organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetate

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: yhakmaoui1@gmail.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 2 March 2016; accepted 8 April 2016; online 15 April 2016)

In the title compound, C8H11N3O4, the imidazole ring and the nitro group are nearly coplanar, with the largest deviation from the mean plane being 0.119 (2) Å. The mean plane through the acetate group is approximately perpendicular to the imidazole ring, subtending a dihedral angle of 75.71 (13)°. In the crystal, mol­ecules are linked by weak C—H⋯O and very weak C—H⋯N hydrogen bonds, forming a three-dimensional network. There is also a weak C—H⋯π(imidazole) inter­action, which contributes to the stability of the crystal packing arrangement.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imidazoles are an important class of heterocyclic compounds that are abundant in the structures of many natural and synthetic pharmacologically active substances (Neildé et al., 2014[Neildé, K., Crozet, M. D., Terme, T. & Vanelle, P. (2014). Tetrahedron Lett. 55, 3652-3657.]; Adamovich et al., 2014[Adamovich, S. N., Ushakov, I. A., Mirskova, A. N., Mirskov, R. G. & Voronov, V. K. (2014). Mendeleev Commun. 24, 293-294.]). Some nitro­imidazole derivatives have been identified as notable radiosensitizers, anti­protozoal, anti­fungal and anti­bacterial or anti-epileptic agents (Olender et al., 2009[Olender, D., Żwawiak, J., Lukianchuk, V., Lesyk, R., Kropacz, A., Fojutowski, A. & Zaprutko, L. (2009). Eur. J. Med. Chem. 44, 645-652.]; Duan et al., 2014[Duan, Y.-T., Wang, Z.-C., Sang, Y.-L., Tao, X.-X., Teraiya, S. B., Wang, P.-F., Wen, Q., Zhou, X.-J., Ding, L., Yang, Y.-H. & Zhu, H.-L. (2014). Eur. J. Med. Chem. 76, 387-396.]; Sutherland et al., 2010[Sutherland, H. S., Blaser, A., Kmentova, I., Franzblau, S. G., Wan, B., Wang, Y., Ma, Z., Palmer, B. D., Denny, W. A. & Thompson, A. M. (2010). J. Med. Chem. 53, 855-866.]).

The mol­ecule of the title compound is build up from a nitro- and methyl-substituted imidazole ring (C1–C3/N2/N3) linked to an ethyl­acetate moiety, as shown in Fig. 1[link]. The nitro group and the imidazole ring are coplanar with a maximum deviation from the mean plane of 0.119 (2) Å for O1. The imidazole ring makes a dihedral angle of 75.71 (13)° with the plane through the acetate group. The title compound is achiral, although it crystallizes in a chiral space group.

[Figure 1]
Figure 1
Plot of the mol­ecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

The crystal structure cohesion is ensured by C—H⋯O and C—H⋯N hydrogen-bonding inter­actions (Table 1[link]). There is also a weak C5—H5Aπ inter­action, which contributes to the stability of the crystal packing arrangement, as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the imidazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.97 2.43 3.224 (2) 139
C8—H8B⋯O3ii 0.97 2.54 3.446 (3) 156
C5—H5B⋯N2iii 0.97 2.65 3.586 (2) 161
C5—H5B⋯O1iii 0.97 2.62 3.387 (2) 136
C5—H5ACgi 0.97 2.98 3.651 (2) 128
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing for the title compound, showing hydrogen bonds as dashed lines.

Synthesis and crystallization

To a solution of 2-methyl-5-nitro-1H-imidazole (7.87 mmol) in DMSO was added potassium hydroxide (8.7 mmol). After 15 min of stirring at 298 K, ethyl bromo­acetate (15.74 mmol) was added dropwise. Upon disappearance of the starting material as indicated by TLC, the mixture was added to ice–water and extracted with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo. The resulting residue was purified by column chromatography (EtOAc/hexane 09/01). The title compound was recrystallized from ethanol at room temperature giving colourless crystals (m.p. 351 K, yield 68%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H11N3O4
Mr 213.20
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 4.4793 (2), 10.3596 (5), 21.5724 (11)
V3) 1001.04 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.13 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.635, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23416, 2802, 2488
Rint 0.040
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.06
No. of reflections 2802
No. of parameters 137
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

To a solution of 2-methyl-5-nitro-1H-imidazole (7.87 mmol) in DMSO was added potassium hydroxide (8.7 mmol). After 15 min of stirring at 298 K, ethyl bromoacetate (15.74 mmol) was added dropwise. Upon disappearance of the starting material as indicated by TLC, the mixture was added to ice–water and extracted with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo. The resulting residue was purified by column chromatography (EtOAc/hexane 09/01). The title compound was recrystallized from ethanol at room temperature giving colourless crystals (m.p. 351 K, yield 68%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Imidazoles are an important class of heterocyclic compounds that are abundant in the structures of many natural and synthetic pharmacologically active substances (Neildé et al., 2014; Adamovich et al., 2014). Some nitroimidazole derivatives have been identified as notable radiosensitizers, antiprotozoal, antifungal and antibacterial or anti-epileptic agents (Olender et al., 2009; Duan et al., 2014; Sutherland et al., 2010).

The molecule of the title compound is build up from anitro- and methyl-substituted imidazole ring (C1–C3/N2/N3) linked to an ethylacetate moiety, as shown in Fig.1. The nitro group and the imidazole ring are coplanar with a maximum deviation from the mean plane of 0.119 (2) Å for O1. The imidazole ring makes a dihedral angle of 75.71 (13)° with the plane through the acetate group. The title compound is achiral, although it crystallizes in a chiral space group.

The crystal structure cohesion is ensured by C—H···O and C—H···N hydrogen-bonding interactions (Table 1). There is also a weak C5—H5A···π interaction, which contributes to the stability of the crystal packing arrangement, as shown in Fig. 2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of the molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. The crystal packing for the title compound, showing hydrogen bonds as dashed lines.
Ethyl 2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetate top
Crystal data top
C8H11N3O4Dx = 1.415 Mg m3
Mr = 213.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2802 reflections
a = 4.4793 (2) Åθ = 2.2–29.6°
b = 10.3596 (5) ŵ = 0.12 mm1
c = 21.5724 (11) ÅT = 296 K
V = 1001.04 (8) Å3Block, colourless
Z = 40.13 × 0.12 × 0.10 mm
F(000) = 448
Data collection top
Bruker X8 APEX
diffractometer
2802 independent reflections
Radiation source: fine-focus sealed tube2488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 29.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.635, Tmax = 0.746k = 1114
23416 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.0658P]
where P = (Fo2 + 2Fc2)/3
2802 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C8H11N3O4V = 1001.04 (8) Å3
Mr = 213.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.4793 (2) ŵ = 0.12 mm1
b = 10.3596 (5) ÅT = 296 K
c = 21.5724 (11) Å0.13 × 0.12 × 0.10 mm
Data collection top
Bruker X8 APEX
diffractometer
2802 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2488 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.746Rint = 0.040
23416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
2802 reflectionsΔρmin = 0.15 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6714 (4)0.89444 (15)0.23607 (7)0.0340 (3)
C20.8179 (4)0.78660 (15)0.25496 (7)0.0357 (4)
H20.81070.70450.23760.043*
C30.9159 (4)0.95500 (14)0.31441 (8)0.0351 (4)
C41.0510 (5)1.03126 (19)0.36538 (9)0.0512 (5)
H4A1.01230.98940.40430.077*
H4B0.96551.11620.36580.077*
H4C1.26261.03750.35900.077*
C51.1594 (4)0.74202 (18)0.34365 (8)0.0395 (4)
H5A1.33740.78790.35670.047*
H5B1.22140.66760.31960.047*
C60.9893 (4)0.69707 (15)0.40023 (8)0.0346 (3)
C80.9589 (6)0.53412 (19)0.47602 (9)0.0541 (5)
H8A0.74440.53560.46980.065*
H8B1.00530.58210.51340.065*
C91.0674 (7)0.3982 (2)0.48146 (12)0.0703 (7)
H9A0.97220.35720.51610.105*
H9B1.02010.35190.44420.105*
H9C1.27970.39820.48760.105*
N10.4717 (4)0.90250 (14)0.18451 (7)0.0422 (3)
N20.7284 (4)0.99894 (13)0.27239 (6)0.0371 (3)
N30.9776 (3)0.82629 (12)0.30513 (6)0.0338 (3)
O10.3344 (4)1.00273 (14)0.17624 (8)0.0603 (4)
O20.4468 (5)0.80706 (15)0.15122 (7)0.0671 (5)
O30.7749 (3)0.75150 (13)0.42096 (6)0.0492 (3)
O41.1105 (3)0.59101 (12)0.42288 (6)0.0421 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0341 (8)0.0307 (7)0.0370 (7)0.0001 (7)0.0003 (7)0.0044 (6)
C20.0422 (9)0.0287 (7)0.0364 (7)0.0035 (7)0.0022 (7)0.0001 (6)
C30.0386 (9)0.0282 (7)0.0385 (8)0.0003 (7)0.0017 (7)0.0029 (6)
C40.0637 (13)0.0421 (9)0.0479 (9)0.0055 (10)0.0087 (10)0.0026 (8)
C50.0324 (8)0.0418 (8)0.0443 (8)0.0106 (7)0.0010 (7)0.0077 (7)
C60.0312 (8)0.0336 (7)0.0389 (7)0.0008 (7)0.0065 (7)0.0009 (6)
C80.0583 (13)0.0524 (11)0.0515 (10)0.0075 (10)0.0016 (10)0.0146 (8)
C90.0853 (19)0.0504 (12)0.0753 (15)0.0096 (13)0.0046 (14)0.0242 (11)
N10.0408 (8)0.0410 (7)0.0449 (7)0.0039 (7)0.0071 (7)0.0092 (6)
N20.0407 (8)0.0291 (6)0.0414 (7)0.0036 (6)0.0004 (6)0.0021 (5)
N30.0341 (7)0.0305 (6)0.0367 (6)0.0070 (6)0.0007 (6)0.0031 (5)
O10.0571 (10)0.0531 (8)0.0706 (9)0.0089 (8)0.0214 (8)0.0145 (7)
O20.0850 (13)0.0544 (8)0.0619 (8)0.0040 (9)0.0289 (9)0.0058 (7)
O30.0453 (7)0.0503 (7)0.0521 (7)0.0101 (7)0.0084 (6)0.0035 (6)
O40.0387 (6)0.0392 (6)0.0485 (7)0.0011 (5)0.0035 (6)0.0120 (5)
Geometric parameters (Å, º) top
C1—C21.358 (2)C5—H5A0.9700
C1—N21.360 (2)C5—H5B0.9700
C1—N11.430 (2)C6—O31.200 (2)
C2—N31.361 (2)C6—O41.3194 (19)
C2—H20.9300C8—O41.457 (2)
C3—N21.317 (2)C8—C91.494 (3)
C3—N31.3764 (19)C8—H8A0.9700
C3—C41.483 (2)C8—H8B0.9700
C4—H4A0.9600C9—H9A0.9600
C4—H4B0.9600C9—H9B0.9600
C4—H4C0.9600C9—H9C0.9600
C5—N31.455 (2)N1—O11.2200 (19)
C5—C61.512 (2)N1—O21.227 (2)
C2—C1—N2113.02 (14)O3—C6—C5124.00 (15)
C2—C1—N1125.71 (15)O4—C6—C5110.36 (14)
N2—C1—N1121.26 (14)O4—C8—C9106.94 (19)
C1—C2—N3104.13 (14)O4—C8—H8A110.3
C1—C2—H2127.9C9—C8—H8A110.3
N3—C2—H2127.9O4—C8—H8B110.3
N2—C3—N3111.28 (15)C9—C8—H8B110.3
N2—C3—C4125.90 (15)H8A—C8—H8B108.6
N3—C3—C4122.82 (16)C8—C9—H9A109.5
C3—C4—H4A109.5C8—C9—H9B109.5
C3—C4—H4B109.5H9A—C9—H9B109.5
H4A—C4—H4B109.5C8—C9—H9C109.5
C3—C4—H4C109.5H9A—C9—H9C109.5
H4A—C4—H4C109.5H9B—C9—H9C109.5
H4B—C4—H4C109.5O1—N1—O2123.66 (16)
N3—C5—C6111.33 (14)O1—N1—C1118.61 (15)
N3—C5—H5A109.4O2—N1—C1117.72 (16)
C6—C5—H5A109.4C3—N2—C1103.94 (13)
N3—C5—H5B109.4C2—N3—C3107.62 (14)
C6—C5—H5B109.4C2—N3—C5124.56 (13)
H5A—C5—H5B108.0C3—N3—C5127.64 (15)
O3—C6—O4125.64 (17)C6—O4—C8115.87 (15)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the imidazole ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.972.433.224 (2)139
C8—H8B···O3ii0.972.543.446 (3)156
C5—H5B···N2iii0.972.653.586 (2)161
C5—H5B···O1iii0.972.623.387 (2)136
C5—H5A···Cgi0.972.983.651 (2)128
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1; (iii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the imidazole ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.972.433.224 (2)138.8
C8—H8B···O3ii0.972.543.446 (3)156.1
C5—H5B···N2iii0.972.653.586 (2)161.4
C5—H5B···O1iii0.972.623.387 (2)135.7
C5—H5A···Cgi0.972.983.651 (2)128
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H11N3O4
Mr213.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.4793 (2), 10.3596 (5), 21.5724 (11)
V3)1001.04 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.635, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
23416, 2802, 2488
Rint0.040
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.06
No. of reflections2802
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationAdamovich, S. N., Ushakov, I. A., Mirskova, A. N., Mirskov, R. G. & Voronov, V. K. (2014). Mendeleev Commun. 24, 293–294.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDuan, Y.-T., Wang, Z.-C., Sang, Y.-L., Tao, X.-X., Teraiya, S. B., Wang, P.-F., Wen, Q., Zhou, X.-J., Ding, L., Yang, Y.-H. & Zhu, H.-L. (2014). Eur. J. Med. Chem. 76, 387–396.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNeildé, K., Crozet, M. D., Terme, T. & Vanelle, P. (2014). Tetrahedron Lett. 55, 3652–3657.  Google Scholar
First citationOlender, D., Żwawiak, J., Lukianchuk, V., Lesyk, R., Kropacz, A., Fojutowski, A. & Zaprutko, L. (2009). Eur. J. Med. Chem. 44, 645–652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutherland, H. S., Blaser, A., Kmentova, I., Franzblau, S. G., Wan, B., Wang, Y., Ma, Z., Palmer, B. D., Denny, W. A. & Thompson, A. M. (2010). J. Med. Chem. 53, 855–866.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds