organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tri­methyl 3,3′,3′′-(benzene-1,3,5-tri­yl)tri­propyn­oate

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and bSchool of Pharmacy, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, England
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 4 March 2016; accepted 14 April 2016; online 22 April 2016)

In the title compound, C18H12O6, the alkyne bonds are distorted, featuring bond angles around the C—C≡C—C group of 173.6 (1)/179.0 (1), 178.1 (1)/178.4 (1) and 174.9 (1)/175.9 (1)°, and the ester groups make angles of 3.5 (1), 13.8 (1) and 14.5 (1)° with the central benzene ring. In the crystal, mol­ecules are connected in layers parallel to (131) by weak C—H⋯O hydrogen bonds, giving rise to a system of hydrogen-bonded ring motifs with graph sets R22(14) and R44(22). The layers are linked by C—H⋯O and C—H⋯π contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C18H12O6, is an inter­esting synthetic inter­mediate for the preparation of application–oriented solid materials involving both porous coordination polymers (MacGillivray, 2010[MacGillivray, L. R. (2010). In Metal Organic Frameworks. Hoboken: Wiley.]) or metal-organic frameworks (Noro & Kitagawa, 2010[Noro, S.-I. & Kitagawa, S. (2010). In The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials, edited by K. Rurack & R. Martinez-Manez, pp. 235-269. Hoboken: Wiley.]) and crystalline inclusion hosts (Weber, 1996[Weber, E. (1996). In Comprehensive Supramolecular Chemistry, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, pp. 535-592. Oxford: Elsevier.]; Katzsch et al., 2016[Katzsch, F., Gruber, T. & Weber, E. (2016). J. Mol. Struct. 1114, 48-64.]).

In the structure of the mol­ecule (Fig. 1[link]), the alkyne bonds are distorted which is shown by the corresponding bond angles [C2—C3—C4 = 173.6 (1), C3—C4—C13 = 179.0 (1), C6—C7—C8 = 178.1 (1), C7—C8—C15 = 178.4 (1), C10—C11—C12 = 174.9 (1), C11—C12—C17 = 175.9 (1)°] and the ester functions are not arranged in the benzene plane [inter­planar angles: 3.5 (1) (C2, O1, O2), 13.8 (1) (C6, O3, O4) and 14.5 (1)° (C10, O5, O10)].

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are connected in layers parallel to (131) by weak C-H⋯O hydrogen bonds (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 29-121. New York: Oxford University Press Inc.]) (Table 1[link]) giving rise to hydrogen-bonded ring motifs with graph sets R22(14) and R44(22) (Fig. 2[link]). The layers are linked by weak C—H⋯O contacts and additionally by C—H⋯π inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring and Cg3 is the mid-point of atoms C7 and C8.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O6i 0.98 2.70 3.4378 (15) 133
C5—H5B⋯O5ii 0.98 2.66 3.4517 (15) 138
C14—H14⋯O2iii 0.95 2.31 3.2278 (13) 162
C16—H16⋯O6iv 0.95 2.35 3.2390 (13) 155
C1—H1ACg3v 0.98 2.85 3.5506 (13) 130
C9—H9ACg1vi 0.98 2.76 3.6302 (13) 148
Symmetry codes: (i) x-1, y+1, z-1; (ii) x-1, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+3, -y, -z+2; (v) x, y, z-1; (vi) x+1, y, z.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound, showing the formation of the C—H⋯O bonded layer structure, enclosing the system of R22(14) and R44(22) ring motifs. Hydrogen bonds are indicated by dashed lines.

Synthesis and crystallization

The title compound was prepared from 1,3,5-triethynyl­benzene (Münch et al., 2013[Münch, A. S., Katzsch, F., Weber, E. & Mertens, F. O. R. L. (2013). J. Mol. Struct. 1043, 103-108.]) and methyl chloro­formiate as described in the literature (Katzsch et al., 2016[Katzsch, F., Gruber, T. & Weber, E. (2016). J. Mol. Struct. 1114, 48-64.]). Colorless single crystals of prismatic shape suitable for X-ray diffraction were obtained by slow crystallization from a solvent mixture of acetone, ethyl acetate and n-hexane. For the synthesis of a related compound, see: Welti & Diederich (2003[Welti, R. & Diederich, F. (2003). Helv. Chim. Acta, 86, 494-503.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H12O6
Mr 324.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.5765 (2), 9.8469 (2), 10.2677 (2)
α, β, γ (°) 78.903 (1), 79.552 (1), 68.655 (1)
V3) 786.65 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.54 × 0.43 × 0.37
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.946, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 16379, 2769, 2558
Rint 0.022
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.08
No. of reflections 2769
No. of parameters 220
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Comment top

The title compound, C18H12O6, is an interesting synthetic intermediate for the preparation of application–oriented solid materials involving both porous coordination polymers (MacGillivray, 2010) or metal-organic frameworks (Noro & Kitagawa, 2010) and crystalline inclusion hosts (Weber, 1996; Katzsch et al., 2016). In the structure of the molecule (Fig. 1), the alkyne bonds are distorted which is shown by the corresponding bond angles [C2-C3-C4 173.6 (1)°, C3-C4-C13 179.0 (1)°, C6-C7-C8 178.1 (1)°, C7-C8-C15 178.4 (1)°, C10-C11-C12 174.9 (1)°, C11-C12-C17 175.9 (1)°] and the ester functions are not arranged in the benzene plane [interplanar angles: 3.5° (C2, O1, O2), 13.8° (C6, O3, O4), 14.5° (C10, O5, O10)]. The molecules are connected in layers parallel to the (131)-plane by weak C-H···O hydrogen bonds (Desiraju & Steiner, 1999) (Table 1) giving rise to new hydrogen bond ring motifs with the graph sets R22(14) and R44(22) (Fig. 2). The layers are stabilized among each other also by weak C-H···O hydrogen bonds [d(C1···O6) 3.438 (1) Å] and additionally by C-H···π contacts (Desiraju & Steiner, 1999) [d(C1···Cg3) 3.551 (1) Å d(C9···Cg1) 3.630 (1) Å].

Experimental top

The title compound was prepared from 1,3,5-triethynylbenzene (Münch et al., 2013) and methyl chloroformiate as described in the literature (Katzsch et al., 2016). Colorless single crystals of prismatic shape suitable for X-ray diffraction were obtained by slow crystallization from a solvent mixture of acetone, ethyl acetate and n-hexane. For the synthesis of a related compound, see: Welti & Diederich (2003).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound, C18H12O6, is an interesting synthetic intermediate for the preparation of application–oriented solid materials involving both porous coordination polymers (MacGillivray, 2010) or metal-organic frameworks (Noro & Kitagawa, 2010) and crystalline inclusion hosts (Weber, 1996; Katzsch et al., 2016).

In the structure of the molecule (Fig. 1), the alkyne bonds are distorted which is shown by the corresponding bond angles [C2—C3—C4 = 173.6 (1), C3—C4—C13 = 179.0 (1), C6—C7—C8 = 178.1 (1), C7—C8—C15 = 178.4 (1), C10—C11—C12 = 174.9 (1), C11—C12—C17 = 175.9 (1)°] and the ester functions are not arranged in the benzene plane [interplanar angles: 3.5 (1) (C2, O1, O2), 13.8 (1) (C6, O3, O4) and 14.5° (C10, O5, O10)].

In the crystal, molecules are connected in layers parallel to (131) by weak C-H···O hydrogen bonds (Desiraju & Steiner, 1999) (Table 1) giving rise to hydrogen-bonded ring motifs with the graph sets R22(14) and R44(22) (Fig. 2). The layers are linked by weak C—H···O contacts and additionally by C—H···π interactions.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the formation of the C—H···O bonded layer structure, enclosing the system of R22(14) and R44(22) ring motifs. Hydrogen bonds are indicated by dashed lines.
Trimethyl 3,3',3''-(benzene-1,3,5-triyl)tripropynoate top
Crystal data top
C18H12O6Z = 2
Mr = 324.28F(000) = 336
Triclinic, P1Dx = 1.369 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5765 (2) ÅCell parameters from 9912 reflections
b = 9.8469 (2) Åθ = 2.8–35.9°
c = 10.2677 (2) ŵ = 0.10 mm1
α = 78.903 (1)°T = 100 K
β = 79.552 (1)°Prism, colourless
γ = 68.655 (1)°0.54 × 0.43 × 0.37 mm
V = 786.65 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2769 independent reflections
Radiation source: fine-focus sealed tube2558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.946, Tmax = 0.963k = 1111
16379 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2206P]
where P = (Fo2 + 2Fc2)/3
2769 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H12O6γ = 68.655 (1)°
Mr = 324.28V = 786.65 (3) Å3
Triclinic, P1Z = 2
a = 8.5765 (2) ÅMo Kα radiation
b = 9.8469 (2) ŵ = 0.10 mm1
c = 10.2677 (2) ÅT = 100 K
α = 78.903 (1)°0.54 × 0.43 × 0.37 mm
β = 79.552 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2769 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2558 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.963Rint = 0.022
16379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
2769 reflectionsΔρmin = 0.24 e Å3
220 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83566 (10)0.52293 (9)0.16775 (8)0.0236 (2)
O20.57685 (10)0.57849 (10)0.28339 (8)0.0293 (2)
O30.65384 (9)0.22546 (9)1.31248 (7)0.02084 (19)
O40.41386 (10)0.31372 (9)1.21571 (8)0.0268 (2)
O51.77215 (9)0.03869 (9)0.67379 (8)0.0236 (2)
O61.70937 (10)0.04808 (10)0.89660 (8)0.0299 (2)
C10.75769 (16)0.59765 (14)0.04628 (11)0.0278 (3)
H1A0.67740.55280.03380.042*
H1B0.84520.58820.03080.042*
H1C0.69820.70210.05440.042*
C20.72764 (14)0.52404 (12)0.27834 (11)0.0190 (2)
C30.81227 (13)0.45041 (12)0.39566 (11)0.0194 (2)
C40.86741 (13)0.38829 (12)0.49835 (11)0.0185 (2)
C50.55244 (15)0.23382 (15)1.44175 (11)0.0278 (3)
H5A0.47590.33521.44660.042*
H5B0.62630.20361.51230.042*
H5C0.48650.16831.45390.042*
C60.56511 (13)0.26911 (12)1.20822 (11)0.0188 (2)
C70.67830 (14)0.25513 (12)1.08442 (11)0.0203 (2)
C80.77122 (13)0.24785 (11)0.98194 (11)0.0188 (2)
C91.94875 (14)0.09886 (14)0.69328 (13)0.0277 (3)
H9A1.97500.03360.74040.042*
H9B2.01820.10710.60620.042*
H9C1.97260.19650.74650.042*
C101.66647 (14)0.01980 (12)0.78696 (11)0.0190 (2)
C111.49194 (13)0.04128 (12)0.76135 (10)0.0193 (2)
C121.34504 (14)0.09501 (12)0.74997 (10)0.0183 (2)
C130.93204 (13)0.31191 (12)0.62162 (11)0.0175 (2)
C140.82157 (13)0.31487 (12)0.73950 (11)0.0183 (2)
H140.70410.36610.73790.022*
C150.88415 (13)0.24233 (12)0.85995 (11)0.0178 (2)
C161.05675 (14)0.16784 (12)0.86244 (11)0.0180 (2)
H161.09920.11890.94450.022*
C171.16685 (13)0.16532 (11)0.74421 (11)0.0171 (2)
C181.10490 (13)0.23615 (12)0.62325 (11)0.0178 (2)
H181.17970.23290.54250.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0233 (4)0.0293 (4)0.0145 (4)0.0059 (3)0.0046 (3)0.0018 (3)
O20.0194 (5)0.0351 (5)0.0271 (5)0.0035 (4)0.0074 (3)0.0034 (4)
O30.0171 (4)0.0290 (4)0.0140 (4)0.0066 (3)0.0007 (3)0.0010 (3)
O40.0179 (4)0.0345 (5)0.0225 (4)0.0033 (4)0.0029 (3)0.0018 (3)
O50.0146 (4)0.0310 (4)0.0222 (4)0.0039 (3)0.0028 (3)0.0036 (3)
O60.0230 (4)0.0434 (5)0.0209 (5)0.0074 (4)0.0089 (3)0.0005 (4)
C10.0363 (7)0.0292 (6)0.0153 (6)0.0082 (5)0.0099 (5)0.0038 (5)
C20.0204 (6)0.0181 (5)0.0186 (6)0.0061 (4)0.0053 (4)0.0007 (4)
C30.0162 (5)0.0209 (5)0.0196 (6)0.0046 (4)0.0020 (4)0.0025 (4)
C40.0153 (5)0.0205 (5)0.0185 (6)0.0050 (4)0.0015 (4)0.0026 (4)
C50.0248 (6)0.0411 (7)0.0133 (5)0.0097 (5)0.0017 (4)0.0005 (5)
C60.0191 (6)0.0179 (5)0.0177 (5)0.0050 (4)0.0023 (4)0.0009 (4)
C70.0203 (6)0.0211 (6)0.0187 (6)0.0059 (4)0.0048 (5)0.0008 (4)
C80.0186 (5)0.0191 (5)0.0178 (6)0.0052 (4)0.0042 (4)0.0012 (4)
C90.0139 (5)0.0309 (6)0.0358 (7)0.0024 (5)0.0033 (5)0.0090 (5)
C100.0176 (5)0.0185 (5)0.0203 (6)0.0055 (4)0.0049 (4)0.0002 (4)
C110.0194 (6)0.0225 (6)0.0149 (5)0.0070 (5)0.0035 (4)0.0008 (4)
C120.0200 (6)0.0201 (5)0.0151 (5)0.0076 (4)0.0034 (4)0.0003 (4)
C130.0175 (5)0.0185 (5)0.0163 (5)0.0057 (4)0.0044 (4)0.0009 (4)
C140.0147 (5)0.0193 (5)0.0199 (6)0.0039 (4)0.0037 (4)0.0026 (4)
C150.0184 (5)0.0190 (5)0.0166 (5)0.0071 (4)0.0020 (4)0.0024 (4)
C160.0204 (6)0.0188 (5)0.0157 (5)0.0073 (4)0.0055 (4)0.0005 (4)
C170.0156 (5)0.0174 (5)0.0188 (5)0.0053 (4)0.0046 (4)0.0015 (4)
C180.0166 (5)0.0207 (5)0.0162 (5)0.0070 (4)0.0013 (4)0.0021 (4)
Geometric parameters (Å, º) top
O1—C21.3280 (14)C6—C71.4490 (15)
O1—C11.4612 (13)C7—C81.1961 (16)
O2—C21.2018 (14)C8—C151.4345 (15)
O3—C61.3379 (13)C9—H9A0.9800
O3—C51.4478 (13)C9—H9B0.9800
O4—C61.2015 (13)C9—H9C0.9800
O5—C101.3359 (13)C10—C111.4485 (15)
O5—C91.4478 (13)C11—C121.1938 (16)
O6—C101.1980 (14)C12—C171.4371 (15)
C1—H1A0.9800C13—C141.3931 (15)
C1—H1B0.9800C13—C181.3978 (15)
C1—H1C0.9800C14—C151.3963 (15)
C2—C31.4496 (15)C14—H140.9500
C3—C41.1965 (16)C15—C161.3950 (15)
C4—C131.4351 (15)C16—C171.3945 (15)
C5—H5A0.9800C16—H160.9500
C5—H5B0.9800C17—C181.3955 (15)
C5—H5C0.9800C18—H180.9500
C2—O1—C1114.65 (9)H9A—C9—H9B109.5
C6—O3—C5114.53 (8)O5—C9—H9C109.5
C10—O5—C9114.15 (9)H9A—C9—H9C109.5
O1—C1—H1A109.5H9B—C9—H9C109.5
O1—C1—H1B109.5O6—C10—O5124.66 (10)
H1A—C1—H1B109.5O6—C10—C11123.62 (10)
O1—C1—H1C109.5O5—C10—C11111.72 (9)
H1A—C1—H1C109.5C12—C11—C10174.86 (11)
H1B—C1—H1C109.5C11—C12—C17175.86 (11)
O2—C2—O1125.16 (10)C14—C13—C18120.36 (10)
O2—C2—C3122.68 (10)C14—C13—C4119.56 (9)
O1—C2—C3112.16 (9)C18—C13—C4120.08 (10)
C4—C3—C2173.59 (11)C13—C14—C15119.76 (10)
C3—C4—C13178.97 (12)C13—C14—H14120.1
O3—C5—H5A109.5C15—C14—H14120.1
O3—C5—H5B109.5C16—C15—C14120.15 (10)
H5A—C5—H5B109.5C16—C15—C8119.93 (10)
O3—C5—H5C109.5C14—C15—C8119.90 (10)
H5A—C5—H5C109.5C17—C16—C15119.89 (10)
H5B—C5—H5C109.5C17—C16—H16120.1
O4—C6—O3125.17 (10)C15—C16—H16120.1
O4—C6—C7124.83 (10)C16—C17—C18120.25 (9)
O3—C6—C7110.00 (9)C16—C17—C12119.01 (9)
C8—C7—C6178.08 (11)C18—C17—C12120.67 (10)
C7—C8—C15178.35 (11)C17—C18—C13119.58 (10)
O5—C9—H9A109.5C17—C18—H18120.2
O5—C9—H9B109.5C13—C18—H18120.2
C1—O1—C2—O21.09 (16)C13—C14—C15—C8178.64 (10)
C1—O1—C2—C3179.11 (9)C14—C15—C16—C170.29 (16)
C5—O3—C6—O40.66 (16)C8—C15—C16—C17178.57 (9)
C5—O3—C6—C7179.49 (9)C15—C16—C17—C180.46 (16)
C9—O5—C10—O60.41 (16)C15—C16—C17—C12176.57 (9)
C9—O5—C10—C11179.68 (9)C16—C17—C18—C131.13 (15)
C18—C13—C14—C150.32 (16)C12—C17—C18—C13175.85 (10)
C4—C13—C14—C15179.16 (10)C14—C13—C18—C171.06 (16)
C13—C14—C15—C160.35 (16)C4—C13—C18—C17178.42 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring and Cg3 is the mid-point of atoms C7 and C8.
D—H···AD—HH···AD···AD—H···A
C1—H1C···O6i0.982.703.4378 (15)133
C5—H5B···O5ii0.982.663.4517 (15)138
C14—H14···O2iii0.952.313.2278 (13)162
C16—H16···O6iv0.952.353.2390 (13)155
C1—H1A···Cg3v0.982.853.5506 (13)130
C9—H9A···Cg1vi0.982.763.6302 (13)148
Symmetry codes: (i) x1, y+1, z1; (ii) x1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+3, y, z+2; (v) x, y, z1; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring and Cg3 is the mid-point of atoms C7 and C8.
D—H···AD—HH···AD···AD—H···A
C1—H1C···O6i0.982.703.4378 (15)132.8
C5—H5B···O5ii0.982.663.4517 (15)138.3
C14—H14···O2iii0.952.313.2278 (13)162.0
C16—H16···O6iv0.952.353.2390 (13)154.7
C1—H1A···Cg3v0.982.853.5506 (13)129.5
C9—H9A···Cg1vi0.982.763.6302 (13)148.3
Symmetry codes: (i) x1, y+1, z1; (ii) x1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+3, y, z+2; (v) x, y, z1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H12O6
Mr324.28
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.5765 (2), 9.8469 (2), 10.2677 (2)
α, β, γ (°)78.903 (1), 79.552 (1), 68.655 (1)
V3)786.65 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.54 × 0.43 × 0.37
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.946, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
16379, 2769, 2558
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.08
No. of reflections2769
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under the program SPP 1362/1.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 29–121. New York: Oxford University Press Inc.  Google Scholar
First citationKatzsch, F., Gruber, T. & Weber, E. (2016). J. Mol. Struct. 1114, 48–64.  CSD CrossRef CAS Google Scholar
First citationMacGillivray, L. R. (2010). In Metal Organic Frameworks. Hoboken: Wiley.  Google Scholar
First citationMünch, A. S., Katzsch, F., Weber, E. & Mertens, F. O. R. L. (2013). J. Mol. Struct. 1043, 103–108.  Google Scholar
First citationNoro, S.-I. & Kitagawa, S. (2010). In The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials, edited by K. Rurack & R. Martinez-Manez, pp. 235–269. Hoboken: Wiley.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, E. (1996). In Comprehensive Supramolecular Chemistry, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, pp. 535–592. Oxford: Elsevier.  Google Scholar
First citationWelti, R. & Diederich, F. (2003). Helv. Chim. Acta, 86, 494–503.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds