (Glatz & Kempe, 2008c), while two dinuclear chromium complexes with the triisopropyl congener have been reported (Huang et al., 2012), indicating this lithium complex may find utility as a synthon for transition metal clusters.

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, omitting H atoms for clarity. Displacement ellipsoids are drawn at the 50% probability level. Only atoms in the asymmetric unit and symmetry-related N2' atom are labelled (symmetry code for N2': -x, 1 - y, 1 - z). Carbon, lithium, nitrogen, oxygen, and silicon atoms shown as grey, cyan, blue, red, and orange ellipsoids, respectively.
Bis[µ-2-(trimethylsilylamido)-6-(trimethylsilylamino)pyridine-κ3N1,N2:N2]bis[(diethyl ether-κO)lithium(I)] top
Crystal data top
[Li2(C11H22N3Si2)2(C4H10O)2]Z = 1
Mr = 667.11F(000) = 364
Triclinic, P1Dx = 1.045 Mg m3
a = 9.870 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.624 (8) ÅCell parameters from 2530 reflections
c = 11.319 (7) Åθ = 2.1–27.5°
α = 74.34 (2)°µ = 0.17 mm1
β = 81.35 (2)°T = 173 K
γ = 68.246 (19)°Prism, colourless
V = 1059.7 (13) Å30.3 × 0.27 × 0.22 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
4805 independent reflections
Radiation source: Sealed Tube2876 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.056
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.2°
profile data from ω–scansh = 1212
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1313
Tmin = 0.849, Tmax = 1.000l = 1414
11265 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: mixed
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.4277P]
where P = (Fo2 + 2Fc2)/3
4805 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
[Li2(C11H22N3Si2)2(C4H10O)2]γ = 68.246 (19)°
Mr = 667.11V = 1059.7 (13) Å3
Triclinic, P1Z = 1
a = 9.870 (7) ÅMo Kα radiation
b = 10.624 (8) ŵ = 0.17 mm1
c = 11.319 (7) ÅT = 173 K
α = 74.34 (2)°0.3 × 0.27 × 0.22 mm
β = 81.35 (2)°
Data collection top
Rigaku XtaLAB mini
diffractometer
4805 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2876 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 1.000Rint = 0.056
11265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
4805 reflectionsΔρmin = 0.25 e Å3
209 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.19374 (10)0.19834 (8)0.62211 (7)0.0376 (2)
Si20.31366 (9)0.81456 (9)0.10132 (7)0.0383 (2)
N10.2124 (2)0.5214 (2)0.36674 (19)0.0290 (5)
N20.1464 (2)0.3537 (2)0.5147 (2)0.0306 (5)
N30.2656 (3)0.7063 (3)0.2323 (2)0.0395 (6)
H3A0.188 (4)0.7368 (18)0.2637 (18)0.059*0.46 (6)
H3B0.2474 (11)0.741 (2)0.289 (3)0.059*0.54 (6)
O10.1403 (2)0.6227 (2)0.6407 (2)0.0499 (6)
C10.2251 (3)0.3830 (3)0.4077 (2)0.0295 (6)
C20.3140 (3)0.2865 (3)0.3370 (3)0.0398 (7)
H20.32460.19070.36360.048*
C30.3847 (3)0.3348 (3)0.2288 (3)0.0445 (8)
H30.44370.27120.18080.053*
C40.3711 (3)0.4743 (3)0.1891 (3)0.0427 (7)
H40.41980.50710.11500.051*
C50.2837 (3)0.5645 (3)0.2617 (2)0.0329 (6)
C60.3966 (4)0.1089 (4)0.6330 (3)0.0642 (11)
H6A0.43770.06910.56130.096*
H6B0.41680.03430.70810.096*
H6C0.44130.17660.63530.096*
C70.1174 (5)0.0721 (4)0.5936 (4)0.0763 (13)
H7A0.01320.11930.57890.114*
H7B0.12980.00630.66550.114*
H7C0.16920.03760.52150.114*
C80.1201 (4)0.2353 (3)0.7762 (3)0.0473 (8)
H8A0.17240.28680.79910.071*
H8B0.13340.14720.83760.071*
H8C0.01570.29120.77260.071*
C90.5159 (4)0.7672 (4)0.0779 (3)0.0566 (9)
H9A0.55580.76630.15240.085*
H9B0.53940.83570.00870.085*
H9C0.55890.67450.06020.085*
C100.2377 (4)0.8064 (4)0.0372 (3)0.0568 (9)
H10A0.27910.71110.04910.085*
H10B0.26310.87020.10980.085*
H10C0.13120.83360.02520.085*
C110.2294 (4)0.9911 (3)0.1338 (3)0.0595 (10)
H11A0.12381.01260.15050.089*
H11B0.24751.06040.06250.089*
H11C0.27240.99300.20560.089*
C120.0508 (4)0.7007 (3)0.7268 (3)0.0502 (8)
H12A0.04350.76230.69070.060*
H12B0.09970.76050.74230.060*
C130.0218 (5)0.6083 (4)0.8471 (3)0.0668 (11)
H13A0.02900.55060.83270.100*
H13B0.03920.66610.90300.100*
H13C0.11470.54810.88400.100*
C140.2957 (4)0.5744 (5)0.6535 (4)0.0722 (12)
H14A0.33950.47760.64290.087*
H14B0.31370.57350.73750.087*
C150.3672 (4)0.6613 (5)0.5643 (4)0.0848 (14)
H15A0.34000.67200.48140.127*
H15B0.47340.61690.56880.127*
H15C0.33620.75310.58300.127*
Li010.0751 (5)0.5642 (5)0.5205 (4)0.0323 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0462 (5)0.0251 (4)0.0351 (5)0.0071 (4)0.0058 (4)0.0020 (3)
Si20.0425 (5)0.0441 (5)0.0297 (4)0.0232 (4)0.0014 (3)0.0010 (3)
N10.0288 (12)0.0289 (12)0.0266 (11)0.0090 (10)0.0015 (9)0.0052 (9)
N20.0292 (12)0.0262 (11)0.0327 (12)0.0082 (10)0.0026 (9)0.0054 (9)
N30.0454 (16)0.0401 (14)0.0325 (14)0.0194 (12)0.0085 (11)0.0073 (11)
O10.0404 (13)0.0712 (16)0.0445 (13)0.0194 (12)0.0006 (10)0.0247 (11)
C10.0275 (14)0.0297 (14)0.0313 (14)0.0101 (12)0.0048 (11)0.0051 (11)
C20.0427 (18)0.0325 (15)0.0419 (17)0.0082 (14)0.0003 (13)0.0129 (13)
C30.0457 (19)0.0435 (18)0.0420 (18)0.0111 (15)0.0069 (14)0.0174 (14)
C40.0483 (19)0.0456 (18)0.0308 (16)0.0165 (15)0.0085 (13)0.0090 (13)
C50.0338 (15)0.0353 (15)0.0301 (15)0.0139 (13)0.0008 (12)0.0071 (12)
C60.055 (2)0.057 (2)0.051 (2)0.0174 (18)0.0075 (17)0.0142 (17)
C70.128 (4)0.046 (2)0.061 (3)0.044 (2)0.021 (2)0.0045 (18)
C80.0471 (19)0.0438 (18)0.0389 (18)0.0091 (16)0.0033 (14)0.0004 (14)
C90.051 (2)0.084 (3)0.046 (2)0.039 (2)0.0071 (16)0.0165 (18)
C100.058 (2)0.068 (2)0.0427 (19)0.0237 (19)0.0082 (16)0.0055 (17)
C110.075 (3)0.0451 (19)0.054 (2)0.0274 (19)0.0074 (18)0.0002 (16)
C120.072 (2)0.0484 (19)0.0408 (18)0.0289 (18)0.0018 (16)0.0183 (15)
C130.087 (3)0.058 (2)0.053 (2)0.032 (2)0.012 (2)0.0085 (18)
C140.052 (2)0.088 (3)0.072 (3)0.029 (2)0.023 (2)0.006 (2)
C150.055 (2)0.129 (4)0.074 (3)0.046 (3)0.009 (2)0.007 (3)
Li010.033 (3)0.031 (2)0.030 (2)0.009 (2)0.0003 (19)0.0059 (19)
Geometric parameters (Å, º) top
Si1—N21.713 (2)C7—H7A0.9800
Si1—C61.878 (4)C7—H7B0.9800
Si1—C71.878 (4)C7—H7C0.9800
Si1—C81.871 (3)C8—H8A0.9800
Si1—Li01i3.184 (5)C8—H8B0.9800
Si2—N31.737 (3)C8—H8C0.9800
Si2—C91.865 (4)C9—H9A0.9800
Si2—C101.871 (4)C9—H9B0.9800
Si2—C111.862 (4)C9—H9C0.9800
N1—C11.381 (3)C10—H10A0.9800
N1—C51.346 (3)C10—H10B0.9800
N1—Li012.082 (5)C10—H10C0.9800
N2—C11.364 (3)C11—H11A0.9800
N2—Li01i2.088 (5)C11—H11B0.9800
N2—Li012.098 (5)C11—H11C0.9800
N3—H3A0.79 (4)C12—H12A0.9900
N3—H3B0.79 (4)C12—H12B0.9900
N3—C51.400 (4)C12—C131.506 (5)
O1—C121.432 (4)C13—H13A0.9800
O1—C141.442 (4)C13—H13B0.9800
O1—Li011.915 (5)C13—H13C0.9800
C1—C21.423 (4)C14—H14A0.9900
C2—H20.9500C14—H14B0.9900
C2—C31.386 (4)C14—C151.460 (5)
C3—H30.9500C15—H15A0.9800
C3—C41.389 (4)C15—H15B0.9800
C4—H40.9500C15—H15C0.9800
C4—C51.392 (4)Li01—Si1i3.184 (5)
C6—H6A0.9800Li01—N2i2.088 (5)
C6—H6B0.9800Li01—Li01i2.515 (9)
C6—H6C0.9800
N2—Si1—C6113.31 (15)Si1—C8—H8C109.5
N2—Si1—C7112.67 (16)H8A—C8—H8B109.5
N2—Si1—C8107.94 (13)H8A—C8—H8C109.5
N2—Si1—Li01i36.99 (11)H8B—C8—H8C109.5
C6—Si1—Li01i149.26 (15)Si2—C9—H9A109.5
C7—Si1—C6107.8 (2)Si2—C9—H9B109.5
C7—Si1—Li01i85.89 (17)Si2—C9—H9C109.5
C8—Si1—C6106.35 (16)H9A—C9—H9B109.5
C8—Si1—C7108.53 (18)H9A—C9—H9C109.5
C8—Si1—Li01i94.47 (14)H9B—C9—H9C109.5
N3—Si2—C9111.36 (15)Si2—C10—H10A109.5
N3—Si2—C10110.46 (16)Si2—C10—H10B109.5
N3—Si2—C11103.72 (15)Si2—C10—H10C109.5
C9—Si2—C10109.81 (16)H10A—C10—H10B109.5
C11—Si2—C9110.23 (17)H10A—C10—H10C109.5
C11—Si2—C10111.15 (18)H10B—C10—H10C109.5
C1—N1—Li0189.4 (2)Si2—C11—H11A109.5
C5—N1—C1120.5 (2)Si2—C11—H11B109.5
C5—N1—Li01150.2 (2)Si2—C11—H11C109.5
Si1—N2—Li01134.99 (18)H11A—C11—H11B109.5
Si1—N2—Li01i113.43 (17)H11A—C11—H11C109.5
C1—N2—Si1125.15 (19)H11B—C11—H11C109.5
C1—N2—Li01i108.7 (2)O1—C12—H12A109.1
C1—N2—Li0189.1 (2)O1—C12—H12B109.1
Li01i—N2—Li0173.8 (2)O1—C12—C13112.5 (3)
Si2—N3—H3A116.7H12A—C12—H12B107.8
Si2—N3—H3B110.6C13—C12—H12A109.1
C5—N3—Si2132.4 (2)C13—C12—H12B109.1
C5—N3—H3A100.6C12—C13—H13A109.5
C5—N3—H3B115.2C12—C13—H13B109.5
C12—O1—C14115.8 (3)C12—C13—H13C109.5
C12—O1—Li01126.9 (2)H13A—C13—H13B109.5
C14—O1—Li01117.1 (3)H13A—C13—H13C109.5
N1—C1—C2119.1 (2)H13B—C13—H13C109.5
N2—C1—N1114.5 (2)O1—C14—H14A109.1
N2—C1—C2126.4 (3)O1—C14—H14B109.1
C1—C2—H2120.6O1—C14—C15112.7 (3)
C3—C2—C1118.8 (3)H14A—C14—H14B107.8
C3—C2—H2120.6C15—C14—H14A109.1
C2—C3—H3119.3C15—C14—H14B109.1
C2—C3—C4121.3 (3)C14—C15—H15A109.5
C4—C3—H3119.3C14—C15—H15B109.5
C3—C4—H4121.1C14—C15—H15C109.5
C3—C4—C5117.8 (3)H15A—C15—H15B109.5
C5—C4—H4121.1H15A—C15—H15C109.5
N1—C5—N3115.0 (2)H15B—C15—H15C109.5
N1—C5—C4122.5 (3)N1—Li01—Si1i97.29 (17)
C4—C5—N3122.5 (3)N1—Li01—N267.04 (16)
Si1—C6—H6A109.5N1—Li01—N2i113.4 (2)
Si1—C6—H6B109.5N1—Li01—Li01i90.3 (3)
Si1—C6—H6C109.5N2—Li01—Si1i124.2 (2)
H6A—C6—H6B109.5N2i—Li01—Si1i29.58 (9)
H6A—C6—H6C109.5N2i—Li01—N2106.2 (2)
H6B—C6—H6C109.5N2i—Li01—Li01i53.26 (18)
Si1—C7—H7A109.5N2—Li01—Li01i52.89 (18)
Si1—C7—H7B109.5O1—Li01—Si1i113.1 (2)
Si1—C7—H7C109.5O1—Li01—N1118.9 (2)
H7A—C7—H7B109.5O1—Li01—N2121.4 (2)
H7A—C7—H7C109.5O1—Li01—N2i118.9 (2)
H7B—C7—H7C109.5O1—Li01—Li01i146.7 (3)
Si1—C8—H8A109.5Li01i—Li01—Si1i75.4 (2)
Si1—C8—H8B109.5
Si1—N2—C1—N1149.7 (2)C8—Si1—N2—C1150.0 (2)
Si1—N2—C1—C231.2 (4)C8—Si1—N2—Li01i72.9 (2)
Si2—N3—C5—N1170.6 (2)C8—Si1—N2—Li0117.3 (3)
Si2—N3—C5—C410.6 (5)C9—Si2—N3—C567.9 (3)
N1—C1—C2—C30.3 (4)C10—Si2—N3—C554.4 (3)
N2—C1—C2—C3178.8 (3)C11—Si2—N3—C5173.6 (3)
C1—N1—C5—N3178.1 (2)C12—O1—C14—C15100.7 (4)
C1—N1—C5—C40.7 (4)C14—O1—C12—C1383.7 (4)
C1—C2—C3—C40.5 (5)Li01i—Si1—N2—C1137.1 (3)
C2—C3—C4—C50.1 (5)Li01i—Si1—N2—Li0190.3 (3)
C3—C4—C5—N10.5 (4)Li01—N1—C1—N21.0 (3)
C3—C4—C5—N3178.2 (3)Li01—N1—C1—C2179.8 (3)
C5—N1—C1—N2179.5 (2)Li01—N1—C5—N30.8 (6)
C5—N1—C1—C20.3 (4)Li01—N1—C5—C4179.7 (4)
C6—Si1—N2—C132.5 (3)Li01i—N2—C1—N171.6 (3)
C6—Si1—N2—Li01100.2 (3)Li01—N2—C1—N11.0 (3)
C6—Si1—N2—Li01i169.6 (2)Li01i—N2—C1—C2107.5 (3)
C7—Si1—N2—C190.2 (3)Li01—N2—C1—C2179.9 (3)
C7—Si1—N2—Li01i46.9 (2)Li01—O1—C12—C1391.0 (4)
C7—Si1—N2—Li01137.1 (3)Li01—O1—C14—C1584.1 (4)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Li2(C11H22N3Si2)2(C4H10O)2]
Mr667.11
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.870 (7), 10.624 (8), 11.319 (7)
α, β, γ (°)74.34 (2), 81.35 (2), 68.246 (19)
V3)1059.7 (13)
Z1
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.3 × 0.27 × 0.22
Data collection
DiffractometerRigaku XtaLAB mini
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.849, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11265, 4805, 2876
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.158, 1.03
No. of reflections4805
No. of parameters209
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: CrystalClear (Rigaku, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors would like to thank Armstrong State University for funding.

References

First citationDanièle, S., Drost, C., Gehrhus, B., Hawkins, S. M., Hitchcock, P. B., Lappert, M. F., Merle, P. G. & Bott, S. G. (2001). J. Chem. Soc. Dalton Trans. pp. 3179–3188.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlatz, G. & Kempe, R. (2008a). Z. Kristallogr. New Cryst. Struct. 223, 307–308.  CAS Google Scholar
First citationGlatz, G. & Kempe, R. (2008b). Z. Kristallogr. New Cryst. Struct. 223, 313–315.  CAS Google Scholar
First citationGlatz, G. & Kempe, R. (2008c). Z. Kristallogr. New Cryst. Struct. 223, 309–310.  CAS Google Scholar
First citationHuang, Y.-L., Lu, D.-Y., Yu, H.-C., Yu, J. K., Hsu, C.-W., Kuo, T.-S., Lee, G.-H., Wang, Y. & Tsai, Y.-C. (2012). Angew. Chem. Int. Ed. 51, 7781–7785.  Web of Science CSD CrossRef CAS Google Scholar
First citationRave, J. A., Garcia, D. A., Hillesheim, P. C. & Guillet, G. L. (2016). IUCrData, 1, x160338.  Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkvortsov, G. G., Fukin, G. K., Ketkov, S. Yu., Cherkasov, A. V., Lyssenko, K. A. & Trifonov, A. A. (2013). Eur. J. Inorg. Chem. pp. 4173–4183.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds